Strings: Tries and Suffix Trees

Papamakarios Theodoros

January 29, 2015

Papamakarios Theodoros Strings: Tries and Suffix Trees

The Problem

String matching: Given text T € L* and pattern P € ¥*, find
some/all occurences of P in T as a substring.

@ One shot: O(T) time (Knuth, Morris, Pratt; Boyer & Moore;
Karp & Rabin).

e Static Data Structures: Preprocess T, query = P.
Goal:

(P) time per query.

-0
- O(T) space.

Papamakarios Theodoros Strings: Tries and Suffix Trees

Given k strings T1,..., Tx and query P, determine where P fits
among the k strings in lexicographical order.

Trie: Rooted tree with child branches labeled with letters in
py

Papamakarios Theodoros Strings: Tries and Suffix Trees

Given k strings T1,..., Tx and query P, determine where P fits
among the k strings in lexicographical order.

Trie: Rooted tree with child branches labeled with letters in
py

Figure : Trie representation of {bear, bed, be, bad, dog}.

Trie representation. Node stores children as: (T = # nodes in
. k
trie < 325y [Til)

query size
array O(P) o(TY)
linked lists O(PY) Oo(T)
BST O(PlogX) o(T)
suffix trays O(P + log¥) o(T)

Papamakarios Theodoros Strings: Tries and Suffix Trees

Application: Sorting strings T1,..., T
Repeatedly insert into trie/tray
= O(X K (T +1logT)) = O(T + klog ¥) time
(<< O(Tklog k)) via comparisons)

Papamakarios Theodoros Strings: Tries and Suffix Trees

Application: Sorting strings T1,..., T
Repeatedly insert into trie/tray
= O(X K (T +1logT)) = O(T + klog ¥) time
(<< O(Tklog k)) via comparisons)

Compressed Trie: Contract nonbranching paths to single edge (#
nodes = O(k)).

@ —
D Q og$
Q O
a e 0 ad$ e

@, @ O
d 37d 5 & ary” | $
O O O O
$ r $ $

O

$

Papamakarios Theodoros Strings: Tries and Suffix Trees

Suffix Trees

Suffix Tree: Compressed trie of all | T| suffixes of T (with $
appended)
o |T|+1 leaves
e edge label = substring T[i:j] of T
- store as two indices (i,j) = O(T) space

Figure : Suffix tree for T

:!lg\a\z\i\n\a\f\

Papamakarios Theodoros Strings: Tries and Suffix Trees

Suffix Trees

(b[af[n[a[n[af$]

0 1 2 3 4 5 6

Applications:
@ search for P gives subtree whose leaves correspond to all
occurrences of P
- O(P) time via hashing
- O(P + log X) via trays (= leaves sorted in T)
e list first k occurrences in O(k) more time

Papamakarios Theodoros Strings: Tries and Suffix Trees

Suffix Trees

Applications:
@ Given two indices j and j, find the longest common prefix of

T[i:]and T[]
- least common ancestor

e multiple documents via multiple $s: T = T1$71... T, $«
@ document retrieval

@ many more...

Suffix trees can be built in O(T) time

Papamakarios Theodoros Strings: Tries and Suffix Trees

Suffix Trees

[3 Erik Demaine.
Lecture notes on advanced data structures.
http://ocw.mit.edu/courses/
electrical-engineering-and-computer-science/
6-851-advanced-data-structures-spring-2012/
calendar-and-notes/, 2012

Papamakarios Theodoros Strings: Tries and Suffix Trees

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-851-advanced-data-structures-spring-2012/calendar-and-notes/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-851-advanced-data-structures-spring-2012/calendar-and-notes/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-851-advanced-data-structures-spring-2012/calendar-and-notes/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-851-advanced-data-structures-spring-2012/calendar-and-notes/

	The Problem
	Warmup: Tries
	Suffix Trees

