Chapter 4

First Order Fixed-Point Logic

Evergetis March 20, 2023

National Technical University of Athens, National and Kapodistrian University of Athens

```
γολική και γιακόιτα
νολική και γιακόιτα
Ω ολική και γιακόιτα
υμητατικό
γ
```

- 1. Least Fixed Point
- 2. First-Order Inductive Definitions
- 3. Expressive power of FO(LFP)

4. Connections to Parallelism

Least Fixed Point

Do we get more expressibility by adding something extra to first-order logic, without having to jump all the way to second-order logic? **Yes!**

• Define new relations by induction!

e.g. Recall the vocabulary $\tau_g = \langle E^2, s, t \rangle$ of graphs. We define formally the reflexive, transitive closure of E^* of E as follows:

$$\varphi(R, x, y) \equiv x = y \lor \exists z (E(x, z) \land R(z, y))$$
(1)

or written differently

$$E^*(x,y) \equiv x = y \lor \exists z (E(x,z) \land E^*(z,y))$$
(2)

For any structure \mathcal{A} with vocabulary τ_g , formula (1) *induces* a map from binary relations on the universe of \mathcal{A} to binary relations on the universe of \mathcal{A} ,

$$\varphi^{\mathcal{A}}(R) = \big\{ \langle a, b \rangle \mid \mathcal{A} \vDash \varphi(R, a, b) \big\}$$

We observe that, for A any graph and $r \ge 0$:

$$\begin{aligned} (\varphi^{\mathcal{A}})(\emptyset) &= \left\{ \langle a, b \rangle \in |\mathcal{A}|^2 \mid \text{distance}(a, b) \leq 0 \right\} \\ (\varphi^{\mathcal{A}})^2(\emptyset) &= \left\{ \langle a, b \rangle \in |\mathcal{A}|^2 \mid \text{distance}(a, b) \leq 1 \right\} \end{aligned}$$

and in general

$$(\varphi^{\mathcal{A}})^{r}(\emptyset) = \{ \langle a, b \rangle \in |\mathcal{A}|^{2} \mid \text{distance}(a, b) \leq r - 1 \}.$$

Thus, for cardinality $n = ||\mathcal{A}||$, then $(\varphi^{\mathcal{A}})^n(\emptyset) = E^* =$ the least fixed point of $\varphi^{\mathcal{A}}$ i.e. the minimal relation *T* such that $\varphi^{\mathcal{A}}(T) = T$.

Following comes the finite version of the Knaster-Tarski Theorem.

Theorem

Let R be a new relation symbol of arity k, and let $\varphi(R, x_1, ..., x_k)$ be a monotone first-order formula. Then for any finite structure \mathcal{A} , the **least fixed point** of $\varphi^{\mathcal{A}}$ exists. It is equal to $(\varphi^{\mathcal{A}})^r(\emptyset)$ where r is minimal so that $(\varphi^{\mathcal{A}})^r(\emptyset) = (\varphi^{\mathcal{A}})^{r+1}(\emptyset)$. Furthermore, letting $n = ||\mathcal{A}||$, we have $r \le n^k$.

Proof.

Consider the sequence

$$\emptyset \subseteq (\varphi^{\mathcal{A}})(\emptyset) \subseteq (\varphi^{\mathcal{A}})^2(\emptyset) \subseteq (\varphi^{\mathcal{A}})^3(\emptyset) \subseteq \dots$$

The containment follows because $\varphi^{\mathcal{A}}$ is monotone. If $(\varphi^{\mathcal{A}})^{i+1}(\emptyset)$ strictly contains $(\varphi^{\mathcal{A}})^{i}(\emptyset)$, then it must contain at least one new k-tuple from $|\mathcal{A}|$. Since there are at most n^{k} such k-tuples, for some $r \leq n^{k}$, $(\varphi^{\mathcal{A}})^{r}(\emptyset) = (\varphi^{\mathcal{A}})^{r+1}(\emptyset)$, i.e. $(\varphi^{\mathcal{A}})^{r}(\emptyset)$ is a fixed point of $\varphi^{\mathcal{A}}$.

Let S be any other fixed point of $\varphi^{\mathcal{A}}$. We show inductively that $(\varphi^{\mathcal{A}})^i(\emptyset) \subseteq S$ for all *i*.

- · IB: $(\varphi^{\mathcal{A}})^0(\emptyset) = \emptyset \subseteq S$
- · IH: $(\varphi^{\mathcal{A}})^{i}(\emptyset) \subseteq S$
- IS: $(\varphi^{\mathcal{A}})^{i+1}(\emptyset) = \varphi^{\mathcal{A}}((\varphi^{\mathcal{A}})^{i}(\emptyset)) \subseteq \varphi^{\mathcal{A}}(S) = S.$

Thus, $(\varphi^{\mathcal{A}})^r(\emptyset) \subseteq S$ and $(\varphi^{\mathcal{A}})^r(\emptyset)$ is the least fixed point of $\varphi^{\mathcal{A}}$ as claimed.

• Notation: We write $(LFP_{R^k x_1...x_k}\varphi)$ to denote the least fixed point of any *R*-positive formula $\varphi(R^k, x_1, ..., x_k)$, although the subscript may be ommited when the choice of variables is clear.

• (LFP_{$Rxy \varphi(1)$}) denotes the reflexive, transitive closure of the edge relation *E*. Thus boolean query REACH is expressible as:

$$\mathsf{REACH} \equiv (\mathsf{LFP}_{\mathsf{Rxy}\,\varphi_{(1)}})(s,t)$$

First-Order Inductive Definitions

Definition

Define FO(LFP), the **language of first-order inductive definitions**, by adding a least fixed point operator (LFP) to first-order logic. If $\varphi(R^k, x_1, \ldots, x_k)$ is an R^k -positive formula in FO(LFP), then $(\text{LFP}_{R^k x_1...x_k}\varphi)$ may be used as a new *k*-ary relation symbol denoting the least fixed point of φ .

REACH $_{\alpha}$ expressed with FO(LFP)

- REACH $_{\alpha}$ is defined to be the set of graphs having alternating path from s to t.
- Let's give a first-order inductive definition of the alteranting path property P_{α} ,

$$\varphi_{\alpha p} \equiv x = y \lor [(\exists z) (E(x,z) \land P(z,y)) \land (A(x) \to (\forall z) (E(x,z) \to P(z,y)))]$$

• Thus,

 $P_{\alpha} = (LFP_{P_{XY}\varphi_{\alpha p}})$ and $REACH_{\alpha} = (LFP_{P_{XY}\varphi_{\alpha p}})(s, t).$

Expressive power of FO(LFP)

FO(LFP)=P

Theorem

Over finite, ordered structures,

 $FO(LFP) = \mathbf{P}$

Proof.

- (\subseteq): Let \mathcal{A} an input structure, let $n = ||\mathcal{A}||$, and let $(LFP_{R^k x_1...x_k}\varphi)$ be a fixed-point formula. By the previous theorem we know that this fixed point evaluated on \mathcal{A} is $(\varphi_{\mathcal{A}})^{n^k}(\emptyset)$, which amounts to evaluating the first-order query φ at most n^k times. We also know FO \subseteq L, thus it's in P as well.
- (\supseteq): Since FO(LFP) includes query REACH_{α}, which is complete for **P** via first-order reductions, and FO(LFP) is closed under first-order reductions, FO(LFP) includes all polynomial-time queries.

Connections to Parallelism

Definition Depth $|\varphi^{\mathcal{A}}|$ of a formula φ in a structure \mathcal{A} of size n is the minimum r such that

$$\mathcal{A}\vDash \left(\varphi^{r}(\emptyset)\leftrightarrow\varphi^{r+1}(\emptyset)\right)$$

- Intuitively, it is the number of iterations until an inductive definition closes and as we saw it is upper bounded by n^k
- It also corresponds to the depth of recursive calls in the stack when it comes to evaluate recursive definitions.

Definition

Let IND[f(n)] be the sublanguage of FO(LFP) in which only fixed points of first-order formulas φ for which $|\varphi|$ is $\mathcal{O}[f(n)]$ are included. Thus,

$$FO(LFP) = \bigcup_{k=1}^{\infty} IND[n^k]$$

• We know that REACH ∈ IND[*logn*], REACH is complete for **NL** via first-order reuctions, and IND[*logn*] is closed under first-order reductions. All that imply

 $NL \subseteq IND[logn]$

Spoiler alert: $IND[logn] = AC^{1}$

Questions?

Thank you!