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Intro

1 Parallel computing refers to the process of breaking down larger
problems into smaller, independent, often similar parts that can be
executed simultaneously by multiple processors communicating via
shared memory, the results of which are combined upon completion as
part of an overall algorithm.

2 The primary goal of parallel computing is to increase available
computation power for faster application processing and problem
solving. Not for problems in NP, a problem there that takes 400 billion
centuries to solve on a uniprocessor, would still take 400 centuries
even if it can be perfectly parallelized over 1 billion processors.
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Intro

1 Thus, in parallelism we can take advantage of many different
processors or computers working simultaneously

2 For a long time, computers were sequential devices having a single
processor and thus executing one instruction at a time. We have
increased the ability to produce small, fast, inexpensive proccessors.

3 Over time it became possible to build large parallel computers as well
as PCs that can interact.
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Intro

1 The time to compute a query on a certain parallel computer,
corresponds exactly to the depth of a first - order induction needed
to describe the query i.e. if ϕ ∈ FO(LFP) the min r such that
(ϕA)r (Ø) = (ϕA)r+1(Ø)

2 Close relation between the amount of hardware used - memory and
processors - and the number of variables in the inductive definition.

3 The query (∃x)S(x) can be executed using n processors in constant
(parallel) time. The processor pi , for every i ∈ [n − 1] checks wether
the S(i) holds. Any pi for which S(i) does hold should write 1 into a
specific location in global memory that was originally 0.
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Intro

1 Question: How to make the use of these machines efficient.

2 Numerous models of parallel computation have been developed.
These models vary on how tightly coupled these processors are:

Parallel Random Access Machine (PRAM) in which the
inter-connection pattern is essentially a complete graph. In this model,
a word of memory can be sent from any processor to any other
processor in the time it takes to perform a single instruction.
Distributed Computation where Many PCs or WSs are connected via a
network, which might be fairly fast and local - or it might be the
internet.

3 For general applications, it is still very difficult to effectively use a
tightly coupled parallel computer or a distributed network of
computers and gain a large speed up compared to doing the
computation at a single uni-processor.
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Parallel Random Access Machine (PRAM)

A PRAM is a model, which is considered for most of the parallel
algorithms. Here, multiple processors are attached to a single block of
memory. A PRAM model has the following properties:

A set of similar type of processors.

All the processors share a common memory unit. Processors can
communicate among themselves through the shared memory only.

A memory access unit (MAU) connects the processors with the single
shared memory.

Here, n number of processors can perform independent operations on n
number of data in a particular unit of time. This may result in
simultaneous access of same memory location by different processors.
Therefore, if there are n processors in a PRAM, then n number of
independent operations can be performed in a particular unit of time.
definition.
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Parallel Random Access Machine (PRAM)

The reason we care about PRAMs is that parallelism as on a PRAM
corresponds very closely and nicely with descriptive complexity.

We see in particular that the optimal depth of inductive definitions of
a query corresponds exactly to the optimal parallel time needed to
compute the query on a PRAM.

There is also a close relationship between the number of processors
needed by the PRAM and the number of variables used in the
inductive definition.
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Parallel Random Access Machine (PRAM)

Categories of PRAMs:

1 Exclusive read exclusive write (EREW ): every memory cell can be
read or written to by only one processor at a time

2 Concurrent read exclusive write (CREW ): multiple processors can
read a memory cell but only one can write at a time

3 Concurrent read concurrent write (CRCW ): multiple processors
can read and write.

1 Common: all processors write the same value; otherwise is illegal
2 Arbitrary: only one arbitrary attempt is successful, others retire
3 Priority: processor rank indicates who gets to write
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Parallel Random Access Machine (PRAM)

Therefore, by using the common write model, the program
guarantees that different values will never be written to the same
location at the same time.

And we find this to be the more natural model for logic : a formula
such (∀x)ϕ specifies a parallel program using n processors (one for
each possible value of x). Any processor finding that ϕ is false for its
value of x will write a 0 into a location in global memory that was
initially 1.
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Concurrent Random Access Machines

CRAMs are a special case of the concurrent read, concurrent write, parallel
random access machine (CRCW-PRAM) . A CRAM consists of a large
number of processors, all connected to a common, global memory. The
processors are identical except that they each contain a unique processor
number. At each step, any number of processors may read or write any
word of global memory. If several processors try to write the same word at
the same time, then the lowest number processor succeeds (priority write)
Properties:

Synchronous: Processors work in lock step.

Concurrent: Several processors may read from the same location at
the same time and several processors may try to write the same
location at the same time step
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Example of the operation of a CRCW-PRAM

Example: Suppose we wish to add an array consisting of n numbers.

We generally iterate through the array and use n steps to find the
sum of the array. So, if the size of the array is n and for each step,
let’s assume the time taken to be 1 second. Therefore, it takes n
seconds to complete the iteration.

The same operation can be performed more efficiently using a CRCW
model of a PRAM. Let there be n/2 parallel processors for an array of
size n, then the time taken for the execution is 4 which is less than
n = 6 seconds in the following illustration.
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Title of the Slide

Figure: Example
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Concurrent Random Access Machines

Description of the instruction set of CRAM : We need to describe this
model in a level that is detailed enough so that we may prove its
equivalence to the descriptive model. We can then write our parallel
programs using FO logic.

Vasilis Stamatis (A.L.MA.) CRAM, ID = PT and Circuit Complexity May 2023 14 / 49



Description of the instruction set of CRAM

Each RAM has a finite set of registers, including the following:

Processor: containing the number between 1 and p(n) of the RAM

Address: containing an address of global memory

Contents: containing a word to be written or read from global
memory

ProgramCounter: containing the line number of the instruction to be
executed next.

All RAMs are identical except the Processor number. Τhese registers
provide the processor with access to the global memory and allow it to
execute instructions on that memory. The finite number of registers limits
the computational power of each processor, but the ability to share the
global memory with other processors compensates for this limitation.

Vasilis Stamatis (A.L.MA.) CRAM, ID = PT and Circuit Complexity May 2023 15 / 49



Description of the instruction set of CRAM

The instructions of a CRAM consist of the following:

READ: Read the word of global memory specified by Address into
Contents.

WRITE: Write the Contents register into the global memory location
specified by Address.

OP RaRb: Perform OP on Ra and Rb and leave the result in Rb. Here
OP may be Add, Subtract, or, Shift.

MOVE RaRb: Move Ra to Rb.

BLT RL: Branch to line L if the contents of R is less than zero.
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Description of the instruction set of CRAM

We assume initially that the contents of the first |bin(A)| words of
global memory contain one bit each of the input string bin(A).

This is not necessary.

We’ll also assume that a section of global memory is specified as the
output. One of the bits of the output may serve as a flag indicating
that the output is available.
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Concurrent Random Access Machines

Description of the instruction set of CRAM :

The Shift instruction for the CRAM, allows each bit of global memory
to to be available to each processor in constant time. Without Shift,
CRAM[t(n)] would be too weak to simulate FO[t(n)] , t(n) < logn.

The BIT instruction, denoted BIT(i , j), tests whether the j-th bit in
the binary representation of i is 1. In first-order logic, this instruction
can be added as a numeric predicate, enabling the expression of
formulas that can access individual bits in a given variable.

Remember: FO[t(n)] is the set of properties defined by quantifier blocks
iterated t(n) times
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Concurrent Random Access Machines

The measure of parallel time complexity will be time on a CRAM:

Definition

CRAM[t(n)] is defined to be the set of boolean queries computable in
parallel time t(n) on a CRAM that has at most polynomially many
processors.

When we want to measure how many processors are needed, we use the
complexity classes CRAM − PROC [t(n), p(n)]

Definition

CRAM − PROC [t(n), p(n)] is defined to be the set of boolean queries
computable by a CRAM using at most p(n) processors and time O(t(n)).

Thus, CRAM[t(n)] = CRAM − PROC [(t(n), nO(1)]
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Inductive Depth = Parallel Time

As said earlier, the parallel time is identical to inductive depth of a FO
induction.
In other words, a depth-optimal first-order inductive description of a query
is a parallel-time-optimal algorithm to compute the query. are equal.
The following theorem states states this formally and also completes the
circle and shows that number of quantifier-block iterations and inductive
depth
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Inductive Depth = Parallel Time

Theorem

Let S be a boolean query. For all polynomially bounded, parallel time
constructible t(n), the following are equivalent:

1 S is computable by a CRAM in parallel time t(n) using polynomially
many processors and registers of polynomially bounded word size.

2 S is definable as a uniform first-order induction whose depth, for
structures of size n, is at most t(n).

3 There exists a first-order quantifier-block [QB], a quantifier-free
formula M0 and a tuple c̄ of constants such that the query S for
structures of size at most n is expressed as [QB]t(n)M0(c̄/x̄), i.e., the
quantifier-block repeated t(n) times followed by M0 .

In other words:

CRAM[t(n)] = IND[t(n)] = FO[t(n)]
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Inductive Depth = Parallel Time (The Proof)

Already shown :

Theorem

(Euergetes et. al.) For all t(n) and all classes of finite structures

IND[t(n)] ⊆ FO[t(n)]

Remains to prove:

1 CRAM[t(n)] ⊆ IND[t(n)].

2 FO[t(n)] ⊆ CRAM[t(n)].

Vasilis Stamatis (A.L.MA.) CRAM, ID = PT and Circuit Complexity May 2023 22 / 49



CRAM[t(n)] ⊆ IND[t(n)]

Lemma

For any polynomially bounded t(n) we have:

CRAM[t(n)] ⊆ IND[t(n)]

Proof.

We simulate a CRAM M : On input A, a structure of size n, M
runs in t(n) synchronous steps, using p(n)(= poly(n)) processors.

Since the number of processors, the time and the memory word size
are all polynomially bounded, we need only a constant number of
variables x1, . . . , xk each ranging over universe of A (where
|| A ||= n), to name any bit in any register belonging to any
processor at any step of the computation.

We can thus define the contents of all the relevant registers for any
processor of M by induction on the time step.
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CRAM[t(n)] ⊆ IND[t(n)]

Proof.

We now write a first-order inductive definition for the relation
VALUE (p̄, t̄, x̄ , r , b) meaning that bit x̄ in register r of processor p̄
just after step t̄ is equal to b.

Base case: If t̄ = 0, then memory is correctly loaded with bin(A).
This is first-order expressible. We also need to say that the initial
contents of each processor’s register Processor is its processor
number. This is easy, since we are given the processor number as the
argument p̄ .

The inductive definition of the relation VALUE (p̄, t̄, x̄ , r , b) is a
disjunction depending on the value of p̄’s program counter at time
t̄ − 1.
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CRAM[t(n)] ⊆ IND[t(n)]

Proof.

It Remains to check that Addition, Subtraction, BLT, and Shift
are first-order expressible.

They are. (exc 2.3, prop. 1.9, Theorem 1.17 of Immerman)

Thus we have described an inductive definition of relation VALUE,
coding M’s entire computation. Furthermore, one iteration of the
definition occurs for each step of M.

All that we needed to show is that the contents of all the bits of all
the registers at time t + 1 is first-order definable from this same
information at time t or earlier.

We’ve done that.

Next.
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Inductive Depth = Parallel Time (The Proof)

Lemma

For any polynomially bounded t(n) we have:

FO[t(n)] ⊆ CRAM[t(n)]

Proof.

Let the FO[t(n)] problem be determined by the following quantifier
free formulas, quantifier block, and tuple of constants:

M0, . . . ,Mk , QB = (Q1x1.M1) . . . (Qkxk .Mk), c̄

Our CRAM must test whether an input structure A, where || A ||= n
satisfies the sentence:

ϕn ≡ [QB]t(n)M0(c̄/x̄)
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FO[t(n)] ⊆ CRAM[t(n)]

Proof.

The CRAM will use nk processors and nk−1 bits of global memory.

Each processor has a number a1, . . . , ak with 0 < ai < n.

Using the Shift operation it can retrieve each of the ai ’s in constant
time (we can just let each processor break its processor number into k
⌈logn⌉-tuples of bits. If any of these is greater than or equal to n,
then the processor should do nothing during the entire computation).
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FO[t(n)] ⊆ CRAM[t(n)]

Proof.

The CRAM will evaluate ϕ from right to left, simultaneously for all
values of the variables x1, . . . xn. At its final step, it will output the bit
ϕn(c̄/x̄).

For 0 ≤ r = k · (q − 1)− i + 1 ≤ t(n) · k , let:

ϕr ≡ (Qixi .Mi ) . . . (Qkxk .Mk)[QB]
qM0

Then,

ϕ1 ≡ (Qkxk .Mk)M0 ; ϕ2 ≡ (Qk−2xk−1.Mk−1)(Qkxk .Mk)M0

ϕk ≡ [QB]M0 ; ϕk+1 ≡ (Qkxk .Mk)[QB]M0

ϕt(n)·k ≡ [QB]t(n)M0
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FO[t(n)] ⊆ CRAM[t(n)]

Proof.

Also let, x1, . . . , x̂i , . . . xk be the k − 1 - tuple resulting from x1, . . . xk
by removing xi .

We will now give a program for the CRAM which is broken into
rounds each consisting of three processor steps such that: Just after
round r , the contents of memory location a1 . . . âi . . . ak is 1 or 0
according as whether A ⊨ ϕr (a1, . . . , ak) or not. Note that xi does
not occur free in ϕr .

Equivalently , Each processor a1, . . . ak at step r + 1 sets b := 1 iff
A ⊨ ϕr
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FO[t(n)] ⊆ CRAM[t(n)]

Proof.

Proof via induction to r : At step 1, processor a1 . . . ak must set:
b = 1 iff A ⊨ M0(a1, . . . , ak)

At round r , processor number a1 . . . ak executes the following three
instructions according to whether Qi is ∃ or Qi is ∀:

{Qi ≡ ∃}
1 b := loc(a1 . . . âi+1 . . . ak)
2 loc(a1 . . . âi . . . ak) := 0
3 if Mi (a1, . . . , ak) and b then loc(a1 . . . âi . . . ak) := 1

{Qi ≡ ∀}
1 b := loc(a1 . . . âi+1 . . . ak)
2 loc(a1 . . . âi . . . ak) := 1
3 if Mi (a1, . . . , ak) and then loc(a1 . . . âi . . . ak) := 0

Just after round r , the contents of memory location a1 . . . âi . . . ak is
1 or 0 according as whether A ⊨ ϕr (a1, . . . ak) or not and thus that
the CRAM simulates the formula.
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Circuit Complexity

Real computers are built from many copies of small and simple
components. Circuit complexity is the branch of computational
complexity that uses circuits of boolean logic gates as its model of
computation. The circuits that we consider are directed acyclic
graphs, in which inputs are placed at the leaves and signals proceed
up the circuit toward the root r . Thus, in this idealized model, a gate
is never reused during a computation.

Now, in this part of the presentation, we will define the major
circuit complexity classes, the related connections between circuits
and the other models of parallel computation, i.e., CRAMs,
alternating machines, and first-order inductive definitions.
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Circuit Complexity

We begin by asking ourselves why we can we see a (boolean) circuit as a
graph:

Definition

A boolean circuit is DAG:

C = (V ,E ,G∧,G∨,G¬, I , r) ∈ STRUC [τc ]

Internal node w is an and-gate if G∧ holds, an or-gate if G∨ holds, and a
not-gate if G¬ holds. The nodes v with no edges entering them are called
leaves, and the input relation I (v) represents the fact that the leaf v is on.
Often we will be given a circuit C , and separately we will be given its input
relation I .
CVP: The computational problem of computing the output of a given
Boolean circuit on a given input.
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Circuit Complexity

A circuit can be represented as a directed, acyclic graph. The leaves
of the circuit are the input nodes. Every other vertex is an ”and”,
”or”, or ”not” gate. The edges of the circuit indicate connections
between nodes. Edge (a, b) would indicate that the output of gate a
is an input to gate b.

It is also convenient to assume that all the ”not” gates in our circuits
have been pushed down to the bottom and also that the levels
alternate, with the top level being all ”or” gates, the next level all
”and” gates and so on. Such a normalized circuit is called a layered
circuit.
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Layered Circuit
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Circuit Complexity

We know that every query of a STRUC [τ ] can be represented as a
FO query of binary strings:

binτ : STRUC [τ ] → STRUC [τs ]

Let S ⊆ STRUC [τs ] be a boolean query on binary strings, let ||S || = n

In circuit complexity, S would be computed by an infinite sequence of
circuits C = {Ci | i = 1, 2, . . .} where Cn is a circuit with n input bits
and a single output bit r .
Thus, Cn can take S as an input by placing binτ (S) into it’s leaves.

For w ∈ {0, 1}n, let Cn(w) be the value at Cn’s output gate, when
the bits of w are placed in its n input gates. We say that C
computes S iff for all n and for all w ∈ {0, 1}n,

w ∈ S iff Cn(w) = 1
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Circuit Complexity

Below, we’ll define the three families of circuit complexity classes
which will concern us in this presentation.

Definition

A threshold gate with threshold value i has output one iff at least i
of its inputs have value one.

Note that threshold gates include as special cases ”or” gates in which
the threshold is one and ”and” gates in which the threshold is equal
to the number of inputs.

Recall τc =< E 2,G 1
∧,G

1
∨,G

1
¬, I

1, r > the vocabulary of circuits.
Constant r refers to the root node, or output of the circuit. The
gates that have no incoming edges are the leaves of the circuit.

We generalize the vocabulary of circuits to the vocabulary of
threshold circuits, τthc := τc ∪ {G 2

t }, where Gt(g , k) means that g
is a threshold gate with threshold value k.
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Circuit Complexity

Let A ∈ STRUC [τ ] and let n = ||A||. A circuit Cn with n̂τ leaves can take
A as input by placing the binary string bin(A) into its leaves. We write
C (w) to denote the output of circuit C on input w , i.e., the value of the
root node when w is placed at the leaves and C is then evaluated. We say
that circuit C accepts structure A iff C (bin(A)) = 1
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Circuit Complexity

In proving lower bounds on circuit complexity, one considers the size
and structure of the circuits Cn , but one rarely needs to consider how
the sequence of circuits relate for different values of n.

Formally we assume that there is a query of low complexity that on
input 0n produces Cn. We insist upon first-order uniformity. This
means that there is a first-order query I : STRUC [τs ] → STRUC [τc ]
with Cn = I (0n), n = 1, 2, . . . . Here 0n ∈ STRUC [τs ] is the string
consisting of n zeros. Note that this uniformity condition implies that
Cn has polynomially bounded size.
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Circuit Complexity

Definition

Uniform: Let C be a sequence of circuits. Let τ ∈ {τc , τthc} be the
vocabulary of circuits or threshold circuits. Let
I : STRUC [τs ] → STRUC [τ ] be a query such that for all n , I (0n) = Cn.
That is, on input a string of n zero’s the query produces circuit n. If
I ∈ FO, then C is a first-order uniform sequence of circuits. Similarly, if
I ∈ L, then C is logspace uniform. If I ∈ P, then C is polynomial-time
uniform, and so on.

Definition

Equivalent definition of uniformicity: Let U be a small uniform
complexity class (like LOGSPACE) and let C be a circuit class. Then the
class U-uniform C is defined to be the: set of languages recognized by a
circuit family {Cn} from C , and there is an algorithm A implementable in
U such that A(1n) prints Cn as output.
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Circuit Classes

We are now ready to define the standard circuit complexity classes. The
notion of uniformity that we use is first-order uniformity. Observe that
whether we use first-order, logspace, or polynomial-time uniformity, any
uniform sequence of circuits is polynomial-size. That is, there is a function
p(n) such that circuit Cn has size at most p(n).
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Circuit Complexity

Definition

Definition (Circuit Complexity) Let t(n) = Θ(poly(n)) and let
S ⊆ STRUC [τ ] be a boolean query. Then S is in the (First-Order uniform)
circuit complexity class NC [t(n)],AC [t(n)],ThC [t(n)] , respectively iff
there exists a first-order query I : STRUC [τs ] → STRUC [τthc ] defining a
uniform class of circuits Cn = I (0n) with the following properties:

1 For all A ∈ STRUC [τ ], A ∈ S iff C||A|| accepts A
2 The depth of Cn is O(t(n))

3 The gates of Cn consist of binary ”and” and ”or” gates (NC),
unbounded fan-in ”and” and ”or” gates (AC), and unbounded fan-in
threshold gates (ThC), respectively.
Let NC i = NC [(logn)i ] , AC i = AC [(logn)i ] and
ThC i = ThC [(logn)i ]. Finally, let NC =

⋃
i>0NC

i
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Circuit Classes

Let B = {∀n | f : {0, 1}n → {0, 1} be a set of Boolean functions,
which we call a basis set. The fan-in of a function g ∈ B is the
number of inputs that g takes. (Typical choices are fan-in 2, or
unbounded fan-in, meaning that g can take any number of inputs.)

In 1979, Niclaus Pippenger suggested that efficiently parallelizable
problems in P might be defined as those problems that can be solved
in a time period that is at most polylogarithmic in the problem size n,
i.e., O(logkn) for some constant k, using no more than a polynomial
number O(nk) of processors. This class of problems was later named
Nick’s Class (NC) in his honor. The class NC has been extensively
studied and forms a foundation for parallel complexity theory.
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Circuit Classes

NC k = languages computed in O(logkn) depth, polynomial size,
bounded fan-in A particularly well-studied case is NC 1 , which is
equivalent in power to polynomial size Boolean formulas.

The NC circuits correspond reasonably well to standard silicon-based
hardware.

A weaker form of NC, known as the parallel computation thesis, is
stated as follows: Anything that can be computed on a Turing
machine using polynomially (polylogarithmically) bounded space in
unlimited time can be computed on a parallel machine in polynomial
(polylogarithmic) time using an unlimited number of processors, and
vice versa.
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Circuit Classes

AC k−1[m] = languages computed in constant-depth, polynomial size,
unbounded fan-in over the basis AND, OR, MODm, where a MODm
gate outputs 1 iff the sum of its input bits is divisible by m. Note that
NOT can be simulated with MODm, but it is open whether AND (or
OR) can be simulated with only MODm s in constant depth.
ThC k−1 = languages computed in O(logk−1n) depth, polynomial
size, unbounded fan-in over MAJORITY gates (with NOTs for free).
A MAJORITY gate outputs the most popular input; if there is a tie
then it outputs 1.
The AC circuits are idealized hardware in that it is not known how to
connect n inputs to a single gate with constant delay time. The
practical way to do this is to connect them in a binary tree, causing
an O(logn) time delay. On the other hand, once we have such a
binary tree, we can also compute threshold functions.

This explains the following:

AC [t(n)] ⊆ ThC [t(n)] ⊆ NC [t(n)logn]
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Circuit Complexity

Theorem

Every regular language is in NC 1
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Proof.

Scheme

Given a DFA We must construct a FO query
Id : STRUC [τs ] → STRUC [τc ] such that for all strings w ∈ Σ∗

w ∈ L(D) iff C|w |=n = ID(0
n) accepts w

Circuit Cn is a complete binary tree with n leaves. The input to leaf
L(i) is Wi , character i of the input string. Each such leaf contains the
finite hardware to produce as output the transition function of D on
reading input symbol wi

Since D is a fixed, finite state automaton, the hardware at the leaves
and at each internal node is a fixed, bounded size NC circuit. The
first-order query ID need only describe a complete binary tree with n
leaves with these two fixed circuits placed at each leaf and each
internal node, respectively. The height of the resulting circuits is
O(logn) as desired.
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Circuit Complexity

Theorem

The boolean majority query MAJ is in NC 1

MAJ = {A ∈ STRUC [τs ] | string A contains more than
||A||
2

”1”’s }
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Proof.

Hint: Build an NC 1 circuit for majority by adding the n input bits via a
full binary tree of height logn, by using the ambiguous notation
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Circuit Complexity

Theorem

∀i ∈ N
NC i ⊆ AC i ⊆ ThC i ⊆ NC i+1

Proof.

Remember, NC k = languages computed in O(logkn) depth,
polynomial size, bounded fan-in. AC k−1[m] = languages computed in
constant-depth, polynomial size, unbounded fan-in over the basis
AND, OR, MODm (we can stimulate negation with MODm). Thus,
NC i ⊆ AC i .

For the second part, ThC i ⊆ NC i+1: We can simulate any ThC -gate
using a circuit of depth logn recognising MAJ. Let threshold gate
with threshold value k and boolean input w .

If k ≤ ||w ||/2 we are just checking if w1||w ||−2k ∈ MAJ
If k > ||w ||/2 we are just checking if w02k−||w || ∈ MAJ
It is known that inclusion is strict for i = 0.
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Circuit Complexity

The following theorem summarizes the relationships between all the
parallel models that we have seen. Note that the equivalence of FO[t(n)]
and AC [t(n)] shows that the uniformity of AC circuits can be defined in a
completely syntactic way: circuit Cn is constructed by writing down a
quantifier block t(n) times.
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Circuit Complexity

Theorem

For all polynomially bounded and first-order constructible t(n), the
following classes are equal:

CRAM[t(n)] = IND[t(n)] = FO[t(n)] = AC [t(n)]

NC Hierarchy:

NC 1 ⊆ NC 2 ⊆ . . . ⊆ NC i ⊆ NC

NC 1 ⊆ L ⊆ NL ⊆ AC 1 ⊆ NC 2 ⊆ P

Is NC Proper? : if NC i = NC i+1 for some i , then NC i = NC j for all
j ≥ i , and as a result, NC i = NC . This observation is known as
NC-hierarchy collapse because even a single equality in the chain of
containments.
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