Corollaries of Fagin's Theorem

Second-Order Logic and Fagin's Theorem

Anna Kontou

ALMA

24 April 2023

Anna Kontou

Fagin's Theoren

Corollaries of Fagin's Theorem

- 1. Second Order Logic
- 2. Fagin's Theorem
- 3. Corollaries of Fagin's Theorem

Fagin's Theorem

Corollaries of Fagin's Theorem

Contents

Second Order Logic

2 Fagin's Theorem

3 Corollaries of Fagin's Theorem

Corollaries of Fagin's Theorem

References

Second Order Logic

Definition

Second-Order Logic extends first order logic with quantification over relations.

$\exists X\phi,$

where X has arity m.

 $\exists X \phi \text{ is true in a structure } A \text{ if, and only if, } A \text{ can be expanded} by an m-ary relation interpreting X to satisfy <math>\phi$.

Fagin's Theorem

Corollaries of Fagin's Theorem

$SO \exists and SO \forall$

Definition

• Existential second-order (SO∃) is defined as the restriction of SO that consists of the formula of the form

 $\exists X_1 \dots \exists X_n \phi$

where ϕ is a first-order formula.

Corollaries of Fagin's Theorem

$SO \exists and SO \forall$

Definition

• Existential second-order (SO∃) is defined as the restriction of SO that consists of the formula of the form

 $\exists X_1 \dots \exists X_n \phi$

where ϕ is a first-order formula.

• Universal second-order (SO\) is defined as the restriction of SO that consists of the formula of the form

 $\forall X_1 \dots \forall X_n \phi$

where ϕ is a first-order formula and the second order quantifier prefix consists only of universal quantifiers.

Anna Kontou

Fagin's Theorem

Corollaries of Fagin's Theorem

• The boolean query SAT in SO ::

$$\Phi_{SAT} \equiv (\exists S)(\forall x)(\exists y) \Big(\big(P(x,y) \land S(y) \big) \lor \big(N(x,y) \land \neg S(y) \big) \Big)$$

Corollaries of Fagin's Theorem

Examples

• The boolean query SAT in SO ::

$$\Phi_{SAT} \equiv (\exists S) (\forall x) (\exists y) \Big(\big(P(x, y) \land S(y) \big) \lor \big(N(x, y) \land \neg S(y) \big) \Big)$$

• The boolean query 3-COLOR in SO:

 $\Phi_{3\text{-}COLOR} \equiv (\exists \mathbf{R}^1)(\exists \mathbf{Y}^1)(\exists \mathbf{B}^1)(\forall \mathbf{x}) \Big[\big(\mathbf{R}(\mathbf{x}) \lor \mathbf{Y}(\mathbf{x}) \lor \mathbf{B}(\mathbf{x}) \big) \land (\forall \mathbf{y}) \Big(\mathbf{E}(\mathbf{x}, \mathbf{y}) \rightarrow \\ \neg \big(\mathbf{R}(\mathbf{x}) \land \mathbf{R}(\mathbf{y}) \big) \land \neg \big(\mathbf{Y}(\mathbf{x}) \land \mathbf{Y}(\mathbf{y}) \big) \land \neg \big(\mathbf{B}(\mathbf{x}) \land \mathbf{B}(\mathbf{y}) \big) \Big) \Big]$

6/17

Fagin's Theorem ●○○○○

Corollaries of Fagin's Theorem

Contents

Second Order Logic

2 Fagin's Theorem

3 Corollaries of Fagin's Theorem

Anna Kontou

Fagin's Theorem ○●○○○

Corollaries of Fagin's Theorem

References

Fagin's Theorem

Theorem (1973)

NP is equal to the set of existential, second order boolean queries.

 $NP = SO \exists$

Anna Kontou

Fagin's Theorem

Corollaries of Fagin's Theorem

References

$SO \exists \subseteq NP$

Proof

- Let $\Phi = (\exists \mathbf{R}_1^{\mathbf{r}_1}) \dots (\exists \mathbf{R}_k^{\mathbf{r}_k}) \psi$ a second-order existential sentence.
- Let τ be the vocabulary of Φ

Our task is to build an NP machine N such that for all $A \in STRUC[\tau]$ *,*

 $(\mathcal{A} \vDash \Phi) \Leftrightarrow \big(\boldsymbol{N}(\boldsymbol{bin}(\mathcal{A})) \downarrow \big)$

Corollaries of Fagin's Theorem

$SO \exists \subseteq NP$

Proof

- Let A an input structure to N, n = ||A||.
- N machine non-deterministically write down a binary string representation R_i, ∀i ∈ [k]. Check if (A, R₁,..., R_k) ⊨ ψ. If yes, then M accepts. Else, rejects.
- N accepts A iff there is some choice of relations R_i s.t. (A, R₁,..., R_k) ⊨ ψ.
- By $FO \subseteq L \subseteq P$, we can test if $(A, R_1, \ldots, R_k) \vDash \psi$ in NP.

Corollaries of Fagin's Theorem

$NP \subseteq SO \exists$

Notation

- $\vec{s} = (\vec{s}_1, \dots, \vec{s}_k)$: the numbering of tape cells, $\vec{s} \in \{0, \dots, n^k 1\}$
- $\vec{t} = (\vec{t}_1, \dots, \vec{t}_k)$: the numbering of machine's computation time, $\vec{t} \in \{0, \dots, n^k - 1\}$
- Γ = {γ₀,...,γ_g} = (Q × Σ) ∪ Σ: a listing of the possible contents of a computation cell

Fagin's Theorem

Corollaries of Fagin's Theorem

References

$NP \subseteq SO \exists$

Proof

Our task is to find a second-order sentence $SO \exists \Phi$ such that for a nondeterministic Turing machine N,

 $(\mathcal{A}\vDash\Phi)\Leftrightarrow\left(\boldsymbol{N}(\boldsymbol{bin}(\mathcal{A}))\downarrow\right)$

- Let N be a nondetermenistic Turing machine
- Let $n = ||\mathcal{A}||$
- Let k > 0 such that N uses $n^k 1$ time and n^k space.

Fagin's Theorem

Corollaries of Fagin's Theorem

$NP \subseteq SO \exists$

Proof

Let Φ a second-order sentence:

$$\Phi = (\exists C_1^{2k} \dots C_g^{2k} \Delta^k) \phi$$

where

• ϕ is a first-order formula

Fagin's Theorem

Corollaries of Fagin's Theorem

References

$NP \subseteq SO \exists$

Proof

Let Φ a second-order sentence:

$$\Phi = (\exists C_1^{2k} \dots C_g^{2k} \Delta^k) \phi$$

where

- ϕ is a first-order formula
- $C_i(\vec{s}, \vec{t})$: computation cell \vec{s} at time \vec{t} contains symbol γ_i

Fagin's Theorem

Corollaries of Fagin's Theorem

References

$NP \subseteq SO \exists$

Proof

Let Φ a second-order sentence:

$$\Phi = (\exists C_1^{2k} \dots C_g^{2k} \Delta^k) \phi$$

where

- ϕ is a first-order formula
- $C_i(\vec{s}, \vec{t})$: computation cell \vec{s} at time \vec{t} contains symbol γ_i

$$\Delta(\vec{t}) = \begin{cases} 1, & \text{if machine makes choice "1" at step } t+1 \\ 0, & \text{otherwise} \end{cases}$$

Fagin's Theorem

Corollaries of Fagin's Theorem

$NP \subseteq SO \exists$

Proof

We define $\phi(\vec{C}, \Delta)$ as the conjuction of four sentences,

 $\phi\equiv\alpha\wedge\beta\wedge\eta\wedge\zeta$

where

• α : for $\vec{t} = 0$ correctly codes input bin(A)

$$\alpha \equiv \cdots \land \left(\vec{t} = 0 = \boldsymbol{s}_1 = \cdots = \boldsymbol{s}_{k-1} \land \boldsymbol{s}_k \neq 0 \land \boldsymbol{R}_1(\boldsymbol{s}_k) \to \boldsymbol{C}_1(\vec{\boldsymbol{s}}, \vec{\boldsymbol{t}}) \right)$$

$$\wedge \left(\vec{t} = 0 = \boldsymbol{s}_1 = \cdots = \boldsymbol{s}_{k-1} \land \boldsymbol{s}_k \neq 0 \land \neg \boldsymbol{R}_1(\boldsymbol{s}_k) \to \boldsymbol{C}_0(\vec{\boldsymbol{s}}, \vec{\boldsymbol{t}}) \right) \land \cdots$$

Anna Kontou

Fagin's Theorem

Fagin's Theorem

Corollaries of Fagin's Theorem

$NP \subseteq SO \exists$

Proof

• β : it is never the case that $C_i(\vec{s}, \vec{t})$ and $C_j(\vec{s}, \vec{t})$ both hold for $i \neq j$

$$\beta \equiv \bigwedge_{i,j} \beta_{ij}$$

where

$$eta_{ij} = \neg ig(m{C}_i(m{ec{s}},m{ec{t}}) \wedge m{C}_j(m{ec{s}},m{ec{t}}) ig) m{for} m{i}
eq m{j}$$

Fagin's Theorem

Corollaries of Fagin's Theorem

References

$NP \subseteq SO \exists$

Proof

η: for all time t, the contents of tape cell (s, t+1) follows from the contents of cells (s - 1, t), (s, t) and (s + 1, t) via the move Δ(t) of N

 $\eta \equiv \eta_0 \wedge \eta_1 \wedge \eta_2$

where

Fagin's Theorem

Corollaries of Fagin's Theorem

$NP \subseteq SO \exists$

Proof

$$\eta_{1} \equiv (\forall \vec{t}, \vec{s}) \left((\vec{t} \neq \vec{max} \land \vec{0} < \vec{s} < \vec{max}) \rightarrow \bigwedge_{(\alpha_{-1}, \alpha_{0}, \alpha_{1}, \delta)} \left(\left(\delta = 1 \rightarrow \left((\Delta(\vec{t}) \land C_{\alpha_{-1}}(\vec{s} - 1, \vec{t}) \land C_{\alpha_{0}}(\vec{s}, \vec{t}) \land C_{\alpha_{1}}(\vec{s} + 1, \vec{t}) \right) \rightarrow C_{b}(\vec{s}, \vec{t} + 1) \right) \right)$$
$$\land \left(\left(\delta = 0 \rightarrow \left((\neg \Delta(\vec{t}) \land C_{\alpha_{-1}}(\vec{s} - 1, \vec{t}) \land C_{\alpha_{0}}(\vec{s}, \vec{t}) \land C_{\alpha_{1}}(\vec{s} + 1, \vec{t}) \right) \rightarrow C_{b}(\vec{s}, \vec{t} + 1) \right) \right) \right)$$

Fagin's Theorem

Corollaries of Fagin's Theorem

$NP \subseteq SO \exists$

Proof

$$\eta_{1} \equiv (\forall \vec{t}, \vec{s}) \left((\vec{t} \neq \vec{max} \land \vec{0} < \vec{s} < \vec{max}) \rightarrow \bigwedge_{(\alpha_{-1}, \alpha_{0}, \alpha_{1}, \delta) \xrightarrow{N} b} \left((\delta = 1 \rightarrow (\Delta(\vec{t}) \land C_{\alpha_{-1}}(\vec{s} - 1, \vec{t}) \land C_{\alpha_{0}}(\vec{s}, \vec{t}) \land C_{\alpha_{1}}(\vec{s} + 1, \vec{t})) \rightarrow C_{b}(\vec{s}, \vec{t} + 1) \right) \right)$$

$$\land \left((\delta = 0 \rightarrow ((\neg \Delta(\vec{t}) \land C_{\alpha_{-1}}(\vec{s} - 1, \vec{t}) \land C_{\alpha_{0}}(\vec{s}, \vec{t}) \land C_{\alpha_{1}}(\vec{s} + 1, \vec{t})) \rightarrow C_{b}(\vec{s}, \vec{t} + 1, \vec{t})) \rightarrow C_{b}(\vec{s}, \vec{t} + 1) \right) \right)$$

 η_0 and η_2 are the same with η_1 for $\vec{s} = \vec{0}$ and $\vec{s} = m\vec{a}x$ respectively

Anna Kontou

Fagin's Theorem

1/17

Corollaries of Fagin's Theorem

$NP \subseteq SO \exists$

Proof

- ζ : for $\vec{t} = n^k 1$, machine includes the accept state
 - N accepts it, clears its tape, moves all the way to left and enters a unique accept state q_l
 - ► If $\gamma_l = (q_l, 0) \in \Gamma$, then

$$\zeta \equiv \boldsymbol{C}_{\boldsymbol{l}}(\vec{0}, \boldsymbol{m}\vec{\boldsymbol{a}}\boldsymbol{x})$$

Fagin's Theorem

Corollaries of Fagin's Theorem ●○○○○

Contents

Second Order Logic

2 Fagin's Theorem

3 Corollaries of Fagin's Theorem

Anna Kontou

Corollaries of Fagin's Theorem $0 \circ 0 \circ 0$

References

NP-Complete Problems

Corollary (Cook)

SAT is NP-complete via first-order reductions.

Anna Kontou

Corollaries of Fagin's Theorem $0 \bullet 000$

NP-Complete Problems

Corollary (Cook)

SAT is NP-complete via first-order reductions.

Proof

- Let B ∈ NP be any boolean query and A be any input structure with n = ||A||.
- By Fagin's theorem, $B = MOD[\Phi]$ where $\Phi = (\exists S_1^{\alpha_1} \dots \exists S_g^{\alpha_g})(\forall x_1 \dots \forall x_t)\psi(\vec{x})$ with ψ quantifier-free and we assume that $\psi(\vec{x}) = \bigwedge_{j=1}^r C_j(\vec{x})$

$$\mathcal{A} \in \pmb{B} \Leftrightarrow \mathcal{A} \vDash \Phi$$

Corollaries of Fagin's Theorem $0 \bullet 000$

References

NP-Complete Problems

Proof

Define the boolean formula $\gamma(A)$ as follows:

• Boolean variables:

$$S_i(e_1,\ldots,e_{\alpha_i})$$
 and $D(e_1,\ldots,e_k)$,

for $i = \{1, \ldots, g\}$ and $e_1, \ldots, e_{\alpha_i} \in |\mathcal{A}|$

• Clauses:

$$C_{j}(\vec{e}), \ j = 1, \dots r$$

as \vec{e} ranges over all t-tuples from $|\mathcal{A}|$. In each $C_j(\vec{e})$, there may be some occurrences of numeric or

input predicates: $\gamma(\vec{e})$. Replacing each $\gamma(\vec{e})$ by its truth value in A.

Corollaries of Fagin's Theorem ${}_{\circ \bullet \circ \circ \circ}$

References

NP-Complete Problems

Proof

It is clear from the construction that

 $\mathcal{A} \in \boldsymbol{B} \quad \Leftrightarrow \quad \mathcal{A} \vDash \Phi \quad \Leftrightarrow \quad \gamma(\mathcal{A}) \in \boldsymbol{SAT}$

Corollaries of Fagin's Theorem $_{\circ\circ\bullet\circ\circ}$

NP-Complete Problems

Corollary

3-SAT is NP-complete via first-order reductions.

Anna Kontou

Corollaries of Fagin's Theorem $\circ \circ \circ \circ \circ \circ$

NP-Complete Problems

Corollary

3-SAT is NP-complete via first-order reductions.

Proof

We show that $SAT \leq_{fo} 3$ -SAT.

- Let $A \in STRUCT[\langle P^2, n^2 \rangle]$ be an instance of SAT with n = ||A||.
- Each clause c of A is replaced by 2n clauses as follows:

 $\boldsymbol{c}' \equiv ([\boldsymbol{x}_1]^{\boldsymbol{c}} \vee \boldsymbol{d}_1) \wedge (\overline{\boldsymbol{d}_1} \vee [\boldsymbol{x}_2]^{\boldsymbol{c}} \vee \boldsymbol{d}_2) \wedge (\overline{\boldsymbol{d}_2} \vee [\boldsymbol{x}_3]^{\boldsymbol{c}} \vee \boldsymbol{d}_3) \wedge \cdots$

 $\wedge (\overline{d_n} \vee [x_1]^c \vee d_{n+1}) \wedge (\overline{d_{n+1}} \vee [x_2]^c \vee d_{n+2}) \wedge \cdots \wedge (\overline{d_{2n-1}} \vee [x_n]^c)$

Corollaries of Fagin's Theorem $\circ \circ \circ \circ \circ \circ$

References

NP-Complete Problems

Proof

where

- *x_i*'s are the instance literals
- *d_i*'s are new variables
- $[l]^c$ means the literal l if it occurs in c and false otherwise

 $c \in SAT \Leftrightarrow c' \in SAT$

and c' is definable in a first order way from c.

Corollaries of Fagin's Theorem $\circ \circ \circ \circ \circ \circ$

References

NP-Complete Problems

Corollary

3-COLOR is NP-complete via first-order reductions.

Corollaries of Fagin's Theorem 00000

References

NP-Complete Problems

Corollary

3-COLOR is NP-complete via first-order reductions.

Proof

We show that 3-SAT \leq_{fo} 3-COLOR.

- Let A be an instance of 3-SAT with n = ||A||.
- We construct graph f(A) such that

 $f(\mathcal{A})$ 3-colorable $\Leftrightarrow \mathcal{A} \in$ 3-SAT

15/17

Corollaries of Fagin's Theorem $\circ \circ \circ \circ \circ \circ$

References

NP-Complete Problems

Proof

Thanks!

Corollaries of Fagin's Theorem

- Immerman, Neil. Descriptive Complexity. 1998. Springer Science & Business Media, 6 Dec. 2012.
- Leonid Libkin. Elements of Finite Model Theory. Berlin ; New York, Ny, Springer, 2004.
- Κανελλόπουλος, Σ. Γ. 2022. Εφαρμογές της Λογικής σε Αλγορίθμους Μέτρησης [Applications of Logic in Measurement Algorithms]. Εθνικό Μετσόβιο Πολυτεχνείο.