
Θεωρητική Πληροφορική Ι (ΣΗΜΜΥ)

Υπολογιστική Πολυπλοκότητα

Εργαστήριο Λογικής και Επιστήμης Υπολογισμών

Εθνικό Μετσόβιο Πολυτεχνείο

2017-2018

Πληροφορίες Μαθήματος

Θεωρητική Πληροφορική Ι (ΣΗΜΜΥ)

Υπολογιστική Πολυπλοκότητα (ΑΛΜΑ)

Διδάσκοντες: Σ. Ζάχος, Ά. Παγουρτζής

Βοηθοί Διδασκαλίας: Α. Αντωνόπουλος, Α. Χαλκή

Επιμέλεια Διαφανειών: Α. Αντωνόπουλος

Δευτέρα: 17:00 - 20:00 (1.1.31, Παλιά Κτίρια ΗΜΜΥ, ΕΜΠ)

Πέμπτη: 15:00 - 17:00 (1.1.31, Παλιά Κτίρια ΗΜΜΥ, ΕΜΠ)

΄Ωρες Γραφείου: Μετά από κάθε μάθημα, Παρασκευή 13:00-14:00

Σελίδα: www.corelab.ntua.gr/courses/complexity/

Βαθμολόγηση:

Διαγώνισμα: 6 μονάδες

Ασκήσεις: 2 μονάδες

Ομιλία: 2 μονάδες

Quiz : 1 μονάδα

http://www.corelab.ntua.gr/courses/complexity/

Computational Complexity

Graduate Course

Antonis Antonopoulos

Computation and Reasoning Laboratory
National Technical University of Athens

2017-2018

This work is licensed under a Creative Commons Attribution-
NonCommercial- NoDerivatives 4.0 International License.�� ��e16f245f8d7a2656271665e9404b9479996c1317

Bibliography

Textbooks

1 C. Papadimitriou, Computational Complexity, Addison
Wesley, 1994

2 S. Arora, B. Barak, Computational Complexity: A Modern
Approach, Cambridge University Press, 2009

3 O. Goldreich, Computational Complexity: A Conceptual
Perspective, Cambridge University Press, 2008

Lecture Notes

1 L. Trevisan, Lecture Notes in Computational Complexity,
2002, UC Berkeley

2 J. Katz, Notes on Complexity Theory, 2011, University of
Maryland

https://people.eecs.berkeley.edu/~luca/cs278-08/
http://www.cs.umd.edu/~jkatz/complexity/f11/

Algorithms & Complexity Turing Machines Undecidability

Contents

Introduction
Turing Machines

Undecidability

Complexity Classes

Oracles & The Polynomial Hierarchy

Randomized Computation

The map of NP

Non-Uniform Complexity

Interactive Proofs

Inapproximability

Derandomization of Complexity Classes

Counting Complexity

Epilogue

Algorithms & Complexity Turing Machines Undecidability

Why Complexity?

Computational Complexity: Quantifying the amount of
computational resources required to solve a given task.
Classify computational problems according to their inherent
difficulty in complexity classes, and prove relations among
them.

Structural Complexity: “The study of the relations between
various complexity classes and the global properties of
individual classes. [...] The goal of structural complexity is a
thorough understanding of the relations between the various
complexity classes and the internal structure of these
complexity classes.” [J. Hartmanis]

Algorithms & Complexity Turing Machines Undecidability

Problems....

Decision Problems

Have answers of the form “yes” or “no”

Encoding: each instance x of the problem is represented as a
string of an alphabet Σ (|Σ| ≥ 2).

Decision problems have the form “Is x in L?”, where L is a
language, L ⊆ Σ∗.

So, for an encoding of the input, using the alphabet Σ, we
associate the following language with the decision problem Π:

L(Π) = {x ∈ Σ∗ | x is a representation of a “yes” instance of the problem Π}

Example

Given a number x , is this number prime? (x
?
∈ PRIMES)

Given graph G and a number k , is there a clique with k (or more)
nodes in G ?

Algorithms & Complexity Turing Machines Undecidability

Problems....

Optimization Problems

For each instance x there is a set of Feasible Solutions F (x).

To each s ∈ F (x) we map a positive integer c(x), using the
objective function c(s).

We search for the solution s ∈ F (x) which minimizes (or maximizes)
the objective function c(s).

Example

The Traveling Salesperson Problem (TSP):
Given a finite set C = {c1, . . . , cn} of cities and a distance
d(ci , cj) ∈ Z+,∀(ci , cj) ∈ C 2, we ask for a permutation π of
C , that minimizes this quantity:

n−1∑
i=1

d(cπ(i), cπ(i+1)) + d(cπ(n), cπ(1))

Algorithms & Complexity Turing Machines Undecidability

Problems....

A Model Discussion

There are many computational models (RAM, Turing
Machines etc).

The Church-Turing Thesis states that all computation
models are equivalent. That is, every computation model can
be simulated by a Turing Machine.

In Complexity Theory, we consider efficiently computable
the problems which are solved (aka the languages that are
decided) in polynomial number of steps (Edmonds-Cobham
Thesis).

Efficiently Computable ≡ Polynomial-Time Computable

Algorithms & Complexity Turing Machines Undecidability

Contents

Introduction

Turing Machines
Undecidability

Complexity Classes

Oracles & The Polynomial Hierarchy

Randomized Computation

The map of NP

Non-Uniform Complexity

Interactive Proofs

Inapproximability

Derandomization of Complexity Classes

Counting Complexity

Epilogue

Algorithms & Complexity Turing Machines Undecidability

Definitions

Definition

A Turing Machine M is a quintuple M = (Q,Σ, δ, q0,F):

Q = {q0, q1, q2, q3, . . . , qn, qyes, qno} is a finite set of states.

Σ is the alphabet. The tape alphabet is Γ = Σ ∪ {t}.
q0 ∈ Q is the initial state.

F ⊆ Q is the set of final states.

δ : (Q \ F)× Γ→ Q × Γ×{S , L,R} is the transition function.

A TM is a “programming language” with a single data
structure (a tape), and a cursor, which moves left and right
on the tape.

Function δ is the program of the machine.

Algorithms & Complexity Turing Machines Undecidability

Definitions

Turing Machines and Languages

Definition

Let L ⊆ Σ∗ be a language and M a TM such that, for every string
x ∈ Σ∗:

If x ∈ L, then M(x) = “yes”

If x /∈ L, then M(x) = “no”

Then we say that M decides L.

Alternatively, we say that M(x) = L(x), where L(x) = χL(x)
is the characteristic function of L (if we consider 1 as “yes”
and 0 as “no”).

If L is decided by some TM M, then L is called a recursive
language.

Algorithms & Complexity Turing Machines Undecidability

Definitions

Definition

If for a language L there is a TM M, which if x ∈ L then
M(x) = “yes”, and if x /∈ L then M(x) ↑, we call L recursively
enumerable.

*By M(x) ↑ we mean that M does not halt on input x (it runs forever).

Theorem

If L is recursive, then it is recursively enumerable.

Proof: Exercise

Definition

If f is a function, f : Σ∗ → Σ∗, we say that a TM M computes f
if, for any string x ∈ Σ∗, M(x) = f (x). If such M exists, f is
called a recursive function.

Turing Machines can be thought as algorithms for solving
string related problems.

Algorithms & Complexity Turing Machines Undecidability

Definitions

Definition

If for a language L there is a TM M, which if x ∈ L then
M(x) = “yes”, and if x /∈ L then M(x) ↑, we call L recursively
enumerable.

*By M(x) ↑ we mean that M does not halt on input x (it runs forever).

Theorem

If L is recursive, then it is recursively enumerable.

Proof: Exercise

Definition

If f is a function, f : Σ∗ → Σ∗, we say that a TM M computes f
if, for any string x ∈ Σ∗, M(x) = f (x). If such M exists, f is
called a recursive function.

Turing Machines can be thought as algorithms for solving
string related problems.

Algorithms & Complexity Turing Machines Undecidability

Definitions

Multitape Turing Machines

We can extend the previous Turing Machine definition to
obtain a Turing Machine with multiple tapes:

Definition

A k-tape Turing Machine M is a quintuple M = (Q,Σ, δ, q0,F):

Q = {q0, q1, q2, q3, . . . , qn, qhalt, qyes, qno} is a finite set of
states.

Σ is the alphabet. The tape alphabet is Γ = Σ ∪ {t}.
q0 ∈ Q is the initial state.

F ⊆ Q is the set of final states.

δ : (Q \ F)× Γk → Q × (Γ× {S , L,R})k is the transition
function.

Algorithms & Complexity Turing Machines Undecidability

Properties of Turing Machines

Bounds on Turing Machines

We will characterize the “performance” of a Turing Machine
by the amount of time and space required on instances of size
n, when these amounts are expressed as a function of n.

Definition

Let T : N→ N. We say that machine M operates within time
T (n) if, for any input string x , the time required by M to reach a
final state is at most T (|x |). Function T is a time bound for M.

Definition

Let S : N→ N. We say that machine M operates within space
S(n) if, for any input string x , M visits at most S(|x |) locations on
its work tapes (excluding the input tape) during its computation.
Function S is a space bound for M.

Algorithms & Complexity Turing Machines Undecidability

Properties of Turing Machines

Multitape Turing Machines

Theorem

Given any k-tape Turing Machine M operating within time T (n),
we can construct a TM M ′ operating within time O

(
T 2(n)

)
such

that, for any input x ∈ Σ∗, M(x) = M ′(x).

Proof: See Th.2.1 (p.30) in [1].

This is a strong evidence of the robustness of our model:
Adding a bounded number of strings does not increase their
computational capabilities, and affects their efficiency only
polynomially.

Algorithms & Complexity Turing Machines Undecidability

Properties of Turing Machines

Linear Speedup

Theorem

Let M be a TM that decides L ⊆ Σ∗, that operates within time
T (n). Then, for every ε > 0, there is a TM M ′ which decides the
same language and operates within time T ′(n) = εT (n) + n + 2.

Proof: See Th.2.2 (p.32) in [1].

If, for example, T is linear, i.e. something like cn, then this theorem

states that the constant c can be made arbitrarily close to 1. So, it

is fair to start using the O (·) notation in our time bounds.

A similar theorem holds for space:

Theorem

Let M be a TM that decides L ⊆ Σ∗, that operates within space
S(n). Then, for every ε > 0, there is a TM M ′ which decides the
same language and operates within space S ′(n) = εS(n) + 2.

Algorithms & Complexity Turing Machines Undecidability

NTMs

Nondeterministic Turing Machines

We will now introduce an unrealistic model of computation:

Definition

A Turing Machine M is a quintuple M = (Q,Σ, δ, q0,F):

Q = {q0, q1, q2, q3, . . . , qn, qhalt, qyes, qno} is a finite set of
states.

Σ is the alphabet. The tape alphabet is Γ = Σ ∪ {t}.
q0 ∈ Q is the initial state.

F ⊆ Q is the set of final states.

δ : (Q \ F)× Γ→ Pow(Q × Γ× {S , L,R}) is the transition
relation.

Algorithms & Complexity Turing Machines Undecidability

NTMs

Nondeterministic Turing Machines

In this model, an input is accepted if there is some sequence
of nondeterministic choices that results in “yes”.
An input is rejected if there is no sequence of choices that
lead to acceptance.
Observe the similarity with recursively enumerable languages.

Definition

We say that M operates within bound T (n), if for every input
x ∈ Σ∗ and every sequence of nondeterministic choices, M reaches
a final state within T (|x |) steps.

The above definition requires that M does not have
computation paths longer than T (n), where n = |x | the
length of the input.
The amount of time charged is the depth of the computation
tree.

Algorithms & Complexity Turing Machines Undecidability

Contents

Introduction

Turing Machines

Undecidability
Complexity Classes

Oracles & The Polynomial Hierarchy

Randomized Computation

The map of NP

Non-Uniform Complexity

Interactive Proofs

Inapproximability

Derandomization of Complexity Classes

Counting Complexity

Epilogue

Algorithms & Complexity Turing Machines Undecidability

Diagonalization

Diagonalization

Suppose there is a town with just
one barber, who is male. In this
town, the barber shaves all those,
and only those, men in town who
do not shave themselves. Who
shaves the barber?

Diagonalization is a technique that was used in many different cases:

http://www.coopertoons.com/education/diagonal/diagonalargument.html

Algorithms & Complexity Turing Machines Undecidability

Diagonalization

Diagonalization

Theorem

The functions from N to N are uncountable.

Proof: Let, for the sake of contradiction that are countable:
φ1, φ2, Consider the following function: f (x) = φx(x) + 1.
This function must appear somewhere in this enumeration, so let
φy = f (x). Then φy (x) = φx(x) + 1, and if we choose y as an
argument, then φy (y) = φy (y) + 1. �

Using the same argument:

Theorem

The functions from {0, 1}∗ to {0, 1} are uncountable.

Algorithms & Complexity Turing Machines Undecidability

Diagonalization

Diagonalization

Theorem

The functions from N to N are uncountable.

Proof: Let, for the sake of contradiction that are countable:
φ1, φ2, Consider the following function: f (x) = φx(x) + 1.
This function must appear somewhere in this enumeration, so let
φy = f (x). Then φy (x) = φx(x) + 1, and if we choose y as an
argument, then φy (y) = φy (y) + 1. �

Using the same argument:

Theorem

The functions from {0, 1}∗ to {0, 1} are uncountable.

Algorithms & Complexity Turing Machines Undecidability

Simulation

Machines as strings

It is obvious that we can represent a Turing Machine as a
string: just write down the description and encode it using an
alphabet, e.g. {0, 1}.
We denote by xMy the TM M’s representation as a string.

Also, if x ∈ Σ∗, we denote by Mx the TM that x represents.

Keep in mind that:

Every string represents some TM.

Every TM is represented by infinitely many strings.

There exists (at least) a noncomputable function from {0, 1}∗
to {0, 1}, since the set of all TMs is countable.

Algorithms & Complexity Turing Machines Undecidability

Simulation

The Universal Turing Machine

So far, our computational models are specified to solve a
single problem.

Turing observed that there is a TM that can simulate any
other TM M, given M’s description as input.

Theorem

There exists a TM U such that for every x ,w ∈ Σ∗,
U(x ,w) = Mw (x).
Also, if Mw halts within T steps on input x, then U(x ,w) halts
within CT log T steps, where C is a constant indepedent of x, and
depending only on Mw ’s alphabet size number of tapes and
number of states.

Proof: See section 3.1 in [1], and Th. 1.9 and section 1.7 in [2].

Algorithms & Complexity Turing Machines Undecidability

Undecidability

The Halting Problem

Consider the following problem: “Given the description of a
TM M, and a string x, will M halt on input x? ” This is
called the HALTING PROBLEM.

We want to compute this problem ! ! ! (Given a
computer program and an input, will this program enter an
infinite loop?)

In language form: H = {xMy; x | M(x) ↓}, where “ ↓ ” means
that the machine halts, and “ ↑ ” that it runs forever.

Theorem

H is recursively enumerable.

Proof: See Th.3.1 (p.59) in [1]
In fact, H is not just a recursively enumerable language:
If we had an algorithm for deciding H, then we would be able to
derive an algorithm for deciding any r.e. language (RE-complete).

Algorithms & Complexity Turing Machines Undecidability

Undecidability

The Halting Problem

But....

Theorem

H is not recursive.

Proof: See Th.3.1 (p.60) in [1]

Suppose, for the sake of contradiction, that there is a TM MH

that decides H.

Consider the TM D:
D(xMy) : if MH(xMy; xMy) = “yes” then ↑ else “yes”

What is D(xDy)?

If D(xDy) ↑, then MH accepts the input, so xDy; xDy ∈ H, so
D(D) ↓.
If D(xDy) ↓, then MH rejects xDy; xDy, so xDy; xDy /∈ H, so
D(D) ↑. �

Algorithms & Complexity Turing Machines Undecidability

Undecidability

The Halting Problem

But....

Theorem

H is not recursive.

Proof: See Th.3.1 (p.60) in [1]

Suppose, for the sake of contradiction, that there is a TM MH

that decides H.

Consider the TM D:
D(xMy) : if MH(xMy; xMy) = “yes” then ↑ else “yes”

What is D(xDy)?

If D(xDy) ↑, then MH accepts the input, so xDy; xDy ∈ H, so
D(D) ↓.
If D(xDy) ↓, then MH rejects xDy; xDy, so xDy; xDy /∈ H, so
D(D) ↑. �

Algorithms & Complexity Turing Machines Undecidability

Undecidability

Recursive languages are a proper subset of recursive
enumerable ones.

Recall that the complement of a language L is defined as:

L = {x ∈ Σ∗ | x /∈ L} = Σ∗ \ L

Theorem

1 If L is recursive, so is L.

2 L is recursive if and only if L and L are recursively enumerable.

Proof: Exercise

Let E (M) = {x | (q0, ., ε)
M∗→ (q, y t xt, ε}

E (M) is the language enumerated by M.

Theorem

L is recursively enumerable iff there is a TM M such that
L = E (M).

Algorithms & Complexity Turing Machines Undecidability

Undecidability

Recursive languages are a proper subset of recursive
enumerable ones.

Recall that the complement of a language L is defined as:

L = {x ∈ Σ∗ | x /∈ L} = Σ∗ \ L

Theorem

1 If L is recursive, so is L.

2 L is recursive if and only if L and L are recursively enumerable.

Proof: Exercise

Let E (M) = {x | (q0, ., ε)
M∗→ (q, y t xt, ε}

E (M) is the language enumerated by M.

Theorem

L is recursively enumerable iff there is a TM M such that
L = E (M).

Algorithms & Complexity Turing Machines Undecidability

Undecidability

More Undecidability

The HALTING PROBLEM, our first undecidable problem, was
the first, but not the only undecidable problem. Its spawns a
wide range of such problems, via reductions.

To show that a problem A is undecidable we establish that, if
there is an algorithm for A, then there would be an algorithm
for H, which is absurd.

Theorem

The following languages are not recursive:

1 {M | M halts on all inputs}
2 {M; x | There is a y such that M(x) = y}
3 {M; x | The computation of M uses all states of M}
4 {M; x ; y | M(x) = y}

Algorithms & Complexity Turing Machines Undecidability

Undecidability

Rice’s Theorem

The previous problems lead us to a more general conlusion:

�
�

�
�

Any non-trivial property of
Turing Machines is undecidable

If a TM M accepts a language L, we write L = L(M):

Theorem (Rice’s Theorem)

Suppose that C is a proper, non-empty subset of the set of all
recursively enumerable languages. Then, the following problem is
undecidable:

Given a Turing Machine M, is L(M) ∈ C?

Algorithms & Complexity Turing Machines Undecidability

Undecidability

Rice’s Theorem

Proof: See Th.3.2 (p.62) in [1]

We can assume that ∅ /∈ C (why?).

Since C is nonempty, ∃ L ∈ C, accepted by the TM ML.

Let MH the TM deciding the HALTING PROBLEM for an
arbitrary input x . For each x ∈ Σ∗, we construct a TM M as
follows:

M(y) : if MH(x) = “yes” then ML(y) else ↑
We claim that: L(M) ∈ C if and only if x ∈ H.

Proof of the claim:

If x ∈ H, then MH(x) = “yes”, and so M will accept y or never
halt, depending on whether y ∈ L. Then the language
accepted by M is exactly L, which is in C.
If MH(x) ↑, M never halts, and thus M accepts the language
∅, which is not in C. �

Algorithms & Complexity Turing Machines Undecidability

Undecidability

Rice’s Theorem

Proof: See Th.3.2 (p.62) in [1]

We can assume that ∅ /∈ C (why?).

Since C is nonempty, ∃ L ∈ C, accepted by the TM ML.

Let MH the TM deciding the HALTING PROBLEM for an
arbitrary input x . For each x ∈ Σ∗, we construct a TM M as
follows:

M(y) : if MH(x) = “yes” then ML(y) else ↑
We claim that: L(M) ∈ C if and only if x ∈ H.
Proof of the claim:

If x ∈ H, then MH(x) = “yes”, and so M will accept y or never
halt, depending on whether y ∈ L. Then the language
accepted by M is exactly L, which is in C.
If MH(x) ↑, M never halts, and thus M accepts the language
∅, which is not in C. �

Complexity Classes Oracles & The Polynomial Hierarchy

Contents

Introduction

Turing Machines

Undecidability

Complexity Classes
Oracles & The Polynomial Hierarchy

Randomized Computation

The map of NP

Non-Uniform Complexity

Interactive Proofs

Inapproximability

Derandomization of Complexity Classes

Counting Complexity

Epilogue

Complexity Classes Oracles & The Polynomial Hierarchy

Introduction

Parameters used to define complexity classes:

Model of Computation (Turing Machine, RAM, Circuits)

Mode of Computation (Deterministic, Nondeterministic,
Probabilistic)

Complexity Measures (Time, Space, Circuit Size-Depth)

Other Parameters (Randomization, Interaction)

Complexity Classes Oracles & The Polynomial Hierarchy

Introduction

Our first complexity classes

Definition

Let L ⊆ Σ∗, and T , S : N→ N:

We say that L ∈ DTIME[T (n)] if there exists a TM M
deciding L, which operates within the time bound O (T (n)),
where n = |x |.
We say that L ∈ DSPACE[S(n)] if there exists a TM M
deciding L, which operates within space bound O (S(n)), that
is, for any input x , requires space at most S(|x |).

We say that L ∈ NTIME[T (n)] if there exists a
nondeterministic TM M deciding L, which operates within the
time bound O (T (n)).

We say that L ∈ NSPACE[S(n)] if there exists a
nondeterministic TM M deciding L, which operates within
space bound O (S(n)).

Complexity Classes Oracles & The Polynomial Hierarchy

Introduction

Our first complexity classes

The above are Complexity Classes, in the sense that they
are sets of languages.

All these classes are parameterized by a function T or S , so
they are families of classes (for each function we obtain a
complexity class).

Definition (Complementary complexity class)

For any complexity class C, coC denotes the class: {L | L ∈ C},
where L = Σ∗ \ L = {x ∈ Σ∗ | x /∈ L}.

We want to define “reasonable” complexity classes, in the
sense that we want to “compute more problems”, given more
computational resources.

Complexity Classes Oracles & The Polynomial Hierarchy

Constructible Functions

Constructible Functions

Can we use all computable functions to define Complexity
Classes?

Theorem (Gap Theorem)

For any computable functions r and a, there exists a computable
function f such that f (n) ≥ a(n), and

DTIME[f (n)] = DTIME[r(f (n))]

That means, for r(n) = 22f (n)
, the incementation from f (n) to

22f (n)
does not allow the computation of any new function!

So, we must use some restricted families of functions:

Complexity Classes Oracles & The Polynomial Hierarchy

Constructible Functions

Constructible Functions

Definition (Time-Constructible Function)

A nondecreasing function T : N→ N is time constructible if
T (n) ≥ n and there is a TM M that computes the function
x 7→ xT (|x |)y in time T (n).

Definition (Space-Constructible Function)

A nondecreasing function S : N→ N is space-constructible if
S(n) > log n and there is a TM M that computes S(|x |) using
S(|x |) space, given x as input.

The restriction T (n) ≥ n is to allow the machine to read its input.

The restriction S(n) > log n is to allow the machine to “remember”
the index of the cell of the input tape that it is currently reading.

Also, if f1(n), f2(n) are time/space-constructible functions, so are
f1 + f2, f1 · f2 and f f2

1 .

Complexity Classes Oracles & The Polynomial Hierarchy

Complexity Classes

Constructible Functions

Theorem (Hierarchy Theorems)

Let t1, t2 be time-constructible functions, and s1, s2 be
space-constructible functions. Then:

1 If t1(n) log t1(n) = o(t2(n)), then DTIME(t1) (DTIME(t2).

2 If t1(n + 1) = o(t2(n)), then NTIME(t1) (NTIME(t2).

3 If s1(n) = o(s2(n)), then DSPACE(s1) (DSPACE(s2).

4 If s1(n) = o(s2(n)), then NSPACE(s1) (NSPACE(s2).

Complexity Classes Oracles & The Polynomial Hierarchy

Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

Theorem

DTIME[n] (DTIME[n1.5]

Proof (Diagonalization): See Th.3.1 (p.69) in [2]

Let D be the following machine:

On input x, run for |x |1.4 steps U(Mx , x);
If U(Mx , x) = b, then return 1− b;
Else return 0;

Clearly, L = L(D) ∈ DTIME[n1.5]

We claim that L /∈ DTIME[n]:
Let L ∈ DTIME[n]⇒ ∃ M : M(x) = D(x) ∀x ∈ Σ∗, and M
works for O (|x |) steps.
The time to simulate M using U is c|x | log |x |, for some c .

Complexity Classes Oracles & The Polynomial Hierarchy

Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

Theorem

DTIME[n] (DTIME[n1.5]

Proof (Diagonalization): See Th.3.1 (p.69) in [2]

Let D be the following machine:

On input x, run for |x |1.4 steps U(Mx , x);
If U(Mx , x) = b, then return 1− b;
Else return 0;

Clearly, L = L(D) ∈ DTIME[n1.5]

We claim that L /∈ DTIME[n]:
Let L ∈ DTIME[n]⇒ ∃ M : M(x) = D(x) ∀x ∈ Σ∗, and M
works for O (|x |) steps.
The time to simulate M using U is c|x | log |x |, for some c .

Complexity Classes Oracles & The Polynomial Hierarchy

Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

Proof (cont’d):
∃n0 : n1.4 > cn log n ∀n ≥ n0

There exists a xM , s.t. xM = xMy and |xM | > n0 (why?) Then,
D(xM) = 1−M(xM) (while we have also that D(x) = M(x), ∀x)

Contradiction!! �

So, we have the hierachy:

DTIME[n] (DTIME[n2] (DTIME[n3] (· · ·

We will later see that the class containing the problems we
can efficiently solve (recall the Edmonds-Cobham Thesis) is
the class P =

⋃
c∈N DTIME[nc].

Complexity Classes Oracles & The Polynomial Hierarchy

Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

Proof (cont’d):
∃n0 : n1.4 > cn log n ∀n ≥ n0

There exists a xM , s.t. xM = xMy and |xM | > n0 (why?) Then,
D(xM) = 1−M(xM) (while we have also that D(x) = M(x), ∀x)
Contradiction!! �

So, we have the hierachy:

DTIME[n] (DTIME[n2] (DTIME[n3] (· · ·

We will later see that the class containing the problems we
can efficiently solve (recall the Edmonds-Cobham Thesis) is
the class P =

⋃
c∈N DTIME[nc].

Complexity Classes Oracles & The Polynomial Hierarchy

Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

Proof (cont’d):
∃n0 : n1.4 > cn log n ∀n ≥ n0

There exists a xM , s.t. xM = xMy and |xM | > n0 (why?) Then,
D(xM) = 1−M(xM) (while we have also that D(x) = M(x), ∀x)
Contradiction!! �

So, we have the hierachy:

DTIME[n] (DTIME[n2] (DTIME[n3] (· · ·

We will later see that the class containing the problems we
can efficiently solve (recall the Edmonds-Cobham Thesis) is
the class P =

⋃
c∈N DTIME[nc].

Complexity Classes Oracles & The Polynomial Hierarchy

Relations among Complexity Classes

Hierarchy Theorems tell us how classes of the same kind
relate to each other, when we vary the complexity bound.

The most interesting results concern relationships between
classes of different kinds:

Theorem

Suppose that T (n), S(n) are time-constructible and
space-constructible functions, respectively.Then:

1 DTIME[T (n)] ⊆ NTIME[T (n)]

2 DSPACE[S(n)] ⊆ NSPACE[S(n)]

3 NTIME[T (n)] ⊆ DSPACE[T (n)]

4 NSPACE[S(n)] ⊆ DTIME[2O(S(n))]

Corollary

NTIME[T (n)] ⊆
⋃
c>1

DTIME[cT (n)]

Complexity Classes Oracles & The Polynomial Hierarchy

Relations among Complexity Classes

Proof: See Th.7.4 (p.147) in [1]

1 Trivial

2 Trivial

3 We can simulate the machine for each nondeterministic
choice, using at most T (n) steps in each simulation.
There are exponentially many simulations, but we can
simulate them one-by-one, reusing the same space.

4 Recall the notion of a configuration of a TM: For a k-tape
machine, is a 2k − 2 tuple: (q, i ,w2, u2, . . . ,wk−1, uk−1)
How many configurations are there?

|Q| choices for the state
n + 1 choices for i , and
Fewer than |Σ|(2k−2)S(n) for the remaining strings

So, the total number of configurations on input size n is at

most nc
S(n)
1 = 2O(S(n)).

Complexity Classes Oracles & The Polynomial Hierarchy

Relations among Complexity Classes

Proof (cont’d):

Definition (Configuration Graph of a TM)

The configuration graph of M on input x , denoted G (M, x), has as
vertices all the possible configurations, and there is an edge
between two vertices C and C ′ if and only if C ′ can be reached
from C in one step, according to M’s transition function.

So, we have reduced this simulation to REACHABILITY*
problem (also known as S-T CONN), for which we know there
is a poly-time (O

(
n2
)
) algorithm.

So, the simulation takes
(
2O(S(n))

)2 ∼ 2O(S(n)) steps. �

*REACHABILITY: Given a graph G and two nodes v1, vn ∈ V , is there a

path from v1 to vn?

Complexity Classes Oracles & The Polynomial Hierarchy

Relations among Complexity Classes

The essential Complexity Hierarchy

Definition

L = DSPACE[log n]

NL = NSPACE[log n]

P =
⋃
c∈N

DTIME[nc]

NP =
⋃
c∈N

NTIME[nc]

PSPACE =
⋃
c∈N

DSPACE[nc]

NPSPACE =
⋃
c∈N

NSPACE[nc]

Complexity Classes Oracles & The Polynomial Hierarchy

Relations among Complexity Classes

The essential Complexity Hierarchy

Definition

EXP =
⋃
c∈N

DTIME[2n
c
]

NEXP =
⋃
c∈N

NTIME[2n
c
]

EXPSPACE =
⋃
c∈N

DSPACE[2n
c
]

NEXPSPACE =
⋃
c∈N

NSPACE[2n
c
]

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP

Complexity Classes Oracles & The Polynomial Hierarchy

Relations among Complexity Classes

The essential Complexity Hierarchy

Definition

EXP =
⋃
c∈N

DTIME[2n
c
]

NEXP =
⋃
c∈N

NTIME[2n
c
]

EXPSPACE =
⋃
c∈N

DSPACE[2n
c
]

NEXPSPACE =
⋃
c∈N

NSPACE[2n
c
]

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP

Complexity Classes Oracles & The Polynomial Hierarchy

Certificates & Quantifiers

Certificate Characterization of NP

Definition

Let R ⊆ Σ∗ × Σ∗ a binary relation on strings.

R is called polynomially decidable if there is a DTM
deciding the language {x ; y | (x , y) ∈ R} in polynomial time.

R is called polynomially balanced if (x , y) ∈ R implies
|y | ≤ |x |k , for some k ≥ 1.

Theorem

Let L ⊆ Σ∗ be a language. L ∈ NP if and only if there is a
polynomially decidable and polynomially balanced relation R, such
that:

L = {x | ∃y R(x , y)}

This y is called succinct certificate, or witness.

Complexity Classes Oracles & The Polynomial Hierarchy

Certificates & Quantifiers

Proof: See Pr.9.1 (p.181) in [1]

(⇐) If such an R exists, we can construct the following NTM
deciding L:
“On input x , guess a y , such that |y | ≤ |x |k , and then test (in
poly-time) if (x , y) ∈ R. If so, accept, else reject.” Observe that
an accepting computation exists if and only if x ∈ L.

(⇒) If L ∈ NP, then ∃ an NTM N that decides L in time |x |k , for
some k . Define the following R:
“(x , y) ∈ R if and only if y is an encoding of an accepting
computation of N(x).”
R is polynomially balanced and decidable (why?), so, given by
assumption that N decides L, we have our conclusion. �

Complexity Classes Oracles & The Polynomial Hierarchy

Certificates & Quantifiers

Can creativity be automated?

As we saw:

Class P: Efficient Computation

Class NP: Efficient Verification

So, if we can efficiently verify a mathematical proof, can we
create it efficiently?

If P = NP...

For every mathematical statement, and given a page limit, we would
(quickly) generate a proof, if one exists.

Given detailed constraints on an engineering task, we would
(quickly) generate a design which meets the given criteria, if one
exists.

Given data on some phenomenon and modeling restrictions, we
would (quickly) generate a theory to explain the data, if one exists.

See “A. Wigderson: Knowledge, Creativity and P versus NP”

http://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/AW09/AW09.pdf

Complexity Classes Oracles & The Polynomial Hierarchy

Certificates & Quantifiers

Complementary complexity classes

Deterministic complexity classes are in general closed under
complement (coL = L, coP = P, coPSPACE = PSPACE).

Complementaries of non-deterministic complexity classes are
very interesting:

The class coNP contains all the languages that have succinct
disqualifications (the analogue of succinct certificate for the
class NP). The “no” instance of a problem in coNP has a
short proof of its being a “no” instance.

So:

P ⊆ NP ∩ coNP

Note the similarity and the difference with R = RE ∩ coRE.

Complexity Classes Oracles & The Polynomial Hierarchy

Certificates & Quantifiers

Quantifier Characterization of Complexity Classes

Definition

We denote as C = (Q1/Q2), where Q1,Q2 ∈ {∃,∀}, the class C of
languages L satisfying:

x ∈ L⇒ Q1y R(x , y)

x /∈ L⇒ Q2y ¬R(x , y)

P = (∀/∀)

NP = (∃/∀)

coNP = (∀/∃)

Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

Savitch’s Theorem

REACHABILITY ∈ NL. See Ex.2.10 (p.48) in [1]

Theorem (Savitch’s Theorem)

REACHABILITY ∈ DSPACE[log2 n]

Proof: See Th.7.4 (p.149) in [1]

REACH(x , y , i) : “There is a path from x to y, of length ≤ i”.

We can solve REACHABILITY if we can compute
REACH(x , y , n), for any nodes x , y ∈ V , since any path in G
can be at most n long.

If i = 1, we can check whether REACH(x , y , i).

If i > 1, we use recursion:

Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

def REACH(s,t,k)

if k==1:

if (s==t or (s,t) in edges): return true

if k>1:

for u in vertices:

if (REACH(s,u, floor(k/2)) and

(REACH(u,t,ceil(k/2)))): return true

return false

We generate all nodes u one after the other, reusing space.

The algorithm has recursion depth of dlog ne.
For each recursion level, we have to store s, t, k and u, that is,
O (log n) space.

Thus, the total space used is O
(
log2 n

)
. �

Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

def REACH(s,t,k)

if k==1:

if (s==t or (s,t) in edges): return true

if k>1:

for u in vertices:

if (REACH(s,u, floor(k/2)) and

(REACH(u,t,ceil(k/2)))): return true

return false

We generate all nodes u one after the other, reusing space.

The algorithm has recursion depth of dlog ne.
For each recursion level, we have to store s, t, k and u, that is,
O (log n) space.

Thus, the total space used is O
(
log2 n

)
. �

Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

Savitch’s Theorem

Corollary

NSPACE[S(n)] ⊆ DSPACE[S2(n)], for any space-constructible
function S(n) ≥ log n.

Proof:

Let M be the nondeterministic TM to be simulated.

We run the algorithm of Savitch’s Theorem proof on the
configuration graph of M on input x .

Since the configuration graph has cS(n) nodes, O
(
S2(n)

)
space suffices. �

Corollary

PSPACE = NPSPACE

Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

NL-Completeness

In Complexity Theory, we “connect” problems in a complexity
class with partial ordering relations, called reductions, which
formalize the notion of “a problem that is at least as hard as
another”.
A reduction must be computationally weaker than the class in
which we use it.

Definition

A language L1 is logspace reducible to a language L2, denoted
L1 ≤`m L2, if there is a function f : Σ∗ → Σ∗, computable by a
DTM in O (log n) space, such that for all x ∈ Σ∗:

x ∈ L1 ⇔ f (x) ∈ L2

We say that a language A is NL-complete if it is in NL and for
every B ∈ NL, B ≤`m A.

Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

NL-Completeness

Theorem

REACHABILITY is NL-complete.

Proof: See Th.4.18 (p.89) in [2]

We ’ve argued why REACHABILITY ∈ NL.

Let L ∈ NL, that is, it is decided by a O (log n) NTM N.

Given input x , we can construct the configuration graph of
N(x).

We can assume that this graph has a single accepting node.

We can construct this in logspace: Given configurations C ,C ′

we can in space O (|C |+ |C ′|) = O (log |x |) check the graph’s
adjacency matrix if they are connected by an edge.

It is clear that x ∈ L if and only if the produced instance of
REACHABILITY has a “yes” answer. �

Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

NL-Completeness

Theorem

REACHABILITY is NL-complete.

Proof: See Th.4.18 (p.89) in [2]

We ’ve argued why REACHABILITY ∈ NL.

Let L ∈ NL, that is, it is decided by a O (log n) NTM N.

Given input x , we can construct the configuration graph of
N(x).

We can assume that this graph has a single accepting node.

We can construct this in logspace: Given configurations C ,C ′

we can in space O (|C |+ |C ′|) = O (log |x |) check the graph’s
adjacency matrix if they are connected by an edge.

It is clear that x ∈ L if and only if the produced instance of
REACHABILITY has a “yes” answer. �

Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

Certificate Definition of NL

We want to give a characterization of NL, similar to the one
we gave for NP.

A certificate may be polynomially long, so a logspace machine
may not have the space to store it.

So, we will assume that the certificate is provided to the
machine on a separate tape that is read once.

Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

Certificate Definition of NL

Definition

A language L is in NL if there exists a deterministic TM M with an
additional special read-once input tape, such that for every x ∈ Σ∗:

x ∈ L⇔ ∃y , |y | ∈ poly(|x |),M(x , y) = 1

where by M(x , y) we denote the output of M where x is placed on
its input tape, and y is placed on its special read-once tape, and M
uses at most O (log |x |) space on its read-write tapes for every
input x .

What if remove the read-once restriction and allow the TM’s head
to move back and forth on the certificate, and read each bit
multiple times?

Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

Immerman-Szelepscényi

Theorem (The Immerman-Szelepscényi Theorem)

REACHABILITY ∈ NL

Proof: See Th.4.20 (p.91) in [2]

It suffices to show a O (log n) verification algorithm A such
that: ∀ (G , s, t), ∃ a polynomial certificate u such that:
A((G , s, t), u) = “yes” iff t is not reachable from s.

A has read-once access to u.

G ’s vertices are identified by numbers in {1, . . . , n} = [n]

Ci : “The set of vertices reachable from s in ≤ i steps.”

Membership in Ci is easily certified:

∀i ∈ [n]: v0, . . . , vk along the path from s to v , k ≤ i .

The certificate is at most polynomial in n.

Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

Immerman-Szelepscényi

Theorem (The Immerman-Szelepscényi Theorem)

REACHABILITY ∈ NL

Proof: See Th.4.20 (p.91) in [2]

It suffices to show a O (log n) verification algorithm A such
that: ∀ (G , s, t), ∃ a polynomial certificate u such that:
A((G , s, t), u) = “yes” iff t is not reachable from s.

A has read-once access to u.

G ’s vertices are identified by numbers in {1, . . . , n} = [n]

Ci : “The set of vertices reachable from s in ≤ i steps.”

Membership in Ci is easily certified:

∀i ∈ [n]: v0, . . . , vk along the path from s to v , k ≤ i .

The certificate is at most polynomial in n.

Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

The Immerman-Szelepscényi Theorem

Proof (cont’d):

We can check the certificate using read-once access:
1 v0 = s
2 for j > 0, (vj−1, vj) ∈ E (G)
3 vk = v
4 Path ends within at most i steps

We now construct two types of certificates:
1 A certificate that a vertex v /∈ Ci , given |Ci |.
2 A certificate that |Ci | = c , for some c , given |Ci−1|.

Since C0 = {s}, we can provide the 2nd certificate to
convince the verifier for the sizes of C1, . . . ,Cn

Cn is the set of vertices reachable from s.

Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

The Immerman-Szelepscényi Theorem

Proof (cont’d):

Since the verifier has been convinced of |Cn|, we can use the
1st type of certificate to convince the verifier that t /∈ Cn.

Certifying that v /∈ Ci , given |Ci |
The certificate is the list of certificates that u ∈ Ci , for every
u ∈ Ci .
The verifier will check:

1 Each certificate is valid
2 Vertex u, given a certificate for u, is larger than the previous.
3 No certificate is provided for v .
4 The total number of certificates is exactly |Ci |.

Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

The Immerman-Szelepscényi Theorem

Proof (cont’d):
Certifying that v /∈ Ci , given |Ci−1|
The certificate is the list of certificates that u ∈ Ci−1, for every
u ∈ Ci−1

The verifier will check:

1 Each certificate is valid

2 Vertex u, given a certificate for u, is larger than the previous.

3 No certificate is provided for v or for a neighbour of v .

4 The total number of certificates is exactly |Ci−1|.
Certifying that |Ci | = c, given |Ci−1|
The certificate will consist of n certificates, for vertices 1 to n, in
ascending order.
The verifier will check all certificates, and count the vertices that
have been certified to be in Ci . If |Ci | = c , it accepts. �

Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

The Immerman-Szelepscényi Theorem

Corollary

For every space constructible S(n) > log n:

NSPACE[S(n)] = coNSPACE[S(n)]

Proof:

Let L ∈ NSPACE[S(n)]. We will show that ∃ S(n)
space-bounded NTM M deciding L:

M on input x uses the above certification procedure on the
configuration graph of M. �

Corollary

NL = coNL

Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

What about Undirected Reachability?

UNDIRECTED REACHABILITY captures the phenomenon of
configuration graphs with both directions.
H. Lewis and C. Papadimitriou defined the class SL
(Symmetric Logspace) as the class of languages decided by a
Symmetric Turing Machine using logarithmic space.
Obviously,

L ⊆ SL ⊆ NL

As in the case of NL, UNDIRECTED REACHABILITY is
SL-complete.
But in 2004, Omer Reingold showed, using expander graphs, a
deterministic logspace algorithm for UNDIRECTED
REACHABILITY, so:

Theorem (Reingold, 2004)

L = SL

Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

Our Complexity Hierarchy Landscape

L

NL

= coNL

P N
P

NPC

co
N

P

PSPACE

= NPSPACE

EXP

NEXP

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Karp Reductions

Definition

A language L1 is Karp reducible to a language L2, denoted by
L1 ≤p

m L2, if there is a function f : Σ∗ → Σ∗, computable by a
polynomial-time DTM, such that for all x ∈ Σ∗:

x ∈ L1 ⇔ f (x) ∈ L2

Definition

Let C be a complexity class.

We say that a language A is C-hard (or ≤p
m-hard for C) if for

every B ∈ C, B ≤p
m A.

We say that a language A is C-complete, if it is C-hard, and
also A ∈ C.

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Karp Reductions

Definition

A language L1 is Karp reducible to a language L2, denoted by
L1 ≤p

m L2, if there is a function f : Σ∗ → Σ∗, computable by a
polynomial-time DTM, such that for all x ∈ Σ∗:

x ∈ L1 ⇔ f (x) ∈ L2

Definition

Let C be a complexity class.

We say that a language A is C-hard (or ≤p
m-hard for C) if for

every B ∈ C, B ≤p
m A.

We say that a language A is C-complete, if it is C-hard, and
also A ∈ C.

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Karp reductions vs logspace redutions

Theorem

A logspace reduction is a polynomial-time reduction.

Proof: See Th.8.1 (p.160) in [1]

Let M the logspace reduction TM.

M has 2O(log n) possible configurations.

The machine is deterministic, so no configuration can be
repeated in the computation.

So, the computation takes O
(
nk
)

time, for some k.

�

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Circuits and CVP

Definition (Boolean circuits)

For every n ∈ N an n-input, single output Boolean Circuit C is a
directed acyclic graph with n sources and one sink.

All nonsource vertices are called gates and are labeled with one of ∧
(and), ∨ (or) or ¬ (not).

The vertices labeled with ∧ and ∨ have fan-in (i.e. number or
incoming edges) 2.

The vertices labeled with ¬ have fan-in 1.

For every vertex v of C , we assign a value as follows: for some input
x ∈ {0, 1}n, if v is the i-th input vertex then val(v) = xi , and
otherwise val(v) is defined recursively by applying v ’s logical
operation on the values of the vertices connected to v .

The output C (x) is the value of the output vertex.

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Circuits and CVP

Definition (CVP)

Circuit Value Problem (CVP): Given a circuit C and an assignment
x to its variables, determine whether C (x) = 1.

CVP ∈ P.

Example

REACHABILITY ≤`m CVP: Graph G → circuit R(G):

The gates are of the form:

gi,j,k , 1 ≤ i , j ≤ n, 0 ≤ k ≤ n.
hi,j,k , 1 ≤ i , j , k ≤ n

gi ,j ,k is true iff there is a path from i to j without
intermediate nodes bigger than k .

hi ,j ,k is true iff there is a path from i to j without
intermediate nodes bigger than k , and k is used.

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Circuits and CVP

Definition (CVP)

Circuit Value Problem (CVP): Given a circuit C and an assignment
x to its variables, determine whether C (x) = 1.

CVP ∈ P.

Example

REACHABILITY ≤`m CVP: Graph G → circuit R(G):

The gates are of the form:

gi,j,k , 1 ≤ i , j ≤ n, 0 ≤ k ≤ n.
hi,j,k , 1 ≤ i , j , k ≤ n

gi ,j ,k is true iff there is a path from i to j without
intermediate nodes bigger than k .

hi ,j ,k is true iff there is a path from i to j without
intermediate nodes bigger than k , and k is used.

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Circuits and CVP

Example

Input gates: gi ,j ,0 is true iff (i = j or (i , j) ∈ E (G)).

For k = 1, . . . , n: hi ,j ,k = (gi ,k,k−1 ∧ gk,j ,k−1)

For k = 1, . . . , n: gi ,j ,k = (gi ,j ,k−1 ∨ hi ,j ,k)

The output gate g1,n,n is true iff there is a path from 1 to n
using no intermediate paths above n (sic).

We also can compute the reduction in logspace: go over all
possible i , j , k ’s and output the appropriate edges and sorts for
the variables (1, . . . , 2n3 + n2).

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Composing Reductions

Theorem

If L1 ≤`m L2 and L2 ≤`m L3, then L1 ≤`m L3.

Proof: See Prop.8.2 (p.164) in [1]

Let R,R ′ be the aforementioned reductions.

We have to prove that R ′(R(x)) is a logspace reduction.

But R(x) may by longer than log |x |...
We simulate MR′ by remembering the head position i of the
input string of MR′ , i.e. the output string of MR .

If the head moves to the right, we increment i and simulate
MR long enough to take the i th bit of the output.

If the head stays in the same position, we just remember the
i th bit.

If the head moves to the left, we decrement i and start MR

from the beggining, until we reach the desired bit. �

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Closure under reductions

Complete problems are the maximal elements of the
reductions partial ordering.

Complete problems capture the essence and difficulty of a
complexity class.

Definition

A class C is closed under reductions if for all A,B ⊆ Σ∗:
If A ≤ B and B ∈ C, then A ∈ C.

P,NP, coNP,L,NL,PSPACE,EXP are closed under Karp
and logspace reductions.

If an NP-complete language is in P, then P = NP.

If L is NP-complete, then L̄ is coNP-complete.

If a coNP-complete problem is in NP, then NP = coNP.

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

P-Completeness

Theorem

If two classes C and C′ are both closed under reductions and there
is an L ⊆ Σ∗ complete for both C and C′, then C = C′.

Consider the Computation Table T of a poly-time TM
M(x):�� ��Tij represents the contents of tape position j at step i .

But how to remember the head position and state?
At the i th step: if the state is q and the head is in position j,
then Tij ∈ Σ× Q.

We say that the table is accepting if T|x |k−1,j ∈ (Σ× {qyes}),
for some j .

Observe that Tij depends only on the contents of the same of
adjacent positions at time i − 1.

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

P-Completeness

Theorem

CVP is P-complete.

Proof: See Th. 8.1 (p.168) in [1]

We have to show that for any L ∈ P there is a reduction R
from L to CVP.

R(x) must be a variable-free circuit such that
x ∈ L⇔ R(x) = 1.

Tij depends only on Ti−1,j−1,Ti−1,j ,Ti−1,j+1.

Let Γ = Σ ∪ (Σ× Q).

Encode s ∈ Γ as (s1, . . . , sm), where m = dlog |Γ|e.
Then the computation table can be seen as a table of binary
entries Sij`, 1 ≤ ` ≤ m.

Sij` depends only on the 3m entries
Si−1,j−1,`′ ,Si−1,j ,`′ , Si−1,j+1,`′ ,where 1 ≤ `′ ≤ m.

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

P-Completeness

Theorem

CVP is P-complete.

Proof: See Th. 8.1 (p.168) in [1]

We have to show that for any L ∈ P there is a reduction R
from L to CVP.

R(x) must be a variable-free circuit such that
x ∈ L⇔ R(x) = 1.

Tij depends only on Ti−1,j−1,Ti−1,j ,Ti−1,j+1.

Let Γ = Σ ∪ (Σ× Q).

Encode s ∈ Γ as (s1, . . . , sm), where m = dlog |Γ|e.
Then the computation table can be seen as a table of binary
entries Sij`, 1 ≤ ` ≤ m.

Sij` depends only on the 3m entries
Si−1,j−1,`′ ,Si−1,j ,`′ , Si−1,j+1,`′ ,where 1 ≤ `′ ≤ m.

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

P-Completeness

Proof (cont’d):

So, there are m Boolean Functions
f1, . . . , fm : {0, 1}3m → {0, 1} s.t.:

Sij` = f`(
−→
S i−1,j−1,

−→
S i−1,j ,

−→
S i−1,j+1)

Thus, there exists a Boolean Circuit C with 3m inputs and m
outputs computing Tij .

C depends only on M, and has constant size.

R(x) will be (|x |k − 1)× (|x |k − 2) copies of C .

The input gates are fixed.

R(x)’s output gate will be the first bit of C|x |k−1,1.

The circuit C is fixed, so we can generate indexed copies of
C , using O (log |x |) space for indexing. �

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

CIRCUIT SAT & SAT

Definition (CIRCUIT SAT)

Given Boolen Circuit C , is there a truth assignment x appropriate
to C , such that C (x) = 1?

Definition (SAT)

Given a Boolean Expression φ in CNF, is it satisfiable?

Example

CIRCUIT SAT ≤`m SAT:

Given C → Boolean Formula R(C), s.t.
C (x) = 1⇔ R(C)(x) = T .

Variables of C → variables of R(C).

Gate g of C → variable g of R(C).

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

CIRCUIT SAT & SAT

Definition (CIRCUIT SAT)

Given Boolen Circuit C , is there a truth assignment x appropriate
to C , such that C (x) = 1?

Definition (SAT)

Given a Boolean Expression φ in CNF, is it satisfiable?

Example

CIRCUIT SAT ≤`m SAT:

Given C → Boolean Formula R(C), s.t.
C (x) = 1⇔ R(C)(x) = T .

Variables of C → variables of R(C).

Gate g of C → variable g of R(C).

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

CIRCUIT SAT & SAT

Example

Gate g of C → clauses in R(C):

g variable gate: add (¬g ∨ x) ∧ (g ∨ ¬x) ≡ g ⇔ x
g TRUE gate: add (g)
g FALSE gate: add (¬g)
g NOT gate & pred(g) = h: add
(¬g ∨ ¬h) ∧ (g ∨ h) ≡ g ⇔ ¬h
g OR gate & pred(g) = {h, h′}: add
(¬h ∨ g) ∧ (¬h′ ∨ g) ∧ (h ∨ h′ ∨ ¬g) ≡ g ⇔ (h ∨ h′)
g AND gate & pred(g) = {h, h′}: add
(¬g ∨ h) ∧ (¬g ∨ h′) ∧ (¬h ∨ ¬h′ ∨ g) ≡ g ⇔ (h ∧ h′)
g output gate: add (g)

R(C) is satisfiable if and only if C is.

The construction can be done within log |x | space. �

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Bounded Halting Problem

We can define the time-bounded analogue of HP:

Definition (Bounded Halting Problem (BHP))

Given the code xMy of an NTM M, and input x and a string 0t ,
decide if M accepts x in t steps.

Theorem

BHP is NP-complete.

Proof:

BHP ∈ NP.

Let A ∈ NP. Then, ∃ NTM M deciding A in time p(|x |), for
some p ∈ poly(|x |).

The reduction is the function R(x) = 〈xMy, x , 0p(|x |)〉. �

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Cook’s Theorem

Theorem (Cook’s Theorem)

SAT is NP-complete.

Proof: See Th.8.2 (p.171) in [1]

SAT ∈ NP.

Let L ∈ NP. We will show that L ≤`m CIRCUIT SAT ≤`m SAT.

Since L ∈ NP, there exists an NPTM M deciding L in nk

steps.

Let (c1, . . . , cnk) ∈ {0, 1}nk a certificate for M (recall the binary

encoding of the computation tree).

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Cook’s Theorem

Theorem (Cook’s Theorem)

SAT is NP-complete.

Proof: See Th.8.2 (p.171) in [1]

SAT ∈ NP.

Let L ∈ NP. We will show that L ≤`m CIRCUIT SAT ≤`m SAT.

Since L ∈ NP, there exists an NPTM M deciding L in nk

steps.

Let (c1, . . . , cnk) ∈ {0, 1}nk a certificate for M (recall the binary

encoding of the computation tree).

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Cook’s Theorem

Proof (cont’d): See Th.8.2 (p.171) in [1]

If we fix a certificate, then the computation is deterministic
(the language’s Verifier V (x , y) is a DPTM).

So, we can define the computation table T (M, x ,−→c).

As before, all non-top row and non-extreme column cells Tij

will depend only on Ti−1,j−1,Ti−1,j ,Ti−1,j+1 and the
nondeterministic choice ci−1.

We now fixed a circuit C with 3m + 1 input gates.

Thus, we can construct in log |x | space a circuit R(x) with
variable gates c1, . . . cnk corresponding to the
nondeterministic choices of the machine.

R(x) is satisfiable if and only if x ∈ L. �

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

NP-completeness: Web of Reductions

Many NP-complete problems stem from Cook’s Theorem via
reductions:

3SAT, MAX2SAT, NAESAT

IS, CLIQUE, VERTEX COVER, MAX CUT

TSP(D), 3COL

SET COVER, PARTITION, KNAPSACK, BIN PACKING

INTEGER PROGRAMMING (IP): Given m inequalities oven n
variables ui ∈ {0, 1}, is there an assignment satisfying all the
inequalities?

Always remember that these are decision versions of the
corresponding optimization problems.

But 2SAT, 2COL ∈ P.

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

NP-completeness: Web of Reductions

Example

SAT ≤`m IP:

Every clause can be expressed as an inequality, eg:

(x1 ∨ x̄2 ∨ x̄3) −→ x1 + (1− x2) + (1− x3) ≥ 1

This method is generalized by the notion of Constraint
Satisfaction Problems.

A Constraint Satisfaction Problem (CSP) generalizes SAT

by allowing clauses of arbitrary form (instead of ORs of
literals).�

�
	3SAT is the subcase of qCSP, where arity q = 3 and the con-

straints are ORs of the involved literals.

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

NP-completeness: Web of Reductions

Example

SAT ≤`m IP:

Every clause can be expressed as an inequality, eg:

(x1 ∨ x̄2 ∨ x̄3) −→ x1 + (1− x2) + (1− x3) ≥ 1

This method is generalized by the notion of Constraint
Satisfaction Problems.

A Constraint Satisfaction Problem (CSP) generalizes SAT

by allowing clauses of arbitrary form (instead of ORs of
literals).�

�
	3SAT is the subcase of qCSP, where arity q = 3 and the con-

straints are ORs of the involved literals.

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Quantified Boolean Formulas

Definition (Quantified Boolean Formula)

A Quantified Boolean Formula F is a formula of the form:

F = ∃x1∀x2∃x3 · · ·Qnxn φ(x1, . . . , xn)

where φ is plain (quantifier-free) boolean formula.

Let TQBF the language of all true QBFs.

Example

F = ∃x1∀x2∃x3 [(x1 ∨ ¬x2) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)]

The above is a True QBF ((1, 0, 0) and (1, 1, 1) satisfy it).

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Quantified Boolean Formulas

Definition (Quantified Boolean Formula)

A Quantified Boolean Formula F is a formula of the form:

F = ∃x1∀x2∃x3 · · ·Qnxn φ(x1, . . . , xn)

where φ is plain (quantifier-free) boolean formula.

Let TQBF the language of all true QBFs.

Example

F = ∃x1∀x2∃x3 [(x1 ∨ ¬x2) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)]

The above is a True QBF ((1, 0, 0) and (1, 1, 1) satisfy it).

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Quantified Boolean Formulas

Theorem

TQBF is PSPACE-complete.

Proof: See Th. 19.1 (p.456) in [1] – Th.4.13 (p.84) in [2]

TQBF ∈ PSPACE:

Let φ be a QBF, with n variables and length m.
Recursive algorithm A(φ):
If n = 0, then there are only constants, hence O (m)
time/space.
If n > 0:
A(φ) = A (φ|x1=0) ∨ A (φ|x1=1), if Q1 = ∃, and
A(φ) = A (φ|x1=0) ∧ A (φ|x1=1), if Q1 = ∀.
Both recursive computations can be run on the same space.
So spacen,m = spacen−1,m +O (m)⇒ spacen,m = O (n ·m).

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Quantified Boolean Formulas

Theorem

TQBF is PSPACE-complete.

Proof: See Th. 19.1 (p.456) in [1] – Th.4.13 (p.84) in [2]

TQBF ∈ PSPACE:

Let φ be a QBF, with n variables and length m.
Recursive algorithm A(φ):
If n = 0, then there are only constants, hence O (m)
time/space.
If n > 0:
A(φ) = A (φ|x1=0) ∨ A (φ|x1=1), if Q1 = ∃, and
A(φ) = A (φ|x1=0) ∧ A (φ|x1=1), if Q1 = ∀.
Both recursive computations can be run on the same space.
So spacen,m = spacen−1,m +O (m)⇒ spacen,m = O (n ·m).

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Quantified Boolean Formulas

Proof (cont’d): See Th. 19.1 (p.456) in [1] – Th.4.13 (p.84) in [2]

Now, let M a TM with space bound p(n).

We can create the configuration graph of M(x), having size
2O(p(n)).

M accepts x iff there is a path of length at most 2O(p(n)) from
the initial to the accepting configuration.

Using Savitch’s Theorem idea, for two configurations C and
C ′ we have:
REACH(C ,C ′, 2i)⇔
⇔ ∃C ′′

[
REACH(C ,C ′′, 2i−1) ∧ REACH(C ′′,C ′, 2i−1)

]

But, this is a bad idea: Doubles the size each time.

Instead, we use additional variables:
∃C ′′∀D1∀D2 [(D1 = C ∧ D2 = C ′′) ∨ (D1 = C ′′ ∧ D2 = C ′)]⇒
REACH(D1,D2, 2

i−1)

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Quantified Boolean Formulas

Proof (cont’d): See Th. 19.1 (p.456) in [1] – Th.4.13 (p.84) in [2]

Now, let M a TM with space bound p(n).

We can create the configuration graph of M(x), having size
2O(p(n)).

M accepts x iff there is a path of length at most 2O(p(n)) from
the initial to the accepting configuration.

Using Savitch’s Theorem idea, for two configurations C and
C ′ we have:
REACH(C ,C ′, 2i)⇔
⇔ ∃C ′′

[
REACH(C ,C ′′, 2i−1) ∧ REACH(C ′′,C ′, 2i−1)

]
But, this is a bad idea: Doubles the size each time.

Instead, we use additional variables:
∃C ′′∀D1∀D2 [(D1 = C ∧ D2 = C ′′) ∨ (D1 = C ′′ ∧ D2 = C ′)]⇒
REACH(D1,D2, 2

i−1)

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Quantified Boolean Formulas

Proof (cont’d): See Th. 19.1 (p.456) in [1] – Th.4.13 (p.84) in [2]

The base case of the recursion is C1 → C2, and can be
encoded as a quantifier-free formula.

The size of the formula in the i th step is
si ≤ si−1 +O (p(n))⇒ O

(
p2(n)

)
. �

Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

*Logical Characterizations

Descriptive complexity is a branch of computational
complexity theory and of finite model theory that
characterizes complexity classes by the type of logic needed to
express the languages in them.

Theorem (Fagin’s Theorem)

The set of all properties expressible in Existential Second-Order
Logic is precisely NP.

Theorem

The class of all properties expressible in Horn Existential
Second-Order Logic with Successor is precisely P.

HORNSAT is P-complete.

Complexity Classes Oracles & The Polynomial Hierarchy

Contents

Introduction

Turing Machines

Undecidability

Complexity Classes

Oracles & The Polynomial Hierarchy
Randomized Computation

The map of NP

Non-Uniform Complexity

Interactive Proofs

Inapproximability

Derandomization of Complexity Classes

Counting Complexity

Epilogue

Complexity Classes Oracles & The Polynomial Hierarchy

Oracle Classes

Oracle TMs and Oracle Classes

Definition

A Turing Machine M? with oracle is a multi-string deterministic
TM that has a special string, called query string, and three
special states: q? (query state), and qYES , qNO (answer states).
Let A ⊆ Σ∗ be an arbitrary language. The computation of oracle
machine MA proceeds like an ordinary TM except for transitions
from the query state: From the q? moves to either qYES , qNO ,
depending on whether the current query string is in A or not.

The answer states allow the machine to use this answer to its
further computation.

The computation of M? with oracle A on iput x is denoted as
MA(x).

Complexity Classes Oracles & The Polynomial Hierarchy

Oracle Classes

Oracle TMs and Oracle Classes

Definition

Let C be a time complexity class (deterministic or
nondeterministic).
Define CA to be the class of all languages decided by machines of
the same sort and time bound as in C, only that the machines have
now oracle access to A. Also, we define: CC2

1 =
⋃

L∈C2
CL1 .

For example, PNP =
⋃

L∈NP PL. Note that PSAT = PNP.

Theorem

There exists an oracle A for which PA = NPA.

Proof: Th.14.4, p.340 in [1]

Take A to be a PSPACE-complete language.Then:
PSPACE ⊆ PA ⊆ NPA ⊆ PSPACEA ⊆ PSPACE. �

Complexity Classes Oracles & The Polynomial Hierarchy

Oracle Classes

Oracle TMs and Oracle Classes

Theorem

There exists an oracle B for which PB 6= NPB .

Proof: Th.14.5, p.340-342 in [1]

We will find a language L ∈ NPB \ PB .

Let L = {1n | ∃x ∈ B with |x | = n}.
L ∈ NPB (why?)

We will define the oracle B ⊆ {0, 1}∗ such that L /∈ PB :

Let M?
1 ,M

?
2 , . . . an enumeration of all PDTMs with oracle,

such that every machine appears infinitely many times in the
enumeration.

We will define B iteratively: B0 = ∅, and B =
⋃

i≥0 Bi .

In i th stage, we have defined Bi−1, the set of all strings in B
with length < i .

Let also X the set of exceptions.

Complexity Classes Oracles & The Polynomial Hierarchy

Oracle Classes

Oracle TMs and Oracle Classes

Theorem

There exists an oracle B for which PB 6= NPB .

Proof: Th.14.5, p.340-342 in [1]

We will find a language L ∈ NPB \ PB .

Let L = {1n | ∃x ∈ B with |x | = n}.
L ∈ NPB (why?)

We will define the oracle B ⊆ {0, 1}∗ such that L /∈ PB :

Let M?
1 ,M

?
2 , . . . an enumeration of all PDTMs with oracle,

such that every machine appears infinitely many times in the
enumeration.

We will define B iteratively: B0 = ∅, and B =
⋃

i≥0 Bi .

In i th stage, we have defined Bi−1, the set of all strings in B
with length < i .

Let also X the set of exceptions.

Complexity Classes Oracles & The Polynomial Hierarchy

Oracle Classes

Proof (cont’d):

We simulate MB
i (1i) for i log i steps.

How do we answer the oracle questions “Is x ∈ B”?

If |x | < i , we look for x in Bi−1.

→ If x ∈ Bi−1, MB
i goes to qYES

→ Else MB
i goes to qNO

If |x | ≥ i , MB
i goes to qNO ,and x → X .

Suppose that after at most i log i steps the machine rejects.

Then we define Bi = Bi−1 ∪ {x ∈ {0, 1}∗ : |x | = i , x /∈ X}
so 1i ∈ L, and L(MB

i) 6= L.
Why {x ∈ {0, 1}∗ : |x | = i , x /∈ X} 6= ∅ ? ?

If the machine accepts, we define Bi = Bi−1, so that 1i /∈ L.

If the machine fails to halt in the allotted time, we set
Bi = Bi−1, but we know that the same machine will appear in
the enumeration with an index sufficiently large. �

Complexity Classes Oracles & The Polynomial Hierarchy

Oracle Classes

Proof (cont’d):

We simulate MB
i (1i) for i log i steps.

How do we answer the oracle questions “Is x ∈ B”?

If |x | < i , we look for x in Bi−1.

→ If x ∈ Bi−1, MB
i goes to qYES

→ Else MB
i goes to qNO

If |x | ≥ i , MB
i goes to qNO ,and x → X .

Suppose that after at most i log i steps the machine rejects.

Then we define Bi = Bi−1 ∪ {x ∈ {0, 1}∗ : |x | = i , x /∈ X}
so 1i ∈ L, and L(MB

i) 6= L.
Why {x ∈ {0, 1}∗ : |x | = i , x /∈ X} 6= ∅ ? ?

If the machine accepts, we define Bi = Bi−1, so that 1i /∈ L.

If the machine fails to halt in the allotted time, we set
Bi = Bi−1, but we know that the same machine will appear in
the enumeration with an index sufficiently large. �

Complexity Classes Oracles & The Polynomial Hierarchy

Oracle Classes

Proof (cont’d):

We simulate MB
i (1i) for i log i steps.

How do we answer the oracle questions “Is x ∈ B”?

If |x | < i , we look for x in Bi−1.

→ If x ∈ Bi−1, MB
i goes to qYES

→ Else MB
i goes to qNO

If |x | ≥ i , MB
i goes to qNO ,and x → X .

Suppose that after at most i log i steps the machine rejects.

Then we define Bi = Bi−1 ∪ {x ∈ {0, 1}∗ : |x | = i , x /∈ X}
so 1i ∈ L, and L(MB

i) 6= L.
Why {x ∈ {0, 1}∗ : |x | = i , x /∈ X} 6= ∅ ? ?

If the machine accepts, we define Bi = Bi−1, so that 1i /∈ L.

If the machine fails to halt in the allotted time, we set
Bi = Bi−1, but we know that the same machine will appear in
the enumeration with an index sufficiently large. �

Complexity Classes Oracles & The Polynomial Hierarchy

Oracle Classes

The Limits of Diagonalization

As we saw, an oracle can transfer us to an alternative
computational “universe”.
(We saw a universe where P = NP, and another where P 6= NP)

Diagonalization is a technique that relies in the facts that:�
�

�
�

TMs are (effectively) represented by strings.

A TM can simulate another without much
overhead in time/space.

So, diagonalization or any other proof technique relies only on
these two facts, holds also for every oracle.

Such results are called relativizing results.
E.g., PA ⊆ NPA, for every A ∈ {0, 1}∗.
The above two theorems indicate that P vs. NP is a
nonrelativizing result, so diagonalization and any other
relativizing method doesn’t suffice to prove it.

Complexity Classes Oracles & The Polynomial Hierarchy

Oracle Classes

Cook Reductions

A problem A is Cook-Reducible to a problem B, denoted by
A ≤p

T B, if there is an oracle DTM MB which in polynomial
time decides A (making at most polynomial many queries to
B).

That is: A ∈ PB

Karp Reducibility ⇒ Turing Reducibility

A ≤p
T A

Theorem

P,PSPACE are closed under ≤p
T .

Is NP closed under ≤p
T ? (cf. Problem Sets!)

Complexity Classes Oracles & The Polynomial Hierarchy

Oracle Classes

*Random Oracles

We proved that:
∃A ⊆ Σ∗ : PA = NPA

∃B ⊆ Σ∗ : PB 6= NPB

What if we chose the oracle language at random?

Now, consider the set U = Pow(Σ∗), and the sets:

{A ∈ U : PA = NPA}

{B ∈ U : PB 6= NPB}

Can we compare these two sets, and find which is larger?

Theorem (Bennet, Gill)

PrB⊆Σ∗

[
PB 6= NPB

]
= 1

See H. Vollmer & K.W. Wagner, “Measure one Results in Computational Complexity Theory”

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.5215&rep=rep1&type=pdf

Complexity Classes Oracles & The Polynomial Hierarchy

Oracle Classes

*Random Oracles

We proved that:
∃A ⊆ Σ∗ : PA = NPA

∃B ⊆ Σ∗ : PB 6= NPB

What if we chose the oracle language at random?

Now, consider the set U = Pow(Σ∗), and the sets:

{A ∈ U : PA = NPA}

{B ∈ U : PB 6= NPB}

Can we compare these two sets, and find which is larger?

Theorem (Bennet, Gill)

PrB⊆Σ∗

[
PB 6= NPB

]
= 1

See H. Vollmer & K.W. Wagner, “Measure one Results in Computational Complexity Theory”

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.5215&rep=rep1&type=pdf

Complexity Classes Oracles & The Polynomial Hierarchy

Oracle Classes

*Random Oracles

We proved that:
∃A ⊆ Σ∗ : PA = NPA

∃B ⊆ Σ∗ : PB 6= NPB

What if we chose the oracle language at random?

Now, consider the set U = Pow(Σ∗), and the sets:

{A ∈ U : PA = NPA}

{B ∈ U : PB 6= NPB}

Can we compare these two sets, and find which is larger?

Theorem (Bennet, Gill)

PrB⊆Σ∗

[
PB 6= NPB

]
= 1

See H. Vollmer & K.W. Wagner, “Measure one Results in Computational Complexity Theory”

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.5215&rep=rep1&type=pdf

Complexity Classes Oracles & The Polynomial Hierarchy

The Polynomial Hierarchy

The Polynomial Hierarchy

Polynomial Hierarchy Definition

∆p
0 = Σp

0 = Πp
0 = P

∆p
i+1 = PΣp

i

Σp
i+1 = NPΣp

i

Πp
i+1 = coNPΣp

i

PH ≡
⋃
i>0

Σp
i

Σp
0 = P

∆p
1 = P, Σp

1 = NP, Πp
1 = coNP

∆p
2 = PNP, Σp

2 = NPNP, Πp
2 = coNPNP

Complexity Classes Oracles & The Polynomial Hierarchy

The Polynomial Hierarchy

...
...

∆p
3 = PNPNP

jj 55

Πp
2 = coNPNP

55

Σp
2 = NPNP

hh

∆p
2 = PNP

ii 66

Πp
1 = coNP

55

Σp
1 = NP

hh

∆p
0 = Σp

0 =

ii 66

= Πp
0 = ∆p

1 = P

'

&

$

%

Σp
i , Πp

i ⊆ Σp
i+1

A,B ∈ Σp
i ⇒

A ∪ B ∈ Σp
i ,

A ∩ B ∈ Σp
i

A ∈ Πp
i ⇒

A ∈ Σp
i

A,B ∈ ∆p
i ⇒

A ∪ B, A ∩ B
and A ∈ ∆p

i

Complexity Classes Oracles & The Polynomial Hierarchy

Main Theorems

Theorem

Let L be a language , and i ≥ 1. L ∈ Σp
i iff there is a polynomially

balanced relation R such that the language {x ; y : (x , y) ∈ R} is in
Πp
i−1 and

L = {x : ∃y , s.t. : (x , y) ∈ R}

Proof (by Induction): Th.17.8, p.425-526 in [1]�� ��For i = 1:
{x ; y : (x , y) ∈ R} ∈ P,so L = {x |∃y : (x , y) ∈ R} ∈ NP X�� ��For i > 1:
If ∃R ∈ Πp

i−1, we must show that L ∈ Σp
i ⇒

∃ NTM with Σp
i−1 oracle: NTM(x) guesses a y and asks Πp

i−1

oracle whether (x , y) /∈ R.

Complexity Classes Oracles & The Polynomial Hierarchy

Main Theorems

Theorem

Let L be a language , and i ≥ 1. L ∈ Σp
i iff there is a polynomially

balanced relation R such that the language {x ; y : (x , y) ∈ R} is in
Πp
i−1 and

L = {x : ∃y , s.t. : (x , y) ∈ R}

Proof (by Induction): Th.17.8, p.425-526 in [1]�� ��For i = 1:
{x ; y : (x , y) ∈ R} ∈ P,so L = {x |∃y : (x , y) ∈ R} ∈ NP X

�� ��For i > 1:
If ∃R ∈ Πp

i−1, we must show that L ∈ Σp
i ⇒

∃ NTM with Σp
i−1 oracle: NTM(x) guesses a y and asks Πp

i−1

oracle whether (x , y) /∈ R.

Complexity Classes Oracles & The Polynomial Hierarchy

Main Theorems

Theorem

Let L be a language , and i ≥ 1. L ∈ Σp
i iff there is a polynomially

balanced relation R such that the language {x ; y : (x , y) ∈ R} is in
Πp
i−1 and

L = {x : ∃y , s.t. : (x , y) ∈ R}

Proof (by Induction): Th.17.8, p.425-526 in [1]�� ��For i = 1:
{x ; y : (x , y) ∈ R} ∈ P,so L = {x |∃y : (x , y) ∈ R} ∈ NP X�� ��For i > 1:
If ∃R ∈ Πp

i−1, we must show that L ∈ Σp
i ⇒

∃ NTM with Σp
i−1 oracle: NTM(x) guesses a y and asks Πp

i−1

oracle whether (x , y) /∈ R.

Complexity Classes Oracles & The Polynomial Hierarchy

Main Theorems

Proof (cont.):
If L ∈ Σp

i , we must show the existence or R:

L ∈ Σp
i ⇒ ∃ NTM MK , K ∈ Σp

i−1, which decides L.

K ∈ Σp
i−1 ⇒ ∃S ∈ Πp

i−2 : (z ∈ K ⇔ ∃w : (z ,w) ∈ S).

We must describe a relation R (we know: x ∈ L⇔ accepting
computation of MK (x))

Query Steps: “yes”→ zi has a certificate wi st (zi ,wi) ∈ S .

So, R(x) =“(x , y) ∈ R iff yrecords an accepting computation
of M?on x , together with a certificate wi for each yes query
zi in the computation.”

We must show {x ; y : (x , y) ∈ R} ∈ Πp
i−1:

Check that all steps of M? are legal (poly time).
Check that (zi ,wi) ∈ S (in Πp

i−2, and thus in Πp
i−1).

For all “no” queries z ′i , check z ′i /∈ K (another Πp
i−1).

�

Complexity Classes Oracles & The Polynomial Hierarchy

Main Theorems

Corollary

Let L be a language , and i ≥ 1. L ∈ Πp
i iff there is a polynomially

balanced relation R such that the language {x ; y : (x , y) ∈ R} is in
Σp
i−1 and

L = {x : ∀y , |y | ≤ |x |k , s.t. : (x , y) ∈ R}

Corollary

Let L be a language , and i ≥ 1. L ∈ Σp
i iff there is a polynomially

balanced, polynomially-time decicable (i + 1)-ary relation R such
that:

L = {x : ∃y1∀y2∃y3...Qyi , s.t. : (x , y1, ..., yi) ∈ R}

where the i th quantifier Q is ∀, if i is even, and ∃, if i is odd.

Complexity Classes Oracles & The Polynomial Hierarchy

Main Theorems

Remark

Σp
i = (∃∀∃ · · ·Qi︸ ︷︷ ︸

i quantifiers

/∀∃∀ · · ·Qi︸ ︷︷ ︸
i quantifiers

) Πp
i = (∀∃∀ · · ·Qi︸ ︷︷ ︸

i quantifiers

/∃∀∃ · · ·Qi︸ ︷︷ ︸
i quantifiers

)

Theorem

If for some i ≥ 1, Σp
i = Πp

i , then for all j > i :

Σp
j = Πp

j = ∆p
j = Σp

i

Or, the polynomial hierarchy collapses to the i th level.

Proof: Th.17.9, p.427 in [1]

It suffices to show that: Σp
i = Πp

i ⇒ Σp
i+1 = Σp

i .
Let L ∈ Σp

i+1 ⇒ ∃R ∈ Πp
i : L = {x |∃y : (x , y) ∈ R}

Πp
i = Σp

i ⇒ R ∈ Σp
i

(x , y) ∈ R ⇔ ∃z : (x , y , z) ∈ S , S ∈ Πp
i−1.

So, x ∈ L⇔ ∃y ; z : (x , y , z) ∈ S , S ∈ Πp
i−1, hence L ∈ Σp

i . �

Complexity Classes Oracles & The Polynomial Hierarchy

Main Theorems

Remark

Σp
i = (∃∀∃ · · ·Qi︸ ︷︷ ︸

i quantifiers

/∀∃∀ · · ·Qi︸ ︷︷ ︸
i quantifiers

) Πp
i = (∀∃∀ · · ·Qi︸ ︷︷ ︸

i quantifiers

/∃∀∃ · · ·Qi︸ ︷︷ ︸
i quantifiers

)

Theorem

If for some i ≥ 1, Σp
i = Πp

i , then for all j > i :

Σp
j = Πp

j = ∆p
j = Σp

i

Or, the polynomial hierarchy collapses to the i th level.

Proof: Th.17.9, p.427 in [1]

It suffices to show that: Σp
i = Πp

i ⇒ Σp
i+1 = Σp

i .
Let L ∈ Σp

i+1 ⇒ ∃R ∈ Πp
i : L = {x |∃y : (x , y) ∈ R}

Πp
i = Σp

i ⇒ R ∈ Σp
i

(x , y) ∈ R ⇔ ∃z : (x , y , z) ∈ S , S ∈ Πp
i−1.

So, x ∈ L⇔ ∃y ; z : (x , y , z) ∈ S , S ∈ Πp
i−1, hence L ∈ Σp

i . �

Complexity Classes Oracles & The Polynomial Hierarchy

Main Theorems

Corollary

If P=NP, or even NP=coNP, the Polynomial Hierarchy collapses
to the first level.

QSATi Definition

Given expression φ, with Boolean variables partitioned into i sets
Xi ,is φ satisfied by the overall truth assignment of the expression:

∃X1∀X2∃X3.....QXiφ

where Q is ∃ if i is odd, and ∀ if i is even.

Theorem

For all i ≥ 1 QSATi is Σp
i -complete.

Complexity Classes Oracles & The Polynomial Hierarchy

Main Theorems

Corollary

If P=NP, or even NP=coNP, the Polynomial Hierarchy collapses
to the first level.

QSATi Definition

Given expression φ, with Boolean variables partitioned into i sets
Xi ,is φ satisfied by the overall truth assignment of the expression:

∃X1∀X2∃X3.....QXiφ

where Q is ∃ if i is odd, and ∀ if i is even.

Theorem

For all i ≥ 1 QSATi is Σp
i -complete.

Complexity Classes Oracles & The Polynomial Hierarchy

Main Theorems

Theorem

If there is a PH-complete problem, then the polynomial hierarchy
collapses to some finite level.

Proof: Th.17.11, p.429 in [1]

Let L is PH-complete.

Since L ∈ PH, ∃i ≥ 0 : L ∈ Σp
i .

But any L′ ∈ Σp
i+1 reduces to L.

Since PH is closed under reductions, we imply that L′ ∈ Σp
i ,

so Σp
i = Σp

i+1. �

Theorem

PH ⊆ PSPACE

PH
?
= PSPACE (Open). If it was, then PH has complete

problems, so it collapses to some finite level.

Complexity Classes Oracles & The Polynomial Hierarchy

Main Theorems

Theorem

If there is a PH-complete problem, then the polynomial hierarchy
collapses to some finite level.

Proof: Th.17.11, p.429 in [1]

Let L is PH-complete.

Since L ∈ PH, ∃i ≥ 0 : L ∈ Σp
i .

But any L′ ∈ Σp
i+1 reduces to L.

Since PH is closed under reductions, we imply that L′ ∈ Σp
i ,

so Σp
i = Σp

i+1. �

Theorem

PH ⊆ PSPACE

PH
?
= PSPACE (Open). If it was, then PH has complete

problems, so it collapses to some finite level.

Complexity Classes Oracles & The Polynomial Hierarchy

Main Theorems

Relativized Results

Let’s see how the inclusion of the Polynomial Hierarchy to
Polynomial Space, and the inclusions of each level of PH to the
next relativizes:

PHA 6= PSPACEA relative to some oracle A ⊆ Σ∗.
(Yao 1985, Håstad 1986)

PrA[PHA 6= PSPACEA] = 1
(Cai 1986, Babai 1987)

(∀i ∈ N) Σp,A
i (Σp,A

i+1 relative to some oracle A ⊆ Σ∗.
(Yao 1985, Håstad 1986)

PrA[(∀i ∈ N) Σp,A
i (Σp,A

i+1] = 1
(Rossman-Servedio-Tan, 2015)

Complexity Classes Oracles & The Polynomial Hierarchy

The Complexity of Optimization Problems

Self-Reducibility of SAT

For a Boolean formula φ with n variables and m clauses.

It is easy to see that:�� ��φ ∈ SAT⇔ (φ|x1=0 ∈ SAT) ∨ (φ|x1=1 ∈ SAT)

Thus, we can self-reduce SAT to instances of smaller size.

Self-Reducibility Tree of depth n:

Example

φ(x1, x2)

φ|x1=0

φ|x1=0,x2=0 φ|x1=0,x2=1

φ|x1=1

φ|x1=1,x2=0 φ|x1=1,x2=1

Complexity Classes Oracles & The Polynomial Hierarchy

The Complexity of Optimization Problems

Self-Reducibility of SAT

For a Boolean formula φ with n variables and m clauses.

It is easy to see that:�� ��φ ∈ SAT⇔ (φ|x1=0 ∈ SAT) ∨ (φ|x1=1 ∈ SAT)

Thus, we can self-reduce SAT to instances of smaller size.

Self-Reducibility Tree of depth n:

Example

φ(x1, x2)

φ|x1=0

φ|x1=0,x2=0 φ|x1=0,x2=1

φ|x1=1

φ|x1=1,x2=0 φ|x1=1,x2=1

Complexity Classes Oracles & The Polynomial Hierarchy

The Complexity of Optimization Problems

Self-Reducibility of SAT

Definition (FSAT)

FSAT: Given a Boolean expression φ, if φ is satisfiable then return
a satisfying truth assignment for φ. Otherwise return “no”.

FP is the function analogue of P: it contains functions
computable by a DTM in poly-time.

FSAT ∈ FP⇒ SAT ∈ P.

What about the opposite?

If SAT ∈ P, we can use the self-reducibility property to fix
variables one-by-one, and retrieve a solution.

We only need 2n calls to the alleged poly-time algorithm for
SAT.

Complexity Classes Oracles & The Polynomial Hierarchy

The Complexity of Optimization Problems

Self-Reducibility of SAT

Definition (FSAT)

FSAT: Given a Boolean expression φ, if φ is satisfiable then return
a satisfying truth assignment for φ. Otherwise return “no”.

FP is the function analogue of P: it contains functions
computable by a DTM in poly-time.

FSAT ∈ FP⇒ SAT ∈ P.

What about the opposite?

If SAT ∈ P, we can use the self-reducibility property to fix
variables one-by-one, and retrieve a solution.

We only need 2n calls to the alleged poly-time algorithm for
SAT.

Complexity Classes Oracles & The Polynomial Hierarchy

The Complexity of Optimization Problems

Self-Reducibility of SAT

Definition (FSAT)

FSAT: Given a Boolean expression φ, if φ is satisfiable then return
a satisfying truth assignment for φ. Otherwise return “no”.

FP is the function analogue of P: it contains functions
computable by a DTM in poly-time.

FSAT ∈ FP⇒ SAT ∈ P.

What about the opposite?

If SAT ∈ P, we can use the self-reducibility property to fix
variables one-by-one, and retrieve a solution.

We only need 2n calls to the alleged poly-time algorithm for
SAT.

Complexity Classes Oracles & The Polynomial Hierarchy

The Complexity of Optimization Problems

What about TSP?

We can solve TSP using a hypothetical algorithm for the
NP-complete decision version of TSP:

We can find the cost of the optimum tour by binary search
(in the interval [0, 2n]).

When we find the optimum cost C , we fix it, and start
changing intercity distances one-by one, by setting each
distance to C + 1.

We then ask the NP-oracle if there still is a tour of optimum
cost at most C :

If there is, then this edge is not in the optimum tour.
If there is not, we know that this edge is in the optimum tour.

After at most n2 (polynomial) oracle queries, we can extract
the optimum tour, and thus have the solution to TSP.

Complexity Classes Oracles & The Polynomial Hierarchy

The Complexity of Optimization Problems

What about TSP?

We can solve TSP using a hypothetical algorithm for the
NP-complete decision version of TSP:

We can find the cost of the optimum tour by binary search
(in the interval [0, 2n]).

When we find the optimum cost C , we fix it, and start
changing intercity distances one-by one, by setting each
distance to C + 1.

We then ask the NP-oracle if there still is a tour of optimum
cost at most C :

If there is, then this edge is not in the optimum tour.
If there is not, we know that this edge is in the optimum tour.

After at most n2 (polynomial) oracle queries, we can extract
the optimum tour, and thus have the solution to TSP.

Complexity Classes Oracles & The Polynomial Hierarchy

The Complexity of Optimization Problems

The Classes PNP and FPNP

PSAT is the class of languages decided in pol time with a SAT

oracle (Polynomial number of adaptive queries).

SAT is NP-complete ⇒ PSAT=PNP.

FPNP is the class of functions that can be computed by a
poly-time DTM with a SAT oracle.

FSAT, TSP ∈ FPNP.

Definition (Reductions for Function Problems)

A function problem A reduces to B if there exists R,S ∈ FL such that:

x ∈ A⇒ R(x) ∈ B.

If z is a correct output of R(x), then S(z) is a correct output of x .

Theorem

TSP is FPNP-complete.

Complexity Classes Oracles & The Polynomial Hierarchy

The Complexity of Optimization Problems

The Classes PNP and FPNP

PSAT is the class of languages decided in pol time with a SAT

oracle (Polynomial number of adaptive queries).

SAT is NP-complete ⇒ PSAT=PNP.

FPNP is the class of functions that can be computed by a
poly-time DTM with a SAT oracle.

FSAT, TSP ∈ FPNP.

Definition (Reductions for Function Problems)

A function problem A reduces to B if there exists R,S ∈ FL such that:

x ∈ A⇒ R(x) ∈ B.

If z is a correct output of R(x), then S(z) is a correct output of x .

Theorem

TSP is FPNP-complete.

Complexity Classes Oracles & The Polynomial Hierarchy

The Complexity of Optimization Problems

The Complexity Universe

Randomized Computation Non-Uniform Complexity

Contents

Introduction

Turing Machines

Undecidability

Complexity Classes

Oracles & The Polynomial Hierarchy

Randomized Computation
The map of NP

Non-Uniform Complexity

Interactive Proofs

Inapproximability

Derandomization of Complexity Classes

Counting Complexity

Epilogue

Randomized Computation Non-Uniform Complexity

Examples of Randomized Algorithms

Warmup: Randomized Quicksort

Deterministic Quicksort
Input: A list L of integers;

If n ≤ 1 then return L.
Else {

let i = 1;

let L1 be the sublist of L whose elements are < ai;

let L2 be the sublist of L whose elements are = ai;

let L3 be the sublist of L whose elements are > ai;

Recursively Quicksort L1 and L3;

return L = L1L2L3;

Randomized Computation Non-Uniform Complexity

Examples of Randomized Algorithms

Warmup: Randomized Quicksort

Randomized Quicksort
Input: A list L of integers;

If n ≤ 1 then return L.
Else {

choose a random integer i, 1 ≤ i ≤ n;

let L1 be the sublist of L whose elements are < ai;

let L2 be the sublist of L whose elements are = ai;

let L3 be the sublist of L whose elements are > ai;

Recursively Quicksort L1 and L3;

return L = L1L2L3;

Randomized Computation Non-Uniform Complexity

Examples of Randomized Algorithms

Warmup: Randomized Quicksort

Let Td the max number of comparisons for the Deterministic
Quicksort:

Td(n) ≥ Td(n − 1) +O (n)

⇓

Td(n) = Ω(n2)

Let Tr the expected number of comparisons for the
Randomized Quicksort:

Tr ≤
1

n

n−1∑
j=0

[Tr (j)− Tr (n − 1− j)] +O (n)

⇓

Tr (n) = O (n log n)

Randomized Computation Non-Uniform Complexity

Examples of Randomized Algorithms

Warmup: Randomized Quicksort

Let Td the max number of comparisons for the Deterministic
Quicksort:

Td(n) ≥ Td(n − 1) +O (n)

⇓

Td(n) = Ω(n2)

Let Tr the expected number of comparisons for the
Randomized Quicksort:

Tr ≤
1

n

n−1∑
j=0

[Tr (j)− Tr (n − 1− j)] +O (n)

⇓

Tr (n) = O (n log n)

Randomized Computation Non-Uniform Complexity

Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

1 Two polynomials are equal if they have the same coefficients
for corresponding powers of their variable.

2 A polynomial is identically zero if all its coefficients are equal
to the additive identity element.

3 How we can test if a polynomial is identically zero?

4 We can choose uniformly at random r1, . . . , rn from a set
S ⊆ F.

5 We are wrong with a probability at most:

Theorem (Schwartz-Zippel Lemma)

Let Q(x1, . . . , xn) ∈ F[x1, . . . , xn] be a multivariate polynomial of
total degree d. Fix any finite set S ⊆ F, and let r1, . . . , rn be
chosen indepedently and uniformly at random from S. Then:

Pr[Q(r1, . . . , rn) = 0|Q(x1, . . . , xn) 6= 0] ≤ d

|S |

Randomized Computation Non-Uniform Complexity

Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

1 Two polynomials are equal if they have the same coefficients
for corresponding powers of their variable.

2 A polynomial is identically zero if all its coefficients are equal
to the additive identity element.

3 How we can test if a polynomial is identically zero?
4 We can choose uniformly at random r1, . . . , rn from a set

S ⊆ F.
5 We are wrong with a probability at most:

Theorem (Schwartz-Zippel Lemma)

Let Q(x1, . . . , xn) ∈ F[x1, . . . , xn] be a multivariate polynomial of
total degree d. Fix any finite set S ⊆ F, and let r1, . . . , rn be
chosen indepedently and uniformly at random from S. Then:

Pr[Q(r1, . . . , rn) = 0|Q(x1, . . . , xn) 6= 0] ≤ d

|S |

Randomized Computation Non-Uniform Complexity

Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

Proof:
(By Induction on n)

For n = 1: Pr[Q(r) = 0|Q(x) 6= 0] ≤ d/|S |
For n:

Q(x1, . . . , xn) =
k∑

i=0

x i
1Qi (x2, . . . , xn)

where k ≤ d is the largest exponent of x1 in Q.
deg(Qk) ≤ d − k ⇒ Pr[Qk(r2, . . . , rn) = 0] ≤ (d − k)/|S |
Suppose that Qk(r2, . . . , rn) 6= 0. Then:

q(x1) = Q(x1, r2, . . . , rn) =
k∑

i=0

x i
1Qi (r2, . . . , rn)

deg(q(x1)) = k , and q(x1) 6= 0!

Randomized Computation Non-Uniform Complexity

Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

Proof (cont’d):
The base case now implies that:

Pr[q(r1) = Q(r1, . . . , rn) = 0] ≤ k/|S |

Thus, we have shown the following two equalities:

Pr[Qk(r2, . . . , rn) = 0] ≤ d − k

|S |

Pr[Qk(r1, r2, . . . , rn) = 0|Qk(r2, . . . , rn) 6= 0] ≤ k

|S |

Using the following identity: Pr[E1] ≤ Pr[E1|E2] + Pr[E2] we
obtain that the requested probability is no more than the sum of
the above, which proves our theorem! �

Randomized Computation Non-Uniform Complexity

Computational Model

Probabilistic Turing Machines

A Probabilistic Turing Machine is a TM as we know it, but
with access to a “random source”, that is an extra (read-only)
tape containing random-bits!
Randomization on:

Output (one or two-sided)
Running Time

Definition (Probabilistic Turing Machines)

A Probabilistic Turing Machine is a TM with two transition functions
δ0, δ1. On input x , we choose in each step with probability 1/2 to apply
the transition function δ0 or δ1, indepedently of all previous choices.

We denote by M(x) the random variable corresponding to the
output of M at the end of the process.

For a function T : N→ N, we say that M runs in T (|x |)-time if it
halts on x within T (|x |) steps (regardless of the random choices it
makes).

Randomized Computation Non-Uniform Complexity

Complexity Classes

BPP Class

Definition (BPP Class)

For T : N→ N, let BPTIME[T (n)] the class of languages L such
that there exists a PTM which halts in O (T (|x |)) time on input x ,
and Pr[M(x) = L(x)] ≥ 2/3.
We define:

BPP =
⋃
c∈N

BPTIME[nc]

The class BPP represents our notion of efficient (randomized)
computation!

We can also define BPP using certificates:

Randomized Computation Non-Uniform Complexity

Complexity Classes

BPP Class

Definition (Alternative Definition of BPP)

A language L ∈ BPP if there exists a poly-time TM M and a
polynomial p ∈ poly(n), such that for every x ∈ {0, 1}∗:

Prr∈{0,1}p(n) [M(x , r) = L(x)] ≥ 2

3

P ⊆ BPP

BPP ⊆ EXP

The “P vs BPP” question.

Randomized Computation Non-Uniform Complexity

Quantifier Characterizations

Quantifier Characterizations

Proper formalism (Zachos et al.):

Definition (Majority Quantifier)

Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be a predicate, and ε a rational
number, such that ε ∈

(
0, 1

2

)
. We denote by (∃+y , |y | = k)R(x , y)

the following predicate:

“There exist at least
(

1
2 + ε

)
· 2k strings y of length m

for which R(x , y) holds.”

We call ∃+ the overwhelming majority quantifier.

∃+
r means that the fraction r of the possible certificates of a

certain length satisfy the predicate for the certain input.

Randomized Computation Non-Uniform Complexity

Quantifier Characterizations

Quantifier Characterizations

Definition

We denote as C = (Q1/Q2), where Q1,Q2 ∈ {∃,∀,∃+}, the class
C of languages L satisfying:

x ∈ L⇒ Q1y R(x , y)

x /∈ L⇒ Q2y ¬R(x , y)

P = (∀/∀)

NP = (∃/∀)

coNP = (∀/∃)

BPP = (∃+/∃+) = coBPP

Randomized Computation Non-Uniform Complexity

Quantifier Characterizations

RP Class

In the same way, we can define classes that contain problems
with one-sided error:

Definition

The class RTIME[T (n)] contains every language L for which there
exists a PTM M running in O (T (|x |)) time such that:

x ∈ L⇒ Pr[M(x) = 1] ≥ 2
3

x /∈ L⇒ Pr[M(x) = 0] = 1

We define
RP =

⋃
c∈N

RTIME[nc]

Similarly we define the class coRP.

Randomized Computation Non-Uniform Complexity

Quantifier Characterizations

Quantifier Characterizations

RP ⊆ NP, since every accepting “branch” is a certificate!

RP ⊆ BPP, coRP ⊆ BPP

RP = (∃+/∀)

⊆ (∃/∀) = NP

coRP = (∀/∃+) ⊆ (∀/∃) = coNP

Theorem (Decisive Characterization of BPP)

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀)

Randomized Computation Non-Uniform Complexity

Quantifier Characterizations

Quantifier Characterizations

RP ⊆ NP, since every accepting “branch” is a certificate!

RP ⊆ BPP, coRP ⊆ BPP

RP = (∃+/∀) ⊆ (∃/∀) = NP

coRP = (∀/∃+) ⊆ (∀/∃) = coNP

Theorem (Decisive Characterization of BPP)

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀)

Randomized Computation Non-Uniform Complexity

Quantifier Characterizations

Quantifier Characterizations

RP ⊆ NP, since every accepting “branch” is a certificate!

RP ⊆ BPP, coRP ⊆ BPP

RP = (∃+/∀) ⊆ (∃/∀) = NP

coRP = (∀/∃+) ⊆ (∀/∃) = coNP

Theorem (Decisive Characterization of BPP)

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀)

Randomized Computation Non-Uniform Complexity

Quantifier Characterizations

Quantifier Characterizations

RP ⊆ NP, since every accepting “branch” is a certificate!

RP ⊆ BPP, coRP ⊆ BPP

RP = (∃+/∀) ⊆ (∃/∀) = NP

coRP = (∀/∃+) ⊆ (∀/∃) = coNP

Theorem (Decisive Characterization of BPP)

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀)

Randomized Computation Non-Uniform Complexity

Quantifier Characterizations

Quantifier Characterizations

Proof:

Let L ∈ BPP. Then, by definition, there exists a
polynomial-time computable predicate Q and a polynomial q
such that for all x ’s of length n:

x ∈ L⇒ ∃+y Q(x , y)

x /∈ L⇒ ∃+y ¬Q(x , y)

Swapping Lemma

i ∀y∃+z R(x , y , z)⇒ ∃+C∀y
∨

z∈C R(x , y , z)

ii ∀z∃+y R(x , y , z)⇒ ∀C∃+y
∧

z∈C R(x , y , z)

By the above Lemma: x ∈ L⇒ ∃+z Q(x , z)⇒
∀y∃+z Q(x , y ⊕ z)⇒ ∃+C∀y [∃(z ∈ C) Q(x , y ⊕ z)], where
C denotes (as in the Swapping’s Lemma formulation) a set of
q(n) strings, each of length q(n).

Randomized Computation Non-Uniform Complexity

Quantifier Characterizations

Quantifier Characterizations

Proof (cont’d):

On the other hand, x /∈ L⇒ ∃+y ¬Q(x , z)⇒
∀z∃+y ¬Q(x , y ⊕ z)⇒ ∀C∃+y [∀(z ∈ C) ¬Q(x , y ⊕ z)].

Now, we only have to assure that the appeared predicates
∃z ∈ C Q(x , y ⊕ z) and ∀z ∈ C ¬Q(x , y ⊕ z) are computable
in polynomial time

Recall that in Swapping Lemma’s formulation we demanded
|C | ≤ p(n) and that for each v ∈ C : |v | = p(n). This means
that we seek if a string of polynomial length exists, or if the
predicate holds for all such strings in a set with polynomial
cardinality, procedure which can be surely done in polynomial
time.

Randomized Computation Non-Uniform Complexity

Quantifier Characterizations

Quantifier Characterizations

Proof (cont’d):

Conversely, if L ∈ (∃+∀/∀∃+), for each string w , |w | = 2p(n),
we have w = w1w2, |w1| = |w2| = p(n). Then:
x ∈ L⇒ ∃+y∀z R(x , y , z)⇒ ∃+w R(x ,w1,w2)
x /∈ L⇒ ∀y∃+z R(x , y , z)⇒ ∃+w ¬R(x ,w1,w2)

So, L ∈ BPP. �

The above characterization is decisive, in the sense that if we
replace ∃+ with ∃, the two predicates are still complementary
(i.e. R1 ⇒ ¬R2), so they still define a complexity class.

In the above characterization of BPP, if we replace ∃+ with
∃, we obtain very easily a well-known result:

Corollary (Sipser-Gács Theorem)

BPP ⊆ Σp
2 ∩ Πp

2

Randomized Computation Non-Uniform Complexity

Quantifier Characterizations

ZPP Class

And now something completely different:
What is the random variable was the running time and not
the output?

We say that M has expected running time T (n) if the
expectation E[TM(x)] is at most T (|x |) for every x ∈ {0, 1}∗.
(TM(x) is the running time of M on input x , and it is a random

variable!)

Definition

The class ZTIME[T (n)] contains all languages L for which there
exists a machine M that runs in an expected time O (T (|x |)) such
that for every input x ∈ {0, 1}∗, whenever M halts on x , the
output M(x) it produces is exactly L(x). We define:

ZPP =
⋃
c∈N

ZTIME[nc]

Randomized Computation Non-Uniform Complexity

Quantifier Characterizations

ZPP Class

And now something completely different:
What is the random variable was the running time and not
the output?
We say that M has expected running time T (n) if the
expectation E[TM(x)] is at most T (|x |) for every x ∈ {0, 1}∗.
(TM(x) is the running time of M on input x , and it is a random

variable!)

Definition

The class ZTIME[T (n)] contains all languages L for which there
exists a machine M that runs in an expected time O (T (|x |)) such
that for every input x ∈ {0, 1}∗, whenever M halts on x , the
output M(x) it produces is exactly L(x). We define:

ZPP =
⋃
c∈N

ZTIME[nc]

Randomized Computation Non-Uniform Complexity

Quantifier Characterizations

ZPP Class

The output of a ZPP machine is always correct!

The problem is that we aren’t sure about the running time.

We can easily see that ZPP = RP ∩ coRP.

The next Hasse diagram summarizes the previous inclusions:
(Recall that ∆Σp

2 = Σp
2 ∩ Πp

2 = NPNP ∩ coNPNP)

Randomized Computation Non-Uniform Complexity

Quantifier Characterizations

PSPACE

∆Σp
2

OO

coNP

88

NP

ee

BPP

OO

coRP

77

OO

RP

ff

OO

ZPP

gg 88

P

OO

Randomized Computation Non-Uniform Complexity

Quantifier Characterizations

PSPACE

(∃∀/∀∃) ∩ (∀∃/∃∀)

OO

(∀/∃)

66

(∃/∀)

hh

(∃+/∃+)

OO

(∀/∃+)

66

OO

(∃+/∀)

hh

OO

(∀/∀)

hh 66

Randomized Computation Non-Uniform Complexity

Error Reduction

Error Reduction for BPP

Theorem (Error Reduction for BPP)

Let L ⊆ {0, 1}∗ be a language and suppose that there exists a
poly-time PTM M such that for every x ∈ {0, 1}∗:

Pr[M(x) = L(x)] ≥ 1

2
+ |x |−c

Then, for every constant d > 0, ∃ poly-time PTM M ′ such that for
every x ∈ {0, 1}∗:

Pr[M ′(x) = L(x)] ≥ 1− 2−|x |
d

Randomized Computation Non-Uniform Complexity

Error Reduction

Proof: The machine M ′ does the following:

Run M(x) for every input x for k = 8|x |2c+d times,
and obtain outputs y1, y2, . . . , yk ∈ {0, 1}.
If the majority of these outputs is 1, return 1

Otherwise, return 0.

We define the r.v. Xi for every i ∈ [k] to be 1 if yi = L(x) and 0
otherwise.
X1,X2, . . . ,Xk are indepedent Boolean r.v.’s, with:

E[Xi] = Pr[Xi = 1] ≥ p =
1

2
+ |x |−c

Applying a Chernoff Bound we obtain:

Pr

[
|

k∑
i=1

Xi − pk | > δpk

]
< e−

δ2

4
pk = e

− 1
4|x|2c

1
2

8|x |2c+d

≤ 2−|x |
d

�

Randomized Computation Non-Uniform Complexity

Error Reduction

Intermission: Chernoff Bounds

How many samples do we need in order to estimate µ up to
an error of ±ε with probability at least 1− δ?
Chernoff Bound tells us that this number is O

(
ρ/ε2

)
, where

ρ = log(1/δ).
The probability that k is ρ

√
n far from µn decays

exponentially with ρ.

Randomized Computation Non-Uniform Complexity

Error Reduction

Intermission: Chernoff Bounds

Pr

[
n∑

i=1

Xi ≥ (1 + δ)µ

]
≤
[

eδ

(1 + δ)1+δ

]µ

Pr

[
n∑

i=1

Xi ≤ (1− δ)µ

]
≤
[

e−δ

(1− δ)1−δ

]µ
Other useful form is:

Pr

[
|

n∑
i=1

Xi − µ| ≥ cµ

]
≤ 2e−min{c2/4,c/2}·µ

This probability is bounded by 2−Ω(µ).

Randomized Computation Non-Uniform Complexity

Error Reduction

Error Reduction for BPP

From the above we can obtain the following interesting
corollary:

Corollary

For c > 0, let BPP1/2+n−c denote the class of languages L for
which there is a polynomial-time PTM M satisfying
Pr[M(x) = L(x)] ≥ 1/2 + |x |−c for every x ∈ {0, 1}∗.Then:

BPP1/2+n−c = BPP

Obviously, ∃+ = ∃+
1/2+ε = ∃+

2/3 = ∃+
3/4 = ∃+

0.99 = ∃+
1−2−p(|x|)

Randomized Computation Non-Uniform Complexity

Error Reduction

Semantic vs. Syntactic Classes

Every NPTM defines some language in NP:
x ∈ L⇔ #accepting paths 6= 0

We can get an effective enumeration of all NPTMs, each
deciding an NP language.

But not every NPTM decides a language in RP:
e.g., the NPTM that has exactly one accepting path.

In this case, there is no way to tell whether the machine will
always halt with the certified output. We call these classes
semantic.

So we have:

Syntactic Classes (like P, NP)
Semantic Classes (like RP, BPP, NP ∩ coNP, TFNP)

Randomized Computation Non-Uniform Complexity

Error Reduction

Complete Problems for BPP?

Any syntactic class has a “free” complete problem:

{〈M, x〉 : M ∈M & M(x) = “yes ′′}

where M is the class of TMs of the variant that defines the class

In semantic classes, this complete language is usually
undecidable (Rice’s Theorem).

The defining property of BPTIME machines is semantic!

If finally P = BPP, then BPP will have complete problems!!

For the same reason, in semantic classes we cannot prove
Hierarchy Theorems using Diagonalization.

Randomized Computation Non-Uniform Complexity

Error Reduction

The Class PP

Definition

A language L ∈ PP if there exists an NPTM M, such that for
every x ∈ {0, 1}∗: x ∈ L if and only if more than half of the
computations of M on input x accept.

Or, equivalently:

Definition

A language L ∈ PP if there exists a poly-time TM M and a
polynomial p ∈ poly(n), such that for every x ∈ {0, 1}∗:

x ∈ L⇔
∣∣∣{y ∈ {0, 1}p(|x |) : M(x , y) = 1

}∣∣∣ ≥ 1

2
· 2p(|x |)

Randomized Computation Non-Uniform Complexity

Error Reduction

The Class PP

The defining property of PP is syntactic, any NPTM can
define a language in PP.

Due to the lack of a gap between the two cases, we cannot
amplify the probability with polynomially many repetitions, as
in the case of BPP.

PP is closed under complement.

A breakthrough result of R. Beigel, N. Reingold and D.
Spielman is that PP is closed under intersection!

The syntactic definition of PP gives the possibility for
complete problems:

Consider the problem MAJSAT:
Given a Boolean Expression, is it true that the majority of the
2n truth assignments to its variables (that is, at least 2n−1 + 1
of them) satisfy it?

Randomized Computation Non-Uniform Complexity

Error Reduction

The Class PP

The defining property of PP is syntactic, any NPTM can
define a language in PP.

Due to the lack of a gap between the two cases, we cannot
amplify the probability with polynomially many repetitions, as
in the case of BPP.

PP is closed under complement.

A breakthrough result of R. Beigel, N. Reingold and D.
Spielman is that PP is closed under intersection!

The syntactic definition of PP gives the possibility for
complete problems:

Consider the problem MAJSAT:
Given a Boolean Expression, is it true that the majority of the
2n truth assignments to its variables (that is, at least 2n−1 + 1
of them) satisfy it?

Randomized Computation Non-Uniform Complexity

Error Reduction

The Class PP

Theorem

MAJSAT is PP-complete!

MAJSAT is not likely in NP, since the (obvious) certificate is
not very succinct!

Theorem

NP ⊆ PP ⊆ PSPACE

Proof:
It is easy to see that PP ⊆ PSPACE:
We can simulate any PP machine by enumerating all strings y of
length p(n) and verify whether PP machine accepts. The
PSPACE machine accepts if and only if there are more than
2p(n)−1 such y ’s (by using a counter).

Randomized Computation Non-Uniform Complexity

Error Reduction

The Class PP

Theorem

MAJSAT is PP-complete!

MAJSAT is not likely in NP, since the (obvious) certificate is
not very succinct!

Theorem

NP ⊆ PP ⊆ PSPACE

Proof:
It is easy to see that PP ⊆ PSPACE:
We can simulate any PP machine by enumerating all strings y of
length p(n) and verify whether PP machine accepts. The
PSPACE machine accepts if and only if there are more than
2p(n)−1 such y ’s (by using a counter).

Randomized Computation Non-Uniform Complexity

Error Reduction

The Class PP

Theorem

MAJSAT is PP-complete!

MAJSAT is not likely in NP, since the (obvious) certificate is
not very succinct!

Theorem

NP ⊆ PP ⊆ PSPACE

Proof:
It is easy to see that PP ⊆ PSPACE:
We can simulate any PP machine by enumerating all strings y of
length p(n) and verify whether PP machine accepts. The
PSPACE machine accepts if and only if there are more than
2p(n)−1 such y ’s (by using a counter).

Randomized Computation Non-Uniform Complexity

Error Reduction

The Class PP

Proof (cont’d):
Now, for NP ⊆ PP, let A ∈ NP. That is, ∃p ∈ poly(n) and a
poly-time and balanced predicate R such that:

x ∈ A ⇔ (∃y , |y | = p(|x |)) : R(x , y)

Consider the following TM:

M accepts input (x , by), with |b| = 1 and |y | = p(|x |), if
and only if R(x , y) = 1 or b = 1.

If x ∈ A, then ∃ at least one y s.t. R(x , y).
Thus, Pr[M(x) accepts] ≥ 1/2 + 2−(p(n)+1).

If x /∈ A, then Pr[M(x) accepts] = 1/2.

�

Randomized Computation Non-Uniform Complexity

Error Reduction

Other Results

Theorem

If NP ⊆ BPP, then NP = RP.

Proof:

RP is closed under ≤p
m-reducibility.

It suffices to show that if SAT ∈ BPP, then SAT ∈ RP.

Recall that SAT has the self-reducibility property:
φ(x1, . . . , xn): φ ∈ SAT⇔ (φ|x1=0 ∈ SAT ∨ φ|x1=1 ∈ SAT).

SAT ∈ BPP: ∃ PTM M computing SAT with error probability
bounded by 2−|φ|.

We can use the self-reducibility of SAT to produce a truth
assignment for φ as follows:

Randomized Computation Non-Uniform Complexity

Error Reduction

Other Results

Theorem

If NP ⊆ BPP, then NP = RP.

Proof:

RP is closed under ≤p
m-reducibility.

It suffices to show that if SAT ∈ BPP, then SAT ∈ RP.

Recall that SAT has the self-reducibility property:
φ(x1, . . . , xn): φ ∈ SAT⇔ (φ|x1=0 ∈ SAT ∨ φ|x1=1 ∈ SAT).

SAT ∈ BPP: ∃ PTM M computing SAT with error probability
bounded by 2−|φ|.

We can use the self-reducibility of SAT to produce a truth
assignment for φ as follows:

Randomized Computation Non-Uniform Complexity

Error Reduction

Other Results

Proof (cont’d):

Input: A Boolean formula φ with n variables

If M(φ) = 0 then reject φ;
For i = 1 to n
→ If M(φ|x1=α1,...,xi−1=αi−1,xi=0) = 1 then let αi = 0
→ ElseIf M(φ|x1=α1,...,xi−1=αi−1,xi=1) = 1 then let αi = 1
→ Else reject φ and halt;

If φ|x1=α1,...,xn=αn = 1 then accept F
Else reject F

Note that M1 accepts φ only if a t.a. t(xi) = αi is found.
Therefore, M1 never makes mistakes if φ /∈ SAT.
If φ ∈ SAT, then M rejects φ on each iteration of the loop w.p.
2−|φ|.
So, Pr[M1 accepting x] = (1− 2−|φ|)n, which is greater than 1/2 if
|φ| ≥ n > 1. �

Randomized Computation Non-Uniform Complexity

Error Reduction

Other Results

Proof (cont’d):

Input: A Boolean formula φ with n variables

If M(φ) = 0 then reject φ;
For i = 1 to n
→ If M(φ|x1=α1,...,xi−1=αi−1,xi=0) = 1 then let αi = 0
→ ElseIf M(φ|x1=α1,...,xi−1=αi−1,xi=1) = 1 then let αi = 1
→ Else reject φ and halt;

If φ|x1=α1,...,xn=αn = 1 then accept F
Else reject F

Note that M1 accepts φ only if a t.a. t(xi) = αi is found.
Therefore, M1 never makes mistakes if φ /∈ SAT.
If φ ∈ SAT, then M rejects φ on each iteration of the loop w.p.
2−|φ|.
So, Pr[M1 accepting x] = (1− 2−|φ|)n, which is greater than 1/2 if
|φ| ≥ n > 1. �

Randomized Computation Non-Uniform Complexity

Error Reduction

Relativized Results

Theorem

Relative to a random oracle A, PA = BPPA. That is,

PrA∈{0,1}∗ [P
A = BPPA] = 1

Also,

BPPA (NPA, relative to a random oracle A.

There exists an A such that: PA 6= RPA.

There exists an A such that: RPA 6= coRPA

There exists an A such that: RPA 6= NPA.

Corollary

There exists an A such that:

PA 6= RPA 6= NPA * BPPA

Randomized Computation Non-Uniform Complexity

Error Reduction

Relativized Results

Theorem

Relative to a random oracle A, PA = BPPA. That is,

PrA∈{0,1}∗ [P
A = BPPA] = 1

Also,

BPPA (NPA, relative to a random oracle A.

There exists an A such that: PA 6= RPA.

There exists an A such that: RPA 6= coRPA

There exists an A such that: RPA 6= NPA.

Corollary

There exists an A such that:

PA 6= RPA 6= NPA * BPPA

Randomized Computation Non-Uniform Complexity

Contents

Introduction

Turing Machines

Undecidability

Complexity Classes

Oracles & The Polynomial Hierarchy

Randomized Computation

The map of NP

Non-Uniform Complexity
Interactive Proofs

Inapproximability

Derandomization of Complexity Classes

Counting Complexity

Epilogue

Randomized Computation Non-Uniform Complexity

Boolean Circuits

Boolean Circuits

A Boolean Circuit is a natural model of nonuniform
computation, a generalization of hardware computational
methods.

A non-uniform computational model allows us to use a
different “algorithm” to be used for every input size, in
contrast to the standard (or uniform) Turing Machine model,
where the same T.M. is used on (infinitely many) input sizes.

Each circuit can be used for a fixed input size, which limits or
model.

Randomized Computation Non-Uniform Complexity

Boolean Circuits

Definition (Boolean circuits)

For every n ∈ N an n-input, single output Boolean Circuit C is a
directed acyclic graph with n sources and one sink.

All nonsource vertices are called gates and are labeled with one of ∧
(and), ∨ (or) or ¬ (not).

The vertices labeled with ∧ and ∨ have fan-in (i.e. number or
incoming edges) 2.

The vertices labeled with ¬ have fan-in 1.

The size of C , denoted by |C |, is the number of vertices in it.

For every vertex v of C , we assign a value as follows: for some input
x ∈ {0, 1}n, if v is the i-th input vertex then val(v) = xi , and
otherwise val(v) is defined recursively by applying v ’s logical
operation on the values of the vertices connected to v .

The output C (x) is the value of the output vertex.

The depth of C is the length of the longest directed path from an
input node to the output node.

Randomized Computation Non-Uniform Complexity

Boolean Circuits

To overcome the fixed input length size, we need to allow
families (or sequences) of circuits to be used:

Definition

Let T : N→ N be a function. A T (n)-size circuit family is a
sequence {Cn}n∈N of Boolean circuits, where Cn has n inputs and
a single output, and its size |Cn| ≤ T (n) for every n.

These infinite families of circuits are defined arbitrarily: There
is no pre-defined connection between the circuits, and also we
haven’t any ”guarantee” that we can construct them
efficiently.

Like each new computational model, we can define a
complexity class on it by imposing some restriction on a
complexity measure:

Randomized Computation Non-Uniform Complexity

Boolean Circuits

Definition

We say that a language L is in SIZE(T (n)) if there is a T (n)-size
circuit family {Cn}n∈N, such that ∀x ∈ {0, 1}n:

x ∈ L⇔ Cn(x) = 1

Definition

P/poly is the class of languages that are decidable by polynomial
size circuits families. That is,

P/poly =
⋃
c∈N

SIZE(nc)

Theorem (Nonuniform Hierarchy Theorem)

For every functions T ,T ′ : N→ N with 2n

n > T ′(n) > 10T (n) > n,

SIZE(T (n)) (SIZE(T ′(n))

Randomized Computation Non-Uniform Complexity

TMs taking advice

Turing Machines that take advice

Definition

Let T , a : N→ N. The class of languages decidable by T (n)-time
Turing Machines with a(n) bits of advice, denoted

DTIME (T (n)/a(n))

containts every language L such that there exists a sequence
{an}n∈N of strings, with an ∈ {0, 1}a(n) and a Turing Machine M
satisfying:

x ∈ L⇔ M(x , an) = 1

for every x ∈ {0, 1}n, where on input (x , an) the machine M runs
for at most O(T (n)) steps.

Randomized Computation Non-Uniform Complexity

TMs taking advice

Turing Machines that take advice

Theorem (Alternative Definition of P/poly)

P/poly =
⋃

c,d∈N
DTIME(nc/nd)

Proof: (⊆) Let L ∈ P/poly. Then, ∃{Cn}n∈N : C|x | = L(x).
We can use Cn ’s encoding as an advice string for each n.
(⊇) Let L ∈ DTIME(nc/nd). Then, since CVP is P-complete, we
construct for every n a circuit Dn such that, for
x ∈ {0, 1}n, an ∈ {0, 1}a(n):

Dn(x , an) = M(x , an)

Then, let Cn(x) = Dn(x , an) (We hard-wire the advice string!)
Since a(n) = nd , the circuits have polynomial size. �.

Randomized Computation Non-Uniform Complexity

TMs taking advice

Turing Machines that take advice

Theorem (Alternative Definition of P/poly)

P/poly =
⋃

c,d∈N
DTIME(nc/nd)

Proof: (⊆) Let L ∈ P/poly. Then, ∃{Cn}n∈N : C|x | = L(x).
We can use Cn ’s encoding as an advice string for each n.

(⊇) Let L ∈ DTIME(nc/nd). Then, since CVP is P-complete, we
construct for every n a circuit Dn such that, for
x ∈ {0, 1}n, an ∈ {0, 1}a(n):

Dn(x , an) = M(x , an)

Then, let Cn(x) = Dn(x , an) (We hard-wire the advice string!)
Since a(n) = nd , the circuits have polynomial size. �.

Randomized Computation Non-Uniform Complexity

TMs taking advice

Turing Machines that take advice

Theorem (Alternative Definition of P/poly)

P/poly =
⋃

c,d∈N
DTIME(nc/nd)

Proof: (⊆) Let L ∈ P/poly. Then, ∃{Cn}n∈N : C|x | = L(x).
We can use Cn ’s encoding as an advice string for each n.
(⊇) Let L ∈ DTIME(nc/nd). Then, since CVP is P-complete, we
construct for every n a circuit Dn such that, for
x ∈ {0, 1}n, an ∈ {0, 1}a(n):

Dn(x , an) = M(x , an)

Then, let Cn(x) = Dn(x , an) (We hard-wire the advice string!)
Since a(n) = nd , the circuits have polynomial size. �.

Randomized Computation Non-Uniform Complexity

Relationship among Complexity Classes

Theorem

P (P/poly

For the subset inclusion, recall that CVP is P-complete.

But why proper inclusion?

Consider the following language: U = {1n|n ∈ N}.
U ∈ P/poly.

Now consider this:

UH = {1n|n’s binary expression encodes a pair xM, xy s.t. M(x) ↓}

It is easy to see that UH ∈ P/poly, but....

Randomized Computation Non-Uniform Complexity

Relationship among Complexity Classes

Theorem (Karp-Lipton Theorem)

If NP ⊆ P/poly, then PH = Σp
2 .

Proof Sketch:

It suffices to show that Πp
2 ⊆ Σp

2 .
(Recall that Σp

2 = Πp
2 ⇒ PH = Σp

2)

Let L ∈ Πp
2 . Then, x ∈ L⇒ ∀y ∃z R(x , y , z)︸ ︷︷ ︸

SAT Question

So, we can get a function φ(x , y) ∈ FP s.t. :

x ∈ L⇔ ∀y [φ(x , y) ∈ SAT]

Since SAT ∈ P/poly, ∃{Cn}n∈N s.t. C|φ|(φ(x , y)) = 1 iff φ
satisfiable.

The idea is to nondeterministically guess such a circuit:

Randomized Computation Non-Uniform Complexity

Relationship among Complexity Classes

Theorem (Karp-Lipton Theorem)

If NP ⊆ P/poly, then PH = Σp
2 .

Proof Sketch:

It suffices to show that Πp
2 ⊆ Σp

2 .
(Recall that Σp

2 = Πp
2 ⇒ PH = Σp

2)

Let L ∈ Πp
2 . Then, x ∈ L⇒ ∀y∃z R(x , y , z)

Let L ∈ Πp
2 .

Then, x ∈ L⇒ ∀y ∃z R(x , y , z)︸ ︷︷ ︸
SAT Question

So, we can get a function φ(x , y) ∈ FP s.t. :

x ∈ L⇔ ∀y [φ(x , y) ∈ SAT]

Since SAT ∈ P/poly, ∃{Cn}n∈N s.t. C|φ|(φ(x , y)) = 1 iff φ
satisfiable.

The idea is to nondeterministically guess such a circuit:

Randomized Computation Non-Uniform Complexity

Relationship among Complexity Classes

Theorem (Karp-Lipton Theorem)

If NP ⊆ P/poly, then PH = Σp
2 .

Proof Sketch:

It suffices to show that Πp
2 ⊆ Σp

2 .
(Recall that Σp

2 = Πp
2 ⇒ PH = Σp

2)

Let L ∈ Πp
2 . Then, x ∈ L⇒ ∀y ∃z R(x , y , z)︸ ︷︷ ︸

SAT Question

So, we can get a function φ(x , y) ∈ FP s.t. :

x ∈ L⇔ ∀y [φ(x , y) ∈ SAT]

Since SAT ∈ P/poly, ∃{Cn}n∈N s.t. C|φ|(φ(x , y)) = 1 iff φ
satisfiable.

The idea is to nondeterministically guess such a circuit:

Randomized Computation Non-Uniform Complexity

Relationship among Complexity Classes

Theorem (Karp-Lipton Theorem)

If NP ⊆ P/poly, then PH = Σp
2 .

Proof Sketch:

It suffices to show that Πp
2 ⊆ Σp

2 .
(Recall that Σp

2 = Πp
2 ⇒ PH = Σp

2)

Let L ∈ Πp
2 . Then, x ∈ L⇒ ∀y ∃z R(x , y , z)︸ ︷︷ ︸

SAT Question

So, we can get a function φ(x , y) ∈ FP s.t. :

x ∈ L⇔ ∀y [φ(x , y) ∈ SAT]

Since SAT ∈ P/poly, ∃{Cn}n∈N s.t. C|φ|(φ(x , y)) = 1 iff φ
satisfiable.

The idea is to nondeterministically guess such a circuit:

Randomized Computation Non-Uniform Complexity

Relationship among Complexity Classes

If x ∈ L:
�� ��Since L ∈ Πp

2 , x ∈ L⇒ ∀y [φ(x , y) ∈ SAT]

We will guess a correct C , and ∀y φ(x , y) will be satisfiable,
so C will accept all y ’s:

x ∈ L⇒ ∃C ∀y [C (φ(x , y)) = 1]

If x /∈ L:
�� ��Since L ∈ Πp

2 , x /∈ L⇒ ∃y [φ(x , y) /∈ SAT]

Then, there will be a y0 for which φ(x , y0) is not satisfiable.
So, for all guesses of C , φ(x , y0) will always be rejected:

x /∈ L⇒ ∀C ∃y [C (φ(x , y)) = 0]

That is a Σp
2 question, so L ∈ Σp

2 ⇒ Πp
2 ⊆ Σp

2 . �

Theorem (Meyer’s Theorem)

If EXP ⊆ P/poly, then EXP = Σp
2 .

Randomized Computation Non-Uniform Complexity

Relationship among Complexity Classes

Theorem

BPP (P/poly

Proof: Recall that if L ∈ BPP, then ∃ PTM M such that:

Prr∈{0,1}poly(n) [M(x , r) 6= L(x)] < 2−n

Then, taking the union bound:

Pr [∃x ∈ {0, 1}n : M(x , r) 6= L(x)] = Pr

 ⋃
x∈{0,1}n

M(x , r) 6= L(x)

 ≤
≤

∑
x∈{0,1}n

Pr [M(x , r) 6= L(x)] < 2−n + · · ·+ 2−n = 1

So, ∃rn ∈ {0, 1}poly(n), s.t. ∀x{0, 1}n: M(x , rn) = L(x).
Using {rn}n∈N as advice string, we have the non-uniform machine.

�

Randomized Computation Non-Uniform Complexity

Relationship among Complexity Classes

Definition (Circuit Complexity or Worst-Case Hardness)

For a finite Boolean Function f : {0, 1}n → {0, 1}, we define the
(circuit) complexity of f as the size of the smallest Boolean Circuit
computing f (that is, C (x) = f (x), ∀x ∈ {0, 1}n).

Definition (Average-Case Hardness)

The minimum S such that there is a circuit C of size S such that:

Pr [C (x) = f (x)] ≥ 1

2
+

1

S

is called the (average-case) hardness of f .

Randomized Computation Non-Uniform Complexity

Relationship among Complexity Classes

Hierarchies for Semantic Classes with advice

We have argued why we can’t obtain Hierarchies for semantic
measures using classical diagonalization techniques. But using
small advice we can have the following results:

Theorem ([Bar02], [GST04])

For a, b ∈ R, with 1 ≤ a < b:

BPTIME(na)/1 BPTIME(nb)/1

Theorem ([FST05])

For any 1 ≤ a ∈ R there is a real b > a such that:

RTIME(nb)/1 RTIME(na)/ log(n)1/2a

Randomized Computation Non-Uniform Complexity

Relationship among Complexity Classes

Uniform Families of Circuits

We saw that P/poly contains an undecidable language.
The root of this problem lies in the “weak” definition of such
families, since it suffices that ∃ a circuit family for L.
We haven’t a way (or an algorithm) to construct such a family.
So, may be useful to restrict or attention to families we can
construct efficiently:

Theorem (P-Uniform Families)

A circuit family {Cn}n∈N is P-uniform if there is a polynomial-time
T.M. that on input 1n outputs the description of the circuit Cn.

Theorem

A language L is computable by a P-uniform circuit family iff L ∈ P.

We can define in the same way logspace-uniform circuit
families, constructed by logspace-TMs.

Randomized Computation Non-Uniform Complexity

Parallel Computations

Parallel Computations

Circuits are a useful model for parallel computations.

Number of processors ∼ Circuit Size
Parallel time ∼ Circuit Depth

Definition (Class NC)

A language L is in NCi if L is decided by a logspace-uniform circuit
family {Cn}n∈N, where Cn has gates with fan-in 2, poly(n) size
and O

(
logi n

)
depth.

NC =
⋃
i∈N

NCi

Randomized Computation Non-Uniform Complexity

Parallel Computations

Parallel Computations

Circuits are a useful model for parallel computations.

Number of processors ∼ Circuit Size
Parallel time ∼ Circuit Depth

Definition (Class NC)

A language L is in NCi if L is decided by a logspace-uniform circuit
family {Cn}n∈N, where Cn has gates with fan-in 2, poly(n) size
and O

(
logi n

)
depth.

NC =
⋃
i∈N

NCi

Randomized Computation Non-Uniform Complexity

Parallel Computations

Parallel Computations

Definition (Class AC)

A language L is in ACi if L is decided by a logspace-uniform circuit
family {Cn}n∈N, where Cn has gates with unbounded fan-in,
poly(n) size and O

(
logi n

)
depth.

AC =
⋃
i∈N

ACi

NCi ⊆ ACi ⊆ NCi+1, for all i ≥ 0

NC ⊆ P

NC1 ⊆ L ⊆ NL ⊆ NC2

NCi ⊆ DSPACE[logi n], for all i ≥ 0

PARITY ∈ NC1.

Randomized Computation Non-Uniform Complexity

The Quest for Lower Bounds

Circuit Lower Bounds

The significance of proving lower bounds for this
computational model is related to the famous ”P vs NP”
problem, since:

NPr P/poly 6= ∅ ⇒ P 6= NP

But...after decades of efforts, The best lower bound for an
NP language is 5n − o(n), proved very recently (2005).

There are better lower bounds for some special cases, i.e.
some restricted classes of circuits, such as: bounded depth
circuits, monotone circuits, and bounded depth circuits with
”counting” gates.

Randomized Computation Non-Uniform Complexity

The Quest for Lower Bounds

Reminder

Let PAR : {0, 1}n → {0, 1} be the parity function, which outputs
the modulo 2 sum of an n-bit input. That is:

PAR(x1, ..., xn) ≡
n∑

i=1

xi (mod 2)

Theorem (Furst, Saxe, Sipser, Ajtai)

PARITY /∈ AC0

The above result (improved by Håstad and Yao) gives a
relatively tight lower bound of exp

(
Ω(n1/(d−1))

)
, on the size

of n-input PAR circuits of depth d .

Corollary

NC0 6= AC0 6= NC1

Randomized Computation Non-Uniform Complexity

The Quest for Lower Bounds

Definition

A language L is in ACC0[m1, . . . ,mk] if there is a circuit family
{Cn}n∈N where Cn has gates with unbounded fan-in, poly(n) size
and O (1) depth, and MODm1 , . . . ,MODmk

gates accepting L.

ACC0 =
⋃

m1,...,mk

ACC0[m1, . . . ,mk]

A MODm gate outputs 0 if the sum of its inputs is 0modm,
and 1 otherwise.

Theorem (Razborov-Smolensky,1987)

For district primes p and q, the function MODp is not in ACC0[q].

Theorem (Ryan Williams, 2010)

NEXP * ACC0

Randomized Computation Non-Uniform Complexity

The Quest for Lower Bounds

Definition

For x , y ∈ {0, 1}n, we denote x � y if every bit that is 1 in x is
also 1 in y . A function f : {0, 1}n → {0, 1} is monotone if
f (x) ≤ f (y) for every x � y .

Definition

A Boolean Circuit is monotone if it contains only AND and OR
gates, and no NOT gates. Such a circuit can only compute
monotone functions.

Theorem (Razborov, Andreev, Alon, Boppana)

Denote by CLIQUEk,n : {0, 1}(
n
2) → {0, 1} the function that on

input an adjacency matrix of an n-vertex graph G outputs 1 iff G
contains an k-clique. There exists some constant ε > 0 such that
for every k ≤ n1/4, there is no monotone circuit of size less than

2ε
√
k that computes CLIQUEk,n.

Randomized Computation Non-Uniform Complexity

The Quest for Lower Bounds

This is a significant lower bound (2Ω(n1/8)).

The importance of the above theorem lies on the fact that
there was some alleged connection between monotone and
non-monotone circuit complexity (e.g. that they would be
polynomially related). Unfortunately, Éva Tardos proved in
1988 that the gap between the two complexities is
exponential.

Where is the problem finally?
Today, we know that a result for a lower bound using such
techniques would imply the inversion of strong one-way
functions:

Randomized Computation Non-Uniform Complexity

Epilogue: What’s Wrong?

*Natural Proofs [Razborov, Rudich 1994]

Definition

Let P be the predicate:

”A Boolean function f : {0, 1}n → {0, 1} doesn’t have nc -sized
circuits for some c ≥ 1.”

P(f) = 0,∀f ∈ SIZE(nc) for a c ≥ 1. We call this nc -usefulness.

A predicate P is natural if:

There is an algorithm M ∈ E such that for a function
g : {0, 1}n → {0, 1}: M(g) = P(g).

For a random function g : Pr [P(g) = 1] ≥ 1
n

Theorem

If strong one-way functions exist, then there exists a constant c ∈ N such
that there is no nc -useful natural predicate P.

Interactive Proofs Counting Complexity

Contents

Introduction

Turing Machines

Undecidability

Complexity Classes

Oracles & The Polynomial Hierarchy

Randomized Computation

The map of NP

Non-Uniform Complexity

Interactive Proofs
Inapproximability

Derandomization of Complexity Classes

Counting Complexity

Epilogue

Interactive Proofs Counting Complexity

Introduction

Introduction

“Maybe Fermat had a proof! But an important party was
certainly missing to make the proof complete: the
verifier. Each time rumor gets around that a student
somewhere proved P = NP, people ask “Has Karp seen
the proof?” (they hardly even ask the student’s name).
Perhaps the verifier is most important that the prover.”
(from [BM88])

The notion of a mathematical proof is related to the
certificate definition of NP.

We enrich this scenario by introducing interaction in the
basic scheme:
The person (or TM) who verifies the proof asks the person
who provides the proof a series of ”queries”, before he is
convinced, and if he is, he provide the certificate.

Interactive Proofs Counting Complexity

Introduction

Introduction

The first person will be called Verifier, and the second
Prover.

In our model of computation, Prover and Verifier are
interacting Turing Machines.

We will categorize the various proof systems created by using:

various TMs (nondeterministic, probabilistic etc)
the information exchanged (private/public coins etc)
the number of TMs (IPs, MIPs,...)

Interactive Proofs Counting Complexity

Introduction

Warmup: Interactive Proofs with deterministic Verifier

Definition (Deterministic Proof Systems)

We say that a language L has a k-round deterministic interactive
proof system if there is a deterministic Turing Machine V that on
input x , α1, α2, . . . , αi runs in time polynomial in |x |, and can have
a k-round interaction with any TM P such that:

x ∈ L⇒ ∃P : 〈V ,P〉(x) = 1 (Completeness)

x /∈ L⇒ ∀P : 〈V ,P〉(x) = 0 (Soundness)

The class dIP contains all languages that have a k-round
deterministic interactive proof system, where p is polynomial in the
input length.

〈V ,P〉(x) denotes the output of V at the end of the interaction
with P on input x , and αi the exchanged strings.

The above definition does not place limits on the computational
power of the Prover!

Interactive Proofs Counting Complexity

Introduction

Warmup: Interactive Proofs with deterministic Verifier

But...

Theorem

dIP = NP

Proof: Trivially, NP ⊆ dIP. X
Let L ∈ dIP:

A certificate is a transcript (α1, . . . , αk) causing V to accept,
i.e. V (x , α1, . . . , αk) = 1.
We can efficiently check if V (x) = α1, V (x , α1, α2) = α3

etc...
If x ∈ L such a transcript exists!
Conversely, if a transcript exists, we can define define a proper
P to satisfy: P(x , α1) = α2, P(x , α1, α2, α3) = α4 etc., so
that 〈V ,P〉(x) = 1, so x ∈ L.

So L ∈ NP! �

Interactive Proofs Counting Complexity

The class IP

Probabilistic Verifier: The Class IP

We saw that if the verifier is a simple deterministic TM, then
the interactive proof system is described precisely by the class
NP.

Now, we let the verifier be probabilistic, i.e. the verifier’s
queries will be computed using a probabilistic TM:

Definition (Goldwasser-Micali-Rackoff)

For an integer k ≥ 1 (that may depend on the input length), a
language L is in IP[k] if there is a probabilistic polynomial-time
T.M. V that can have a k-round interaction with a T.M. P such
that:

x ∈ L⇒ ∃P : Pr [〈V ,P〉(x) = 1] ≥ 2
3 (Completeness)

x /∈ L⇒ ∀P : Pr [〈V ,P〉(x) = 1] ≤ 1
3 (Soundness)

Interactive Proofs Counting Complexity

The class IP

Probabilistic Verifier: The Class IP

Definition

We also define:
IP =

⋃
c∈N

IP[nc]

The “output” 〈V ,P〉(x) is a random variable.

We’ll see that IP is a very large class! (⊇ PH)

As usual, we can replace the completeness parameter 2/3 with
1− 2−n

s
and the soundness parameter 1/3 by 2−n

s
, without

changing the class for any fixed constant s > 0.

We can also replace the completeness constant 2/3 with 1
(perfect completeness), without changing the class, but
replacing the soundness constant 1/3 with 0, is equivalent
with a deterministic verifier, so class IP collapses to NP.

Interactive Proofs Counting Complexity

The class IP

Interactive Proof for Graph Non-Isomorphism

Definition

Two graphs G1 and G2 are isomorphic, if there exists a
permutation π of the labels of the nodes of G1, such that
π(G1) = G2. If G1 and G2 are isomorphic, we write G1

∼= G2.

GI: Given two graphs G1,G2, decide if they are isomorphic.

GNI: Given two graphs G1,G2, decide if they are not
isomorphic.

Obviously, GI ∈ NP and GNI ∈ coNP.

This proof system relies on the Verifier’s access to a private
random source which cannot be seen by the Prover, so we
confirm the crucial role the private coins play.

Interactive Proofs Counting Complexity

The class IP

Interactive Proof for Graph Non-Isomorphism

Verifier: Picks i ∈ {1, 2} uniformly at random.
Then, it permutes randomly the vertices of Gi to get a
new graph H. Is sends H to the Prover.
Prover: Identifies which of G1, G2 was used to produce H.
Let Gj be the graph. Sends j to V .
Verifier: Accept if i = j . Reject otherwise.

If G1 � G2, then the powerfull prover can (nondeterministically)
guess which one of the two graphs is isomprphic to H, and so the
Verifier accepts with probability 1.

If G1
∼= G2, the prover can’t distinguish the two graphs, since a

random permutation of G1 looks exactly like a random permutation

of G2. So, the best he can do is guess randomly one, and the

Verifier accepts with probability (at most) 1/2, which can be

reduced by additional repetitions.

Interactive Proofs Counting Complexity

The class IP

Interactive Proof for Graph Non-Isomorphism

Verifier: Picks i ∈ {1, 2} uniformly at random.
Then, it permutes randomly the vertices of Gi to get a
new graph H. Is sends H to the Prover.
Prover: Identifies which of G1, G2 was used to produce H.
Let Gj be the graph. Sends j to V .
Verifier: Accept if i = j . Reject otherwise.

If G1 � G2, then the powerfull prover can (nondeterministically)
guess which one of the two graphs is isomprphic to H, and so the
Verifier accepts with probability 1.

If G1
∼= G2, the prover can’t distinguish the two graphs, since a

random permutation of G1 looks exactly like a random permutation

of G2. So, the best he can do is guess randomly one, and the

Verifier accepts with probability (at most) 1/2, which can be

reduced by additional repetitions.

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Babai’s Arthur-Merlin Games

Definition (Extended (FGMSZ89))

An Arhur-Merlin Game is a pair of interactive TMs A and M, and
a predicate R such that:

On input x , exactly 2q(|x |) messages of length m(|x |) are
exchanged, q,m ∈ poly(|x |).

A goes first, and at iteration 1 ≤ i ≤ q(|x |) chooses u.a.r. a
string ri of length m(|x |).

M’s reply in the i th iteration is yi = M(x , r1, . . . , ri) (M’s
strategy).

For every M ′, a conversation between A and M ′ on input x
is r1y1r2y2 · · · rq(|x |)yq(|x |).

The set of all conversations is denoted by CONV M′
x ,

|CONV M′
x | = 2q(|x |)m(|x |).

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Babai’s Arthur-Merlin Games

Definition (cont’d)

The predicate R maps the input x and a conversation to a
Boolean value.

The set of accepting conversations is denoted by ACCR,M
x ,

and is the set:

{r1 · · · rq|∃y1 · · · yq s.t. r1y1 · · · rqyq ∈ CONV M
x ∧R(r1y1 · · · rqyq) = 1}

A language L has an Arthur-Merlin proof system if:

There exists a strategy for M, such that for all x ∈ L:
ACCR,M

x

CONVM
x
≥ 2

3 (Completeness)

For every strategy for M, and for every x /∈ L:
ACCR,M

x

CONVM
x
≤ 1

3

(Soundness)

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Definitions

So, with respect to the previous IP definition:

Definition

For every k, the complexity class AM[k] is defined as a subset to
IP[k] obtained when we restrict the verifier’s messages to be
random bits, and not allowing it to use any other random bits that
are not contained in these messages.
We denote AM ≡ AM[2].

Merlin → Prover

Arthur → Verifier
Also, the class MA consists of all languages L, where there’s an
interactive proof for L in which the prover first sending a message,
and then the verifier is ”tossing coins” and computing its decision
by doing a deterministic polynomial-time computation involving the
input, the message and the random output.

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Definitions

So, with respect to the previous IP definition:

Definition

For every k, the complexity class AM[k] is defined as a subset to
IP[k] obtained when we restrict the verifier’s messages to be
random bits, and not allowing it to use any other random bits that
are not contained in these messages.
We denote AM ≡ AM[2].

Merlin → Prover

Arthur → Verifier

Also, the class MA consists of all languages L, where there’s an
interactive proof for L in which the prover first sending a message,
and then the verifier is ”tossing coins” and computing its decision
by doing a deterministic polynomial-time computation involving the
input, the message and the random output.

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Definitions

So, with respect to the previous IP definition:

Definition

For every k, the complexity class AM[k] is defined as a subset to
IP[k] obtained when we restrict the verifier’s messages to be
random bits, and not allowing it to use any other random bits that
are not contained in these messages.
We denote AM ≡ AM[2].

Merlin → Prover

Arthur → Verifier
Also, the class MA consists of all languages L, where there’s an
interactive proof for L in which the prover first sending a message,
and then the verifier is ”tossing coins” and computing its decision
by doing a deterministic polynomial-time computation involving the
input, the message and the random output.

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Public vs. Private Coins

Theorem

GNI ∈ AM[2]

Theorem

For every p ∈ poly(n):

IP (p(n)) = AM(p(n) + 2)

So,
IP[poly] = AM[poly]

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

MA ⊆ AM

MA[1] = NP, AM[1] = BPP

AM could be intuitively approached as the probabilistic
version of NP (usually denoted as AM = BP·NP).

AM ⊆ Πp
2 and MA ⊆ Σp

2 ∩ Πp
2 .

MA ⊆ NPBPP, MABPP = MA, AMBPP = AM and
AM∆Σp

1 = AMNP∩coNP = AM

If we consider the complexity classes AM[k] (the languages
that have Arthur-Merlin proof systems of a bounded number
of rounds, they form an hierarchy:

AM[0] ⊆ AM[1] ⊆ · · · ⊆ AM[k] ⊆ AM[k + 1] ⊆ · · ·

Are these inclusions proper ? ? ?

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

NP //MA //

$$

Σp
2

AM

��

P //

EE

��

BPP

CC

��

coAM

HH

coNP // coMA //

::

Πp
2

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Proper formalism (Zachos et al.):

Definition (Majority Quantifier)

Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be a predicate, and ε a rational
number, such that ε ∈

(
0, 1

2

)
. We denote by (∃+y , |y | = k)R(x , y)

the following predicate:

“There exist at least
(

1
2 + ε

)
· 2k strings y of length m

for which R(x , y) holds.”

We call ∃+ the overwhelming majority quantifier.

∃+
r means that the fraction r of the possible certificates of a

certain length satisfy the predicate for the certain input.

Obviously, ∃+ = ∃+
1/2+ε = ∃+

2/3 = ∃+
3/4 = ∃+

0.99 = ∃+
1−2−p(|x|)

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Definition

We denote as C = (Q1/Q2), where Q1,Q2 ∈ {∃,∀,∃+}, the class
C of languages L satisfying:

x ∈ L⇒ Q1y R(x , y)

x /∈ L⇒ Q2y ¬R(x , y)

So: P = (∀/∀), NP = (∃/∀), coNP = (∀/∃)
BPP = (∃+/∃+), RP = (∃+/∀), coRP = (∀/∃+)

Arthur-Merlin Games

AM = BP ·NP = (∃+∃/∃+∀)

MA = N · BPP = (∃∃+/∀∃+)

Similarly: AMA = (∃+∃∃+/∃+∀∃+) etc.

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Definition

We denote as C = (Q1/Q2), where Q1,Q2 ∈ {∃,∀,∃+}, the class
C of languages L satisfying:

x ∈ L⇒ Q1y R(x , y)

x /∈ L⇒ Q2y ¬R(x , y)

So: P = (∀/∀), NP = (∃/∀), coNP = (∀/∃)
BPP = (∃+/∃+), RP = (∃+/∀), coRP = (∀/∃+)

Arthur-Merlin Games

AM = BP ·NP = (∃+∃/∃+∀)

MA = N · BPP = (∃∃+/∀∃+)

Similarly: AMA = (∃+∃∃+/∃+∀∃+) etc.

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem

i MA = (∃∀/∀∃+)

ii AM = (∀∃/∃+∀)

Proof:

Lemma

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀) (1) (BPP-Theorem)

(∃∀/∀∃+) ⊆ (∀∃/∃+∀) (2)

i) MA = N · BPP = (∃∃+/∀∃+)
(1)
= (∃∃+∀/∀∀∃+) ⊆ (∃∀/∀∃+)

(the last inclusion holds by quantifier contraction). Also,
(∃∀/∀∃+) ⊆ (∃∃+/∀∃+) = MA.
ii) Similarly,
AM = BP ·NP = (∃+∃/∃+∀) = (∀∃+∃/∃+∀∀) ⊆ (∀∃/∃+∀).
Also, (∀∃/∃+∀) ⊆ (∃+∃/∃+∀) = AM.

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem

i MA = (∃∀/∀∃+)

ii AM = (∀∃/∃+∀)

Proof:

Lemma

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀) (1) (BPP-Theorem)

(∃∀/∀∃+) ⊆ (∀∃/∃+∀) (2)

i) MA = N · BPP = (∃∃+/∀∃+)
(1)
= (∃∃+∀/∀∀∃+) ⊆ (∃∀/∀∃+)

(the last inclusion holds by quantifier contraction). Also,
(∃∀/∀∃+) ⊆ (∃∃+/∀∃+) = MA.
ii) Similarly,
AM = BP ·NP = (∃+∃/∃+∀) = (∀∃+∃/∃+∀∀) ⊆ (∀∃/∃+∀).
Also, (∀∃/∃+∀) ⊆ (∃+∃/∃+∀) = AM.

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem

i MA = (∃∀/∀∃+)

ii AM = (∀∃/∃+∀)

Proof:

Lemma

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀) (1) (BPP-Theorem)

(∃∀/∀∃+) ⊆ (∀∃/∃+∀) (2)

i) MA = N · BPP = (∃∃+/∀∃+)
(1)
= (∃∃+∀/∀∀∃+) ⊆ (∃∀/∀∃+)

(the last inclusion holds by quantifier contraction). Also,
(∃∀/∀∃+) ⊆ (∃∃+/∀∃+) = MA.
ii) Similarly,
AM = BP ·NP = (∃+∃/∃+∀) = (∀∃+∃/∃+∀∀) ⊆ (∀∃/∃+∀).
Also, (∀∃/∃+∀) ⊆ (∃+∃/∃+∀) = AM.

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem

i MA = (∃∀/∀∃+)

ii AM = (∀∃/∃+∀)

Proof:

Lemma

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀) (1) (BPP-Theorem)

(∃∀/∀∃+) ⊆ (∀∃/∃+∀) (2)

i) MA = N · BPP = (∃∃+/∀∃+)
(1)
= (∃∃+∀/∀∀∃+) ⊆ (∃∀/∀∃+)

(the last inclusion holds by quantifier contraction). Also,
(∃∀/∀∃+) ⊆ (∃∃+/∀∃+) = MA.
ii) Similarly,
AM = BP ·NP = (∃+∃/∃+∀) = (∀∃+∃/∃+∀∀) ⊆ (∀∃/∃+∀).
Also, (∀∃/∃+∀) ⊆ (∃+∃/∃+∀) = AM.

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem

MA ⊆ AM

Proof:
Obvious from (2): (∃∀/∀∃+) ⊆ (∀∃/∃+∀). �

Theorem

i AM ⊆ Πp
2

ii MA ⊆ Σp
2 ∩ Πp

2

Proof:
i) AM = (∀∃/∃+∀) ⊆ (∀∃/∃∀) = Πp

2

ii) MA = (∃∀/∀∃+) ⊆ (∃∀/∀∃) = Σp
2 , and

MA ⊆ AM⇒MA ⊆ Πp
2 . So, MA ⊆ Σp

2 ∩ Πp
2 . �

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For t(n) ≥ 2:
AM[2t(n)] = AM[t(n)]

The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every k ≥ 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (∃∃+∃/∀∃+∀)
(1)

⊆ (∃∃+∀∃/∀∀∃+∀) ⊆ (∃∀∃/∀∃+∀)
(2)

⊆
⊆ (∀∃∃/∃+∀∀) ⊆ (∀∃/∃+∀) = AM

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For t(n) ≥ 2:
AM[2t(n)] = AM[t(n)]

The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every k ≥ 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (∃∃+∃/∀∃+∀)
(1)

⊆ (∃∃+∀∃/∀∀∃+∀) ⊆ (∃∀∃/∀∃+∀)
(2)

⊆
⊆ (∀∃∃/∃+∀∀) ⊆ (∀∃/∃+∀) = AM

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For t(n) ≥ 2:
AM[2t(n)] = AM[t(n)]

The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every k ≥ 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (∃∃+∃/∀∃+∀)
(1)

⊆ (∃∃+∀∃/∀∀∃+∀) ⊆ (∃∀∃/∀∃+∀)
(2)

⊆
⊆ (∀∃∃/∃+∀∀) ⊆ (∀∃/∃+∀) = AM

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For t(n) ≥ 2:
AM[2t(n)] = AM[t(n)]

The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every k ≥ 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (∃∃+∃/∀∃+∀)
(1)

⊆ (∃∃+∀∃/∀∀∃+∀) ⊆ (∃∀∃/∀∃+∀)
(2)

⊆
⊆ (∀∃∃/∃+∀∀) ⊆ (∀∃/∃+∀) = AM

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For t(n) ≥ 2:
AM[2t(n)] = AM[t(n)]

The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every k ≥ 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (∃∃+∃/∀∃+∀)
(1)

⊆ (∃∃+∀∃/∀∀∃+∀) ⊆ (∃∀∃/∀∃+∀)
(2)

⊆
⊆ (∀∃∃/∃+∀∀) ⊆ (∀∃/∃+∀) = AM

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For t(n) ≥ 2:
AM[2t(n)] = AM[t(n)]

The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)

For every k ≥ 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (∃∃+∃/∀∃+∀)
(1)

⊆ (∃∃+∀∃/∀∀∃+∀) ⊆ (∃∀∃/∀∃+∀)
(2)

⊆
⊆ (∀∃∃/∃+∀∀) ⊆ (∀∃/∃+∀) = AM

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Proof:

The general case is implied by the generalization of
BPP-Theorem (1) & (2):

(Q1∃+Q2/Q3∃+Q4) = (Q1∃+∀Q2/Q3∀∃+Q4) =
(Q1∀∃+Q2/Q3∃+∀Q4) (1′)

(Q1∃∀Q2/Q3∀∃+Q4) ⊆ (Q1∀∃Q2/Q3∃+∀Q4) (2′)

Using the above we can easily see that the Arthur-Merlin
Hierarchy collapses at the second level. (Try it!) �

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem (BHZ)

If coNP ⊆ AM (that is, if GI is NP-complete), then the
Polynomial Hierarchy collapses at the second level, and
PH = Σp

2 = AM.

Proof: Our hypothesis states: (∀/∃) ⊆ (∀∃/∃+∀)
Then:

Σp
2 = (∃∀/∀∃)

Hyp.
⊆ (∃∀∃/∀∃+∀)

(2)

⊆ (∀∃∃/∃+∀∀) = (∀∃/∃+∀) =
AM ⊆ (∀∃/∃∀) = Πp

2 . �

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem (BHZ)

If coNP ⊆ AM (that is, if GI is NP-complete), then the
Polynomial Hierarchy collapses at the second level, and
PH = Σp

2 = AM.

Proof: Our hypothesis states: (∀/∃) ⊆ (∀∃/∃+∀)
Then:

Σp
2 = (∃∀/∀∃)

Hyp.
⊆ (∃∀∃/∀∃+∀)

(2)

⊆ (∀∃∃/∃+∀∀) = (∀∃/∃+∀) =
AM ⊆ (∀∃/∃∀) = Πp

2 . �

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem (BHZ)

If coNP ⊆ AM (that is, if GI is NP-complete), then the
Polynomial Hierarchy collapses at the second level, and
PH = Σp

2 = AM.

Proof: Our hypothesis states: (∀/∃) ⊆ (∀∃/∃+∀)
Then:

Σp
2 = (∃∀/∀∃)

Hyp.
⊆ (∃∀∃/∀∃+∀)

(2)

⊆ (∀∃∃/∃+∀∀) = (∀∃/∃+∀) =
AM ⊆ (∀∃/∃∀) = Πp

2 . �

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem (BHZ)

If coNP ⊆ AM (that is, if GI is NP-complete), then the
Polynomial Hierarchy collapses at the second level, and
PH = Σp

2 = AM.

Proof: Our hypothesis states: (∀/∃) ⊆ (∀∃/∃+∀)
Then:

Σp
2 = (∃∀/∀∃)

Hyp.
⊆ (∃∀∃/∀∃+∀)

(2)

⊆ (∀∃∃/∃+∀∀) = (∀∃/∃+∀) =
AM ⊆ (∀∃/∃∀) = Πp

2 . �

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem (BHZ)

If coNP ⊆ AM (that is, if GI is NP-complete), then the
Polynomial Hierarchy collapses at the second level, and
PH = Σp

2 = AM.

Proof: Our hypothesis states: (∀/∃) ⊆ (∀∃/∃+∀)
Then:

Σp
2 = (∃∀/∀∃)

Hyp.
⊆ (∃∀∃/∀∃+∀)

(2)

⊆ (∀∃∃/∃+∀∀) = (∀∃/∃+∀) =
AM ⊆ (∀∃/∃∀) = Πp

2 . �

Interactive Proofs Counting Complexity

Arthur-Merlin Games

Measure One Results

PA 6= NPA, PA = BPPA, NPA = AMA, for almost all oracles A.

Definition

almostC =
{

L|PrA∈{0,1}∗
[
L ∈ CA

]
= 1
}

Theorem

i almostP = BPP [BG81]

ii almostNP = AM [NW94]

iii almostPH = PH

Theorem (Kurtz)

For almost every pair of oracles B,C :

i BPP = PB ∩ PC

ii almostNP = NPB ∩NPC

Interactive Proofs Counting Complexity

Arithmetization

The power of Interactive Proofs

As we saw, Interaction alone does not gives us computational
capabilities beyond NP.

Also, Randomization alone does not give us significant power
(we know that BPP ⊆ Σp

2 , and many researchers believe that
P = BPP, which holds under some plausible assumptions).

How much power could we get by their combination?

We know that for fixed k ∈ N, IP[k] collapses to

IP[k] = AM = BP ·NP

a class that is “close” to NP (under similar assumptions, the
non-deterministic analogue of P vs. BPP is NP vs. AM.)

If we let k be a polynomial in the size of the input, how much
more power could we get?

Interactive Proofs Counting Complexity

Shamir’s Theorem

The power of Interactive Proofs

Surprisingly:

Theorem (L.F.K.N. & Shamir)

IP = PSPACE

Interactive Proofs Counting Complexity

Shamir’s Theorem

The power of Interactive Proofs

Lemma 1

IP ⊆ PSPACE

Proof:

If the Prover is an NP, or even a PSPACE machine, the
lemma holds.

But what if we have an omnipotent prover?

On any input, the Prover chooses its messages in order to
maximize the probability of V’s acceptance!

We consider the prover as an oracle, by assuming wlog that
his responses are one bit at a time.

The protocol has polynomially many rounds (say N=nc),
which bounds the messages and the random bits used.

So, the protocol is described by a computation tree T :

Interactive Proofs Counting Complexity

Shamir’s Theorem

The power of Interactive Proofs

Lemma 1

IP ⊆ PSPACE

Proof:

If the Prover is an NP, or even a PSPACE machine, the
lemma holds.

But what if we have an omnipotent prover?

On any input, the Prover chooses its messages in order to
maximize the probability of V’s acceptance!

We consider the prover as an oracle, by assuming wlog that
his responses are one bit at a time.

The protocol has polynomially many rounds (say N=nc),
which bounds the messages and the random bits used.

So, the protocol is described by a computation tree T :

Interactive Proofs Counting Complexity

Shamir’s Theorem

The power of Interactive Proofs

Proof(cont’d):

Vertices of T are V ’s configurations.
Random Branches (queries to the random tape)
Oracle Branches (queries to the prover)
For each fixed P, the tree TP can be pruned to obtain only
random branches.
Let Propt [E | F] the conditional probability given that the
prover always behaves optimally.
The acceptance condition is mN = 1.
For yi ∈ {0, 1}N and zi ∈ {0, 1} let:

Ri =
i∧

j=1

mj = yj

Si =
i∧

j=1

lj = zj

Interactive Proofs Counting Complexity

Shamir’s Theorem

The power of Interactive Proofs

Proof(cont’d):

Propt [mN = 1 | Ri−1 ∧ Si−1] =∑
yi

max
zi

Propt [mN = 1 | Ri ∧ Si] · Propt [Ri | Ri−1 ∧ Si−1]

Propt [Ri | Ri−1 ∧ Si−1] is PSPACE-computable, by simulating
V .

Propt [mN = 1 | Ri ∧ Si] can be calculated by DFS on T .

The probability of acceptance is
Propt [mN = 1] = Propt [mN = 1 | R0 ∧ S0]

The prover can calculate its optimal move at any point in the
protocol in PSPACE by calculating Propt [mN = 1 | Ri ∧ Si]
for zi{0, 1} and choosing its answer to be the value that gives
the maximum. �

Interactive Proofs Counting Complexity

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Lemma 2

PSPACE ⊆ IP

For simplicity, we will construct an Interactive Proof for
UNSAT (a coNP-complete problem), showing that:

Theorem

coNP ⊆ IP

Let N be a prime.

We will translate a formula φ with m clauses and n variables
x1, . . . , xn to a polynomial p over the field (modN) (where
N > 2n · 3m), in the following way:

Interactive Proofs Counting Complexity

Shamir’s Theorem

Arithmetization

Arithmetic generalization of a CNF Boolean Formula.

T −→ 1
F −→ 0
¬x −→ 1− x
∧ −→ ×
∨ −→ +

Example

(x3 ∨ ¬x5 ∨ x17) ∧ (x5 ∨ x9) ∧ (¬x3 ∨ x4)
↓

(x3 + (1− x5) + x17) · (x5 + x9) · ((1− x3) + (1− x4))

Each literal is of degree 1, so the polynomial p is of degree at
most m.
Also, 0 < p < 3m.

Interactive Proofs Counting Complexity

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N −→ checks proof

q1(x) =
∑

p(x , x2, . . . xn) −→ checks if q1(0) + q1(1) = 0

←− sends r1 ∈ {0, . . . ,N − 1}

q2(x) =
∑

p(r1, x , x3, . . . xn) −→ checks if q2(0) + q2(1) = q1(r1)

←− sends r2 ∈ {0, . . . ,N − 1}
...

qn(x) = p(r1, . . . , rn−1, x) −→ checks if qn(0) + qn(1) = qn−1(rn−1)

picks rn ∈ {0, . . . ,N − 1}
checks if qn(rn) = p(r1, . . . , rn)

Interactive Proofs Counting Complexity

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N −→ checks proof

q1(x) =
∑

p(x , x2, . . . xn) −→ checks if q1(0) + q1(1) = 0

←− sends r1 ∈ {0, . . . ,N − 1}

q2(x) =
∑

p(r1, x , x3, . . . xn) −→ checks if q2(0) + q2(1) = q1(r1)

←− sends r2 ∈ {0, . . . ,N − 1}
...

qn(x) = p(r1, . . . , rn−1, x) −→ checks if qn(0) + qn(1) = qn−1(rn−1)

picks rn ∈ {0, . . . ,N − 1}
checks if qn(rn) = p(r1, . . . , rn)

Interactive Proofs Counting Complexity

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N −→ checks proof

q1(x) =
∑

p(x , x2, . . . xn) −→ checks if q1(0) + q1(1) = 0

←− sends r1 ∈ {0, . . . ,N − 1}

q2(x) =
∑

p(r1, x , x3, . . . xn) −→ checks if q2(0) + q2(1) = q1(r1)

←− sends r2 ∈ {0, . . . ,N − 1}
...

qn(x) = p(r1, . . . , rn−1, x) −→ checks if qn(0) + qn(1) = qn−1(rn−1)

picks rn ∈ {0, . . . ,N − 1}
checks if qn(rn) = p(r1, . . . , rn)

Interactive Proofs Counting Complexity

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N −→ checks proof

q1(x) =
∑

p(x , x2, . . . xn) −→ checks if q1(0) + q1(1) = 0

←− sends r1 ∈ {0, . . . ,N − 1}

q2(x) =
∑

p(r1, x , x3, . . . xn) −→ checks if q2(0) + q2(1) = q1(r1)

←− sends r2 ∈ {0, . . . ,N − 1}
...

qn(x) = p(r1, . . . , rn−1, x) −→ checks if qn(0) + qn(1) = qn−1(rn−1)

picks rn ∈ {0, . . . ,N − 1}
checks if qn(rn) = p(r1, . . . , rn)

Interactive Proofs Counting Complexity

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N −→ checks proof

q1(x) =
∑

p(x , x2, . . . xn) −→ checks if q1(0) + q1(1) = 0

←− sends r1 ∈ {0, . . . ,N − 1}

q2(x) =
∑

p(r1, x , x3, . . . xn) −→ checks if q2(0) + q2(1) = q1(r1)

←− sends r2 ∈ {0, . . . ,N − 1}

...
qn(x) = p(r1, . . . , rn−1, x) −→ checks if qn(0) + qn(1) = qn−1(rn−1)

picks rn ∈ {0, . . . ,N − 1}
checks if qn(rn) = p(r1, . . . , rn)

Interactive Proofs Counting Complexity

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N −→ checks proof

q1(x) =
∑

p(x , x2, . . . xn) −→ checks if q1(0) + q1(1) = 0

←− sends r1 ∈ {0, . . . ,N − 1}

q2(x) =
∑

p(r1, x , x3, . . . xn) −→ checks if q2(0) + q2(1) = q1(r1)

←− sends r2 ∈ {0, . . . ,N − 1}
...

qn(x) = p(r1, . . . , rn−1, x) −→ checks if qn(0) + qn(1) = qn−1(rn−1)

picks rn ∈ {0, . . . ,N − 1}
checks if qn(rn) = p(r1, . . . , rn)

Interactive Proofs Counting Complexity

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N −→ checks proof

q1(x) =
∑

p(x , x2, . . . xn) −→ checks if q1(0) + q1(1) = 0

←− sends r1 ∈ {0, . . . ,N − 1}

q2(x) =
∑

p(r1, x , x3, . . . xn) −→ checks if q2(0) + q2(1) = q1(r1)

←− sends r2 ∈ {0, . . . ,N − 1}
...

qn(x) = p(r1, . . . , rn−1, x) −→ checks if qn(0) + qn(1) = qn−1(rn−1)

picks rn ∈ {0, . . . ,N − 1}

checks if qn(rn) = p(r1, . . . , rn)

Interactive Proofs Counting Complexity

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N −→ checks proof

q1(x) =
∑

p(x , x2, . . . xn) −→ checks if q1(0) + q1(1) = 0

←− sends r1 ∈ {0, . . . ,N − 1}

q2(x) =
∑

p(r1, x , x3, . . . xn) −→ checks if q2(0) + q2(1) = q1(r1)

←− sends r2 ∈ {0, . . . ,N − 1}
...

qn(x) = p(r1, . . . , rn−1, x) −→ checks if qn(0) + qn(1) = qn−1(rn−1)

picks rn ∈ {0, . . . ,N − 1}
checks if qn(rn) = p(r1, . . . , rn)

Interactive Proofs Counting Complexity

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

If φ is unsatisfiable,then∑
x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xn∈{0,1}

p(x1, . . . , xn) ≡ 0 (modN)

and the protocol will succeed.

Also, the arithmetization can be done in polynomial time, and
if we take N = 2O(n+m), then the elements in the field can be
represented by O(n + m) bits, and thus an evaluation of p in
any point of {0, . . . ,N − 1} can be computed in polynomial
time.

We have to show that if φ is satisfiable, then the verifier will
reject with high probability.

If φ is satisfiable, then∑
x1∈{0,1}

∑
x2∈{0,1} · · ·

∑
xn∈{0,1} p(x1, . . . , xn) 6= 0 (modN)

Interactive Proofs Counting Complexity

Shamir’s Theorem

So, p1(0) + p1(1) 6= 0, so if the prover send p1 we ’re done.

If the prover send q1 6= p1, then the polynomials will agree on
at most m places. So, Pr [p1(r1) 6= q1(r1)] ≥ 1− m

N .

If indeed p1(r1) 6= q1(r1) and the prover sends p2 = q2, then
the verifier will reject since q2(0) + q2(1) = p1(r1) 6= q1(r1).

Thus, the prover must send q2 6= p2.

We continue in a similar way: If qi 6= pi , then with probability
at least 1− m

N , ri is such that qi (ri) 6= pi (ri).

Then, the prover must send qi+1 6= pi+1 in order for the
verifier not to reject.

At the end, if the verifier has not rejected before the last
check, Pr [pn 6= qn] ≥ 1− (n − 1)mN .

If so, with probability at least 1− m
N the verifier will reject

since, qn(x) and p(r1, . . . , rn−1, x) differ on at least that
fraction of points.

The total probability that the verifier will accept if at
most nm

N .

Interactive Proofs Counting Complexity

Shamir’s Theorem

Arithmetization of QBF

∃ −→
∑

∀ −→
∏

Example

∀x1∃x2[(x1 ∧ x2) ∨ ∃x3(x̄2 ∧ x3)]

↓

∏
x1∈{0,1}

∑
x2∈{0,1}

(x1 · x2) +
∑

x3∈{0,1}

(1− x2) · x3



Interactive Proofs Counting Complexity

Shamir’s Theorem

Arithmetization of QBF

But, every quantifier arithmetization may double the degree
of each variable, leading to an exponential degree polynomial.
The verifier can’t read this.

We can substitute the arithmetized polynomial with another,
agreeing with the original only on all boolean assignments:

Since if x = 0, 1 then x i = x , for all i , we can just get rid of
the exponents.

So, we can arithmetize Quantified Boolean Formulas, and
with slight modifications, the same protocol works.

Remember that the TQBF problem is PSPACE-complete.

Hence, PSPACE ⊆ IP. �

Interactive Proofs Counting Complexity

PCPs

Epilogue: Probabilistically Checkable Proofs

But if we put a proof instead of a Prover?

The alleged proof is a string, and the (probabilistic)
verification procedure is given direct (oracle) access to the
proof.

The verification procedure can access only few locations in the
proof!

We parameterize these Interactive Proof Systems by two
complexity measures:

Query Complexity
Randomness Complexity

The effective proof length of a PCP system is upper-bounded
by q(n) · 2r(n) (in the non-adaptive case).

Interactive Proofs Counting Complexity

PCPs

Epilogue: Probabilistically Checkable Proofs

But if we put a proof instead of a Prover?

The alleged proof is a string, and the (probabilistic)
verification procedure is given direct (oracle) access to the
proof.

The verification procedure can access only few locations in the
proof!

We parameterize these Interactive Proof Systems by two
complexity measures:

Query Complexity
Randomness Complexity

The effective proof length of a PCP system is upper-bounded
by q(n) · 2r(n) (in the non-adaptive case).

Interactive Proofs Counting Complexity

PCPs

PCP Definitions

Definition (PCP Verifiers)

Let L be a language and q, r : N→ N. We say that L has an
(r(n), q(n))-PCP verifier if there is a probabilistic polynomial-time
algorithm V (the verifier) satisfying:

Efficiency: On input x ∈ {0, 1}∗ and given random oracle access to
a string π ∈ {0, 1}∗ of length at most q(n) · 2r(n) (which we call the
proof), V uses at most r(n) random coins and makes at most q(n)
non-adaptive queries to locations of π. Then, it accepts or rejects.
Let V π(x) denote the random variable representing V ’s output on
input x and with random access to π.

Completeness: If x ∈ L, then ∃π ∈ {0, 1}∗ : Pr [V π(x) = 1] = 1

Soundness: If x /∈ L, then ∀π ∈ {0, 1}∗ : Pr [V π(x) = 1] ≤ 1
2

We say that a language L is in PCP[r(n), q(n)] if L has a
(O(r(n)),O(q(n)))-PCP verifier.

Interactive Proofs Counting Complexity

PCPs

Main Results

Obviously:

PCP[0, 0] = ?
PCP[0, poly] = ?
PCP[poly , 0] = ?

A suprising result from Arora, Lund, Motwani, Safra, Sudan,
Szegedy states that:

Theorem

NP = PCP[log n, 1]

Interactive Proofs Counting Complexity

PCPs

Main Results

Obviously:

PCP[0, 0] = P
PCP[0, poly] = ?
PCP[poly , 0] = ?

A suprising result from Arora, Lund, Motwani, Safra, Sudan,
Szegedy states that:

Theorem

NP = PCP[log n, 1]

Interactive Proofs Counting Complexity

PCPs

Main Results

Obviously:

PCP[0, 0] = P
PCP[0, poly] = NP
PCP[poly , 0] = ?

A suprising result from Arora, Lund, Motwani, Safra, Sudan,
Szegedy states that:

Theorem

NP = PCP[log n, 1]

Interactive Proofs Counting Complexity

PCPs

Main Results

Obviously:

PCP[0, 0] = P
PCP[0, poly] = NP
PCP[poly , 0] = coRP

A suprising result from Arora, Lund, Motwani, Safra, Sudan,
Szegedy states that:

Theorem

NP = PCP[log n, 1]

Interactive Proofs Counting Complexity

PCPs

Main Results

Obviously:

PCP[0, 0] = P
PCP[0, poly] = NP
PCP[poly , 0] = coRP

A suprising result from Arora, Lund, Motwani, Safra, Sudan,
Szegedy states that:

Theorem

NP = PCP[log n, 1]

Interactive Proofs Counting Complexity

PCPs

Properties

The restriction that the proof length is at most q2r is
inconsequential, since such a verifier can look on at most this
number of locations.

We have that PCP[r(n), q(n)] ⊆ NTIME[2O(r(n))q(n)], since
a NTM could guess the proof in 2O(r(n))q(n) time, and verify
it deterministically by running the verifier for all 2O(r(n))

possible choices of its random coin tosses. If the verifier
accepts for all these possible tosses, then the NTM accepts.

Interactive Proofs Counting Complexity

Contents

Introduction

Turing Machines

Undecidability

Complexity Classes

Oracles & The Polynomial Hierarchy

Randomized Computation

The map of NP

Non-Uniform Complexity

Interactive Proofs

Inapproximability

Derandomization of Complexity Classes

Counting Complexity
Epilogue

Interactive Proofs Counting Complexity

Introduction

Why counting?

So far, we have seen two versions of problems:

Decision Problems (if a solution exists)
Function Problems (if a solution can be produced)

A very important type of problems in Complexity Theory is
also:

Counting Problems (how many solutions exist)

Example (#SAT)

Given a Boolean Expression, compute the number of different truth
assignments that satisfy it.

Note that if we can solve #SAT in polynomial time, we can
solve SAT also.

Similarly, we can define #HAMILTON PATH, #CLIQUE, etc.

Interactive Proofs Counting Complexity

Introduction

Basic Definitions

Definition (#P)

A function f : {0, 1}∗ → N is in #P if there exists a polynomial
p : N→ N and a polynomial-time Turing Machine M such that for
every x ∈ {0, 1}∗:

f (x) = |{y ∈ {0, 1}p(|x |) : M(x , y) = 1}|

The definition implies that f (x) can be expressed in poly(|x |) bits.

Each function f in #P is equal to the number of paths from an
initial configuration to an accepting configuration, or accepting
paths in the configuration graph of a poly-time NDTM.

FP ⊆ #P ⊆ PSPACE

If #P = FP, then P = NP.

If P = PSPACE, then #P = FP.

Interactive Proofs Counting Complexity

Introduction

Counting Problems

In order to formalize a notion of completeness for #P, we
must define proper reductions:

Definition (Cook Reduction)

A function f is #P-complete if it is in #P and every g ∈ #P is in
FPf .

As we saw, for each problem in NP we can define the
associated counting problem: If A ∈ NP, then
#A(x) = |{y ∈ {0, 1}p(|x |) : RA(x , y) = 1}| ∈ #P

We now define a more strict form of reduction:

Interactive Proofs Counting Complexity

Introduction

Counting Problems

In order to formalize a notion of completeness for #P, we
must define proper reductions:

Definition (Cook Reduction)

A function f is #P-complete if it is in #P and every g ∈ #P is in
FPf .

As we saw, for each problem in NP we can define the
associated counting problem: If A ∈ NP, then
#A(x) = |{y ∈ {0, 1}p(|x |) : RA(x , y) = 1}| ∈ #P

We now define a more strict form of reduction:

Interactive Proofs Counting Complexity

Introduction

Counting Problems

Definition (Parsimonious Reduction)

We say that there is a parsimonious reduction from #A to #B if
there is a polynomial time transformation f such that for all x :

|{y : RA(x , y) = 1}| = |{z : RB(f (x), z) = 1}|

Or, using function notation:

Definition

f ≤p
m g ⇐⇒ ∃h ∈ FP : ∀x f (x) = g(h(x))

Interactive Proofs Counting Complexity

Introduction

Completeness Results

Theorem

#CIRCUIT SAT is #P-complete.

Proof:

Let f ∈ #P. Then, ∃M, p:
f (x) = |{y ∈ {0, 1}p(|x |) : M(x , y) = 1}|.
Given x , we want to construct a circuit C such that:

|{z : C (z)}| = |{y : y ∈ {0, 1}p(|x |,M(x , y) = 1}|

We can construct a circuit Ĉ such that on input x , y
simulates M(x , y).

We know that this can be done with a circuit with size about
the square of M’s running time.

Let C (y) = Ĉ (x , y). �

Interactive Proofs Counting Complexity

Introduction

Completeness Results

Theorem

#SAT is #P-complete.

Proof:

We reduce #CIRCUIT SAT to #SAT:

Let a circuit C , with x1, . . . , xn input gates and 1, . . . ,m gates.

We construct a Boolean formula φ with variables
x1, . . . , xn, g1, . . . , gm, where gi represents the output of gate
i .

A gate can be complete described by simulating the output
for each of the 4 possible inputs.

In this way, we have reduced C to a formula φ with n + m
variables and 4m clauses. �

Interactive Proofs Counting Complexity

Valiant’s Theorem

The Permanent

Definition (PERMANENT)

For a n × n matrix A, the permanent of A is:

perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

Permanent is similar to the determinant, but it seems more
difficult to compute.
Combinatorial interpretation: If A has entries ∈ {0, 1}, it can
be viewed as the adjacency matrix of a bipartite graph
G (X ,Y ,E) with X = {x1, . . . , xn}, Y = {y1, . . . , yn} and
{xi , yj} ∈ E iff Ai ,j = 1.

The term
∏n

i=1 Ai ,σ(i) is 1 iff σ has a perfect matching.
So, in this case perm(A) is the number of perfect matchings
in the corresponding graph!

Interactive Proofs Counting Complexity

Valiant’s Theorem

The Permanent

Definition (PERMANENT)

For a n × n matrix A, the permanent of A is:

perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

Permanent is similar to the determinant, but it seems more
difficult to compute.
Combinatorial interpretation: If A has entries ∈ {0, 1}, it can
be viewed as the adjacency matrix of a bipartite graph
G (X ,Y ,E) with X = {x1, . . . , xn}, Y = {y1, . . . , yn} and
{xi , yj} ∈ E iff Ai ,j = 1.
The term

∏n
i=1 Ai ,σ(i) is 1 iff σ has a perfect matching.

So, in this case perm(A) is the number of perfect matchings
in the corresponding graph!

Interactive Proofs Counting Complexity

Valiant’s Theorem

The Permanent

Definition (PERMANENT)

For a n × n matrix A, the permanent of A is:

perm(A) =
∑
σ∈Sn

n∏
i=1

Ai ,σ(i)

Permanent is similar to the determinant, but it seems more
difficult to compute.
Combinatorial interpretation: If A has entries ∈ {0, 1}, it can
be viewed as the adjacency matrix of a bipartite graph
G (X ,Y ,E) with X = {x1, . . . , xn}, Y = {y1, . . . , yn} and
{xi , yj} ∈ E iff Ai ,j = 1.
The term

∏n
i=1 Ai ,σ(i) is 1 iff σ has a perfect matching.

So, in this case perm(A) is the number of perfect matchings
in the corresponding graph!

Interactive Proofs Counting Complexity

Valiant’s Theorem

Valiant’s Theorem

Theorem (Valiant’s Theorem)

PERMANENT is #P-complete under Cook reductions.

Interactive Proofs Counting Complexity

The Class ⊕P

The Class ⊕P

Definition

A language L is in the class ⊕P if there is a NDTM M such that
for all strings x , x ∈ L iff the number of accepting paths on input
x is odd.

The problems ⊕SAT and ⊕HAMILTON PATH are ⊕P-complete.

⊕P is closed under complement.

⊕P⊕P = ⊕P

Interactive Proofs Counting Complexity

The Class ⊕P

Operators on Complexity Classes

So far, we ’ve defined a lot of operators on complexity classes.
We will remind them, and define some new in the same way:

Definition (Non-Deterministic Operator)

Let C be a complexity class. A language L ∈ N · C if there exists
A ∈ C such that:

x ∈ L⇒ ∃y : x ; y ∈ A

x /∈ L⇒ ∀y : x ; y /∈ A

If C can be expressed using
quantifier notation, then the N·
operator adds a (∃ · /∀·) in front of
it.

Example

N · P = NP
N · Πp

i−1 = Σp
i

N · BPP = MA

Interactive Proofs Counting Complexity

The Class ⊕P

Operators on Complexity Classes

Definition (Two-sided Probabilistic Operator)

Let C be a complexity class. A language L ∈ BP · C if there exists
A ∈ C such that:

x ∈ L⇒ ∃+y : x ; y ∈ A

x /∈ L⇒ ∃+y : x ; y /∈ A

Example

BP · P = BPP, BP ·NP = AM

Definition (One-sided Probabilistic Operator)

Let C be a complexity class. A language L ∈ R · C if there exists
A ∈ C such that:

x ∈ L⇒ ∃+y : x ; y ∈ A

x /∈ L⇒ ∀y : x ; y /∈ A

Interactive Proofs Counting Complexity

The Class ⊕P

Operators on Complexity Classes

Definition

Let C be a complexity class. A language L ∈ ⊕ · C if there exists
A ∈ C such that:

x ∈ L⇔ |{y : x ; y ∈ A}| is odd

Example

⊕ · P = ⊕P

Remark

Note that the class C in the above definitions must be closed
under padding.

Interactive Proofs Counting Complexity

The Class ⊕P

Valiant-Vazirani Theorem

Theorem (Valiant-Vazirani)

Given a Boolean Formula φ in CNF, it can be transformed by a
probabilistic, polynomial-time algorithm to a formula φ′, such that:

φ ∈ SAT =⇒ Pr [φ′ ∈ ⊕SAT] > 1
p(|φ|)

φ /∈ SAT =⇒ φ′ /∈ ⊕SAT

The above is equivalent with:

Theorem (Valiant-Vazirani)

NP ⊆ R · ⊕P

It also implies that NP ⊆ RPUSAT, where USAT is the
unique-satisfiability problem.

Interactive Proofs Counting Complexity

The Class ⊕P

Proof of Valiant-Vazirani Theorem

Proof:

Let φ = φ(x1, . . . , xn).

Let S be a random subset of [n] = {1, . . . , n}.
(uses n random bits).

Let [S] = ⊕i∈Sxi .

The reduction algorithm is the following:

Input φ.
Guess Randomly k ∈ {0, . . . , n − 1}.
Guess Randomly subsets S1, . . . ,Sk+2 ⊆ [n].
Output φ′ = φ ∧ [S1] ∧ [S2] ∧ · · · ∧ [Sk+2].

With each addition of a subformula of the form [Si] to the
conjunction, the number of satisfying assignments is halved,
since for each assignment b the probability that b([S]) = 0 is
1/2.

Interactive Proofs Counting Complexity

The Class ⊕P

Proof of Valiant-Vazirani Theorem

Proof:

Let φ = φ(x1, . . . , xn).

Let S be a random subset of [n] = {1, . . . , n}.
(uses n random bits).

Let [S] = ⊕i∈Sxi .

The reduction algorithm is the following:

Input φ.
Guess Randomly k ∈ {0, . . . , n − 1}.
Guess Randomly subsets S1, . . . ,Sk+2 ⊆ [n].
Output φ′ = φ ∧ [S1] ∧ [S2] ∧ · · · ∧ [Sk+2].

With each addition of a subformula of the form [Si] to the
conjunction, the number of satisfying assignments is halved,
since for each assignment b the probability that b([S]) = 0 is
1/2.

Interactive Proofs Counting Complexity

The Class ⊕P

Proof of Valiant-Vazirani Theorem

Proof (cont’d):

These events are only pairwise indepedent.

If φ is unsatisfiable, then φ′ is clearly unsatisfiable, therefore
φ′ /∈ ⊕SAT.

If φ is satisfiable, let m ≥ 1 the number of satisfying
assignments.

With probability ≥ 1/n, k will be chosen so that:
2k ≤ m ≤ 2k+1.

For that fixed k , let b be a fixed satisfying assignment of φ.

Since [Si]’s are chosen indepedently,

Pr
[
b(φ′) = 1

]
=

1

2k+2

Interactive Proofs Counting Complexity

The Class ⊕P

Proof of Valiant-Vazirani Theorem

Proof (cont’d):

These events are only pairwise indepedent.

If φ is unsatisfiable, then φ′ is clearly unsatisfiable, therefore
φ′ /∈ ⊕SAT.

If φ is satisfiable, let m ≥ 1 the number of satisfying
assignments.

With probability ≥ 1/n, k will be chosen so that:
2k ≤ m ≤ 2k+1.

For that fixed k , let b be a fixed satisfying assignment of φ.

Since [Si]’s are chosen indepedently,

Pr
[
b(φ′) = 1

]
=

1

2k+2

Interactive Proofs Counting Complexity

The Class ⊕P

Proof of Valiant-Vazirani Theorem

Proof (cont’d):

Even if b ”survived“ the conjunction process, the probability
that any other satisfying assignment b′ of φ also survives the
conjuction is also 1/2k+2.

The probability that b is the only formula that survives the
conjuction (cf. USAT):

1

2k+2
·

(
1−

∑
b′

1

2k+2

)
=

1

2k+2
·
(

1− m − 1

2k+2

)
≥

≥ 1

2k+2
·
(

1− 2k+1

2k+2

)
=

1

2k+3

Interactive Proofs Counting Complexity

The Class ⊕P

Proof of Valiant-Vazirani Theorem

Proof (cont’d):

Thus, the probability that there is a b that is the only
satisfying assignment of φ′ is at least:

∑
b

1

2k+3
=

m

2k+3
≥ 2k

2k+3
=

1

8

So, we proved that for this choice of k , the probability is at
least 1/8.

Thus,

Pr
[
φ′ /∈ ⊕SAT

]
≥ 1

n
· 1

8
=

1

8n

�

Interactive Proofs Counting Complexity

Toda’s Theorem

Quantifiers vs Counting

An imporant open question in the 80s concerned the relative
power of Polynomial Hierarchy and #P.

Both are natural generalizations of NP, but it seemed that
their features were not directly comparable to each other.

But, in 1989, S. Toda showed the following theorem:

Theorem (Toda’s Theorem)

PH ⊆ P#P[1]

Interactive Proofs Counting Complexity

Toda’s Theorem

Quantifiers vs Counting

An imporant open question in the 80s concerned the relative
power of Polynomial Hierarchy and #P.

Both are natural generalizations of NP, but it seemed that
their features were not directly comparable to each other.

But, in 1989, S. Toda showed the following theorem:

Theorem (Toda’s Theorem)

PH ⊆ P#P[1]

Interactive Proofs Counting Complexity

Toda’s Theorem

Proof of Toda’s Theorem

The proof consists of two main lemmas:

Lemma 1

PH ⊆ BP · ⊕P

Lemma 2

BP · ⊕P ⊆ P#P

Interactive Proofs Counting Complexity

Toda’s Theorem

Proof of Toda’s Theorem

The proof consists of two main lemmas:

Lemma 1

PH ⊆ BP · ⊕P

Lemma 2

BP · ⊕P ⊆ P#P

Interactive Proofs Counting Complexity

Toda’s Theorem

Proof of Toda’s Theorem

The proof consists of two main lemmas:

Lemma 1

PH ⊆ BP · ⊕P

Lemma 2

BP · ⊕P ⊆ P#P

Interactive Proofs Counting Complexity

Toda’s Theorem

Proof of Toda’s Theorem

Lemma 1.1

⊕ · ⊕ · C = ⊕ · C

Proof

Let L ∈ C, L′ ∈ ⊕ · C and L′′ ∈ ⊕ · ⊕ · C.

x ∈ L′′ ⇔ |{y1 : x ; y1 ∈ L′}| is odd⇔
∑

y1
L′(x ; y1) ≡ 1 mod 2

⇔
∑

y1

∑
y2

L(x ; y1; y2) ≡ 1 mod 2

⇔
∑

y1,y2
L(x ; y1; y2) ≡ 1 mod 2

⇔ |{y1; y2 : x ; y1; y2 ∈ L}| is odd ⇔ x ∈ L′ �

Interactive Proofs Counting Complexity

Toda’s Theorem

Proof of Toda’s Theorem

Lemma 1.2

BP · BP · C ⊆ BP · C

Proof:
Easy exercise :)

Lemma 1.3

⊕ · BP · C ⊆ BP · ⊕ · C

Interactive Proofs Counting Complexity

Toda’s Theorem

Proof of Toda’s Theorem

Lemma 1.2

BP · BP · C ⊆ BP · C

Proof:
Easy exercise :)

Lemma 1.3

⊕ · BP · C ⊆ BP · ⊕ · C

Interactive Proofs Counting Complexity

Toda’s Theorem

Proof of Toda’s Theorem

Lemma 1.3

⊕ · BP · C ⊆ BP · ⊕ · C

Proof:

Let L ∈ ⊕ · BP · C.

Then ∃A ∈ BP · C, such that:

x ∈ L⇔ |{z : |z | = |x |k ∧ x ; z ∈ A}| is odd

Then, ∃B ∈ C, such that:

Pr
w

[
∃z ∈ {0, 1}|x |k : x ; z ; w ∈ B ⇔ x ; z /∈ A

]
≤ 1

3

Interactive Proofs Counting Complexity

Toda’s Theorem

Proof of Toda’s Theorem

Proof (cont’d):

Let B ′ = {x ; w ; z : x ; z ; w ∈ B} ∈ C.

Let B ′′ = {x ; w : |{z : |z | = |x |k ∧ x ; w ; z ∈ B ′}| is odd} ∈ ⊕ ·C.

x ∈ L ⇒ |{z : |z | = |x |k ∧ x ; z ∈ A}| is odd

⇒ Prw
[
|{z : |z | = |x |k ∧ x ; z ; w ∈ B}| is odd

]
≥ 2

3

⇒ Prw [x ; w ∈ B ′′] ≥ 2
3

x /∈ L ⇒ |{z : |z | = |x |k ∧ x ; z ∈ A}| is even

⇒ Prw
[
|{z : |z | = |x |k ∧ x ; z ; w ∈ B}| is odd

]
≤ 1

3

⇒ Prw [x ; w ∈ B ′′] ≤ 1
3

Hence, L ∈ BP · ⊕ · C. �

Interactive Proofs Counting Complexity

Toda’s Theorem

Proof of Toda’s Theorem

Lemma 1.4

N · C ⊆ BP · ⊕ · C

Proof Idea:

That is, essentially, a generalization of Valiant-Vazirani
Theorem:

Instead of SAT, we could use Σp
k -complete version of SATk and

prove with slight modifications that:

Σp
k = N · Πp

k−1 ⊆ BP · ⊕ · Π
p
k−1

Interactive Proofs Counting Complexity

Toda’s Theorem

Proof of Toda’s Theorem

Lemma 1

PH ⊆ BP · ⊕P

Proof (of Lemma 1):

We will prove by induction that Σp
k ,Π

p
k ⊆ BP · ⊕ · P

The base k = 0 is trivial, since P ⊆ BP · ⊕ · P.

The induction hypothesis states that Σp
k−1,Π

p
k−1 ⊆ BP ·⊕ ·P.

Then:

Σp
k = N · Πk−1 ⊆ BP · ⊕ · Πp

k−1 ⊆ BP · ⊕ · BP · ⊕ · P

⊆ BP · BP · ⊕ · ⊕ · P ⊆ BP · ⊕ · P

�

Interactive Proofs Counting Complexity

Toda’s Theorem

Proof of Toda’s Theorem

Lemma 2

BP · ⊕P ⊆ P#P

Proof Sketch:

Let L ∈ BP · ⊕P

So, ∃A ∈ ⊕P, such that:

Pry [x ∈ L⇔ x ; y ∈ A] ≥ 2

3

Interactive Proofs Counting Complexity

Toda’s Theorem

Proof of Toda’s Theorem

Amplification Example

Example mod 8.

We want to modify this tree to another s.t.:

Odd number of z ’s =⇒ number of z ′’s ≡ 0 mod 8
Even number of z ’s =⇒ number of z ′’s ≡ 1 mod 8

Interactive Proofs Counting Complexity

Toda’s Theorem

Proof of Toda’s Theorem

Amplification Example

x ∈ L

Example mod 8.

We want to modify this tree to another s.t.:

Odd number of z ’s =⇒ number of z ′’s ≡ 0 mod 8
Even number of z ’s =⇒ number of z ′’s ≡ 1 mod 8

Interactive Proofs Counting Complexity

Toda’s Theorem

Proof of Toda’s Theorem

Amplification Example

x /∈ L

Example mod 8.

We want to modify this tree to another s.t.:

Odd number of z ’s =⇒ number of z ′’s ≡ 0 mod 8
Even number of z ’s =⇒ number of z ′’s ≡ 1 mod 8

Interactive Proofs Counting Complexity

Toda’s Theorem

Proof of Toda’s Theorem

Now, let g = g(x) be the number of accepting
computations:

If g ≡ 0 mod 8 or g ≡ 1 mod 8, then x ∈ A.
If g ≡ 3 mod 8 or g ≡ 4 mod 8, then x /∈ A.

We can generalize this so that:

x ∈ A⇔ g <
2p(|x |)

2
mod 2p(|x |)

Lemma 2.1

For A ∈ ⊕P, and ∀p ∈ poly(n), ∃ PNTM M:

x ∈ A⇒ #accM(x) ≡ 0 mod 2p(n)

x /∈ A⇒ #accM(x) ≡ 1 mod 2p(n)

Interactive Proofs Counting Complexity

Toda’s Theorem

Proof of Toda’s Theorem

Let:
h(x) =

∑
y ,|y |=p(|x |)

#accM(x ; y)

=
∑
x ;y∈A

#accM(x ; y) +
∑
x ;y /∈A

#accM(x ; y)

≡ −g(x) mod 2p(n)

So, we can decide x ∈ L from h(x).

But, h ∈ #P: on input x, guess a y, |y | = p(|x |), and
simulate M on x ; y.

Hence L ∈ P#P[1].

�

Interactive Proofs Counting Complexity

Other Counting Classes

The Class GapP

For a TM M, we define:

∆M(x) = #acc(x)−#rej(x) = #M(x)−#M(x)

Definition

A function f : {0, 1}∗ → N is in GapP if there exists a poly-time
NDTM M such that for all inputs x :

f (x) = ∆M(x)

GapP functions are closed under negation:
f ∈ GapP⇒ −f ∈ GapP.

GapP, unlike #P, encompasses all FP functions.

Interactive Proofs Counting Complexity

Other Counting Classes

The Class GapP

Theorem

For all functions f , the following are equivalent:

1 f ∈ GapP.

2 f is the difference of two #P functions.

3 f is the difference of a #P and an FP function.

4 f is the difference of a FP and an #P function.

In other words:

GapP = #P−#P = #P− FP = FP−#P

(3)⇒ GapP ⊆ FP#P[1].

Interactive Proofs Counting Complexity

Other Counting Classes

Characterizations of Complexity Classes

NP consists of those languages L such that for some #P
function f and all inputs x :

If x ∈ L then f (x) > 0.
If x /∈ L then f (x) = 0.

UP consists of those languages L such that for some #P
function f and all inputs x :

If x ∈ L then f (x) = 1.
If x /∈ L then f (x) = 0.

PP consists of those languages L such that for some GapP
function f and all inputs x :

If x ∈ L then f (x) > 0.
If x /∈ L then f (x) ≤ 0 (of f (x) < 0).

SPP consists of those languages L such that for some GapP
function f and all inputs x :

If x ∈ L then f (x) = 1.
If x /∈ L then f (x) = 0.

Interactive Proofs Counting Complexity

Other Counting Classes

Characterizations of Complexity Classes

C=P consists of those languages L such that for some GapP
function f and all inputs x :

If x ∈ L then f (x) = 0.
If x /∈ L then f (x) 6= 0 (or f (x) > 0).

⊕P consists of those languages L such that for some #P
function f and all inputs x :

If x ∈ L then f (x) is odd.
If x /∈ L then f (x) is even.

ModkP consists of those languages L such that for some #P
function f and all inputs x :

If x ∈ L then f (x) mod k 6= 0.
If x /∈ L then f (x) mod k = 0.

MiddleP consists of those languages L such that for some
#P function f and all inputs x :

If x ∈ L then middle(f (x)) = 1.
If x /∈ L then middle(f (x)) = 0.

Interactive Proofs Counting Complexity

Other Counting Classes

Characterizations of Complexity Classes

We can summarize the above:

Class Function f in: If x ∈ L: If x /∈ L:

NP #P f (x) > 0 f (x) = 0

UP #P f (x) = 1 f (x) = 0

PP GapP f (x) > 0 f (x) ≤ 0 or f (x) < 0

SPP GapP f (x) = 1 f (x) = 0

C=P GapP f (x) = 0 f (x) 6= 0 or f (x) > 0

⊕P #P f (x) is odd f (x) is even

ModkP #P f (x) mod k 6= 0 f (x) mod k = 0

MiddleP #P middle(f (x)) = 1 middle(f (x)) = 0

Interactive Proofs Counting Complexity

Other Counting Classes

Characterizations of Complexity Classes

We define middle : {0, 1}∗ → {0, 1} to return the d |x |2 e
th bit

of the string x .

The class MiddleP considers the middle bit of a string, as
PP consider the high-order bit and ⊕P the low-order bit.

Observe that ⊕P = Mod2P.

From the above we can easily have:

NP ⊆ coC=P ⊆ PP
UP ⊆ SPP
C=P ⊆ PP
PP is closed under complement.

Interactive Proofs Counting Complexity

Other Counting Classes

Characterizations of Complexity Classes

Theorem

PPP = PGapP

Proof:

We only need to show that every GapP function g is
computable in FPPP.

Consider the GapP function f (x , k) = g(x)− k.

Then L = {〈x , k〉 : g(x) > k} ∈ PP, by the previous
classification.

Use binary search using L as an oracle to find the value of
g(x). �

	Introduction
	Algorithms & Complexity
	Why Complexity?
	Problems....

	Turing Machines
	Definitions
	Properties of Turing Machines
	NTMs

	Undecidability
	Diagonalization
	Simulation
	Undecidability

	
	Complexity Classes
	Introduction
	Constructible Functions
	Complexity Classes
	Relations among Complexity Classes
	Certificates & Quantifiers
	Space Computation
	Reductions & Completeness

	Oracles & The Polynomial Hierarchy
	Oracle Classes
	The Polynomial Hierarchy
	Main Theorems
	The Complexity of Optimization Problems

	
	Randomized Computation
	Examples of Randomized Algorithms
	Computational Model
	Complexity Classes
	Quantifier Characterizations
	Error Reduction

	Non-Uniform Complexity
	Boolean Circuits
	TMs taking advice
	Relationship among Complexity Classes
	Parallel Computations
	The Quest for Lower Bounds
	Epilogue: What's Wrong?

	
	Interactive Proofs
	Introduction
	The class IP
	Arthur-Merlin Games
	Arithmetization
	Shamir's Theorem
	PCPs

	Counting Complexity
	Introduction
	Valiant's Theorem
	The Class P
	Toda's Theorem
	Other Counting Classes

