BITCOIN BACKBONE AND CONSESUS

Nikos Leonardos

National Technical University of Athens

Bitcoin info

- Bitcoin was the first decentralized cryptocurrency with no need for a trusted central authority.
 - Previous work: Pricing functions of Dwork and Naor [1992], MicroMint of Rivest and Shamir [1996], Hashcash of Back [1997,2002], Szabo's bit gold [1998], Karma by Vishnumurthy, Chandrakumar, Sirer [2003].
- Introduced in the 2008 paper "Bitcoin: A Peer-to-Peer Electronic Cash System" by Satoshi Nakamoto (a pseudonym).
- Released as open-source code in 2009; first block: 9, Jan 2009.
 - Nowadays there are more than than 800,000 blocks.
- The total number of bitcoins will not exceed 21 million and this limit is expected to be reached around 2140.
 - Nowadays there are more than 19 million bitcoins in circulation.
 - The smallest denomination is the satoshi, equal to 10^{-8} bitcoins.

Bitcoin: a solution to two problems

- Bitcoin was the first decentralized cryptocurrency, with no need for a trusted central authority.
- Bitcoin was a fresh solution at an old, fundamental, and wellstudied problem in distributed computing, the consensus problem.

Bitcoin: a solution to two problems

- Bitcoin was the first decentralized cryptocurrency, with no need for a trusted central authority.
- Bitcoin was a fresh solution at an old, fundamental, and wellstudied problem in distributed computing, the consensus problem.

Formal analysis

- A formal description of the model in which the problem and its solution can be described.
- The properties that a suggested solution should satisfy.
- A formal description of the protocol.
- Proof that Bitcoin backbone indeed has the desired properties.

The model

- Synchronous model.
 - Time is discrete and divided in rounds.
 - Global clock: round number is common knowledge.
 - All messages get delivered in the next round.
- A number of honest parties *n* and an adversary that controls *t* parties.
 - Honest parties act independently.
 - Parties controlled by the adversary collaborate.
- Parties communicate by broadcasting a message.

The adversary can:

- inject messages into a party's incoming messages.
- reorder a party's incoming messages.
- Anonymous setting: parties cannot associate a message to a sender; they don't even know if two messages come from the same sender.

What is not in the model

- Honest parties losing messages or becoming eclipsed or becoming unable to know the current time.
 - Parties experiencing such issues are factored into the adversary.
- The honest parties' incentives.
 - On the other hand, adversarial parties wish to inflict the worst possible damage independently of utility.
- An adversary with computational power that even on occasion, exceeds that of honest parties.
- Attacks that exploit specific weaknesses of the underlying cryptographic primitives.

[We will use idealized versions of hash functions and digital signatures].

Hash functions

A cryptographic hash function is a deterministic algorithm

 $H: \{0,1\}^* \to \{0,1\}^{\kappa}$

with the following properties.

- Preimage resistance: Given $y \in \{0, 1\}^{\kappa}$ it should be computationally infeasible to compute x such that H(x) = y.
- Second-preimage resistance: Given x and y = H(x) it should be computationally infeasible to compute a $x' \neq x$ such that H(x') = y.
- Collision resistance: It should be computationally infeasible to compute $x \neq x'$ such that H(x) = H(x').

For a meaningful formal definition one considers cryptographic hash families.

Proof-of-work in the random-oracle model

A moderately hard computational task: Given a hash-function $H(\cdot)$ with range $\{0, 1\}^{\kappa}$ and a y, find x such that H(x, y) begins with a lot of zeroes. More generaly, given a target T,

• find x such that H(x, y) < T.

Proof-of-work in the random-oracle model

A moderately hard computational task: Given a hash-function $H(\cdot)$ with range $\{0, 1\}^{\kappa}$ and a y, find x such that H(x, y) begins with a lot of zeroes. More generaly, given a target T,

• find x such that H(x, y) < T.

We'll work in the "random oracle" model. That is, we assume the existence of a hash-function $H(\cdot)$ that operates as follows.

 On a query x, the returned value H(x) is a random number from the range of H(·), unless x has been queried before in which case H(·) is consistent (equal to the previous returned value).

Proof-of-work in the random-oracle model

A moderately hard computational task: Given a hash-function $H(\cdot)$ with range $\{0, 1\}^{\kappa}$ and a y, find x such that H(x, y) begins with a lot of zeroes. More generaly, given a target T,

• find x such that H(x, y) < T.

We'll work in the "random oracle" model. That is, we assume the existence of a hash-function $H(\cdot)$ that operates as follows.

- On a query x, the returned value H(x) is a random number from the range of H(·), unless x has been queried before in which case H(·) is consistent (equal to the previous returned value).
- A query is successful with probability $\frac{T}{2^{\kappa}}$, and one needs in expectation $\frac{2^{\kappa}}{T}$ calls to the oracle $H(\cdot)$ for a proof-of-work.
- Among poly(k) queries, the probability of a collision (two distinct x and x' with H(x) = H(x')) is exponentially small in κ .

Bitcoin's data structure: the blockchain

 A block (r, s, x, w) is valid if it has a small hash-value, providing a proof-of-work:

H(r,s,x,w) < T.

 A chain is valid if all its blocks provide a proof-of-work and each block extends the previous one:

for each *i*, $s_{i+1} = H(r_i, s_i, x_i, w_i)$ and $r_{i+1} > r_i$.

Comments on the blockchain

- To alter the contents of a block and preserve the length of the chain the adversary either has to discover a collision in H(·) or compute all the subsequent blocks.
 - Thus the αdversαry *cannot* delete, copy, inject, or predict blocks.
- By adjusting the target *T* we control how hard is computing a block: the lower the target the higher the difficulty, wlog 1/*T*.

Transactions on the blockchain

A transaction has the following form:

- "From the output (say 10BTC) of transaction *i* in block *j* (which was sent to public *pk*₀), send 2BTC to *pk*₁ and 7BTC to *pk*₂"--- signed with *sk*₀.
- Fees, coinbase transaction.
- Parties need to agree on which is the *j*-th block.

Bitcoin backbone: A distributed randomized algorithm

In each round r, each party with a chain C_0 performs the following:

- Receive from the network (block)chains C_1, C_2, \ldots
- Choose the first longest chain C among the valid ones in $\{C_0, C_1, C_2, \ldots\}$. (Order matters*.)
- Try to extend the longest chain C.

This is modeled by a Bernoulli trial with a probability of success that depends on the target T.

- Suppose its last block is the *i*-th one and equal to (r_i, s_i, x_i, w_i) with $s = H(r_i, s_i, x_i, w_i)$. Find $w \in \{1, 2, ..., q\}$ such that

H(r,s,x,w) < T.

If successful, let $C \leftarrow C \parallel (r, s, x, w)$.

• If $C \neq C_0$ (i.e., you computed or switched-to another (longer) chain), diffuse the new chain C.

Bitcoin Backbone, Consensus, Variable Difficulty

-Ø

- White blocks have been computed by an honest party.
- Red blocks have been computed by the adversary.
- A star (*) on a block means that an honest party has the chain ending with that block at the given round.

Bitcoin Backbone, Consensus, Variable Difficulty

- White blocks have been computed by an honest party.
- Red blocks have been computed by the adversary.
- A star (*) on a block means that an honest party has the chain ending with that block at the given round.

Bitcoin Backbone, Consensus, Variable Difficulty

- White blocks have been computed by an honest party.
- Red blocks have been computed by the adversary.
- A star (*) on a block means that an honest party has the chain ending with that block at the given round.

Bitcoin Backbone, Consensus, Variable Difficulty

- White blocks have been computed by an honest party.
- Red blocks have been computed by the adversary.
- A star (*) on a block means that an honest party has the chain ending with that block at the given round.

Bitcoin Backbone, Consensus, Variable Difficulty

- White blocks have been computed by an honest party.
- Red blocks have been computed by the adversary.
- A star (*) on a block means that an honest party has the chain ending with that block at the given round.

Bitcoin Backbone, Consensus, Variable Difficulty

- White blocks have been computed by an honest party.
- Red blocks have been computed by the adversary.
- A star (*) on a block means that an honest party has the chain ending with that block at the given round.

- White blocks have been computed by an honest party.
- Red blocks have been computed by the adversary.
- A star (*) on a block means that an honest party has the chain ending with that block at the given round.

- White blocks have been computed by an honest party.
- Red blocks have been computed by the adversary.
- A star (*) on a block means that an honest party has the chain ending with that block at the given round.

- White blocks have been computed by an honest party.
- Red blocks have been computed by the adversary.
- A star (*) on a block means that an honest party has the chain ending with that block at the given round.

- White blocks have been computed by an honest party.
- Red blocks have been computed by the adversary.
- A star (*) on a block means that an honest party has the chain ending with that block at the given round.

Persistence. If a transaction is confirmed by an honest party, no honest party will ever disagree about the position of that transaction in the ledger.

Persistence. If a transaction is confirmed by an honest party, no honest party will ever disagree about the position of that transaction in the ledger.

Liveness. If a transaction is diffused, it will eventually become confirmed by all honest parties.

Persistence. If a transaction is confirmed by an honest party, no honest party will ever disagree about the position of that transaction in the ledger.

Liveness. If a transaction is diffused, it will eventually become confirmed by all honest parties.

Properties of the blockchain

Common-Prefix Property. Any two honest parties' chains have a large common prefix.

More formally: For any pair of honest parties adopting chains C_1 and C_2 at rounds $r_1 \le r_2$ respectively, it holds $C_1^{\lceil k} \le C_2$.

Persistence. If a transaction is confirmed by an honest party, no honest party will ever disagree about the position of that transaction in the ledger.

Liveness. If a transaction is diffused, it will eventually become confirmed by all honest parties.

Properties of the blockchain

Common-Prefix Property. Any two honest parties' chains have a large common prefix.

More formally: For any pair of honest parties adopting chains C_1 and C_2 at rounds $r_1 \le r_2$ respectively, it holds $C_1^{\lceil k} \le C_2$.

Chain-Quality Property. Any sufficiently large segment of an honest party's chain, will contain some blocks computed from honest parties.

Persistence. If a transaction is confirmed by an honest party, no honest party will ever disagree about the position of that transaction in the ledger.

Liveness. If a transaction is diffused, it will eventually become confirmed by all honest parties.

Properties of the blockchain

Common-Prefix Property. Any two honest parties' chains have a large common prefix.

More formally: For any pair of honest parties adopting chains C_1 and C_2 at rounds $r_1 \leq r_2$ respectively, it holds $C_1^{\lceil k} \leq C_2$.

Chain-Quality Property. Any sufficiently large segment of an honest party's chain, will contain some blocks computed from honest parties.

Chain-Growth Property. The chain of any honest party grows at least at a steady rate.

Analysis: Random Variables

Successful Round. A round *r* in which at least one honest party computes a block.

- Recall that a single query is successful with probability $p := T/2^{\kappa}$.

 $X_r = 1 \iff r \text{ is a successful round}$ $f := \mathbf{E}[X_r] = 1 - (1 - p)^n \approx pn$

Analysis: Random Variables

Successful Round. A round *r* in which at least one honest party computes a block.

- Recall that a single query is successful with probability $p := T/2^{\kappa}$.

 $X_r = 1 \iff r$ is a successful round $f := \mathbf{E}[X_r] = 1 - (1 - p)^n \approx pn$

Uniquely Successful Round. A round *r* in which exactly one honest party computes a block.

 $Y_r = 1 \iff r$ is a uniquly successful round $\mathbf{E}[Y_r] = np(1-p)^{n-1} > np(1-pn) \ge f(1-f)$

Analysis: Random Variables

Successful Round. A round *r* in which at least one honest party computes a block.

- Recall that a single query is successful with probability $p := T/2^{\kappa}$.

 $X_r = 1 \iff r$ is a successful round $f := \mathbf{E}[X_r] = 1 - (1 - p)^n \approx pn$

Uniquely Successful Round. A round *r* in which exactly one honest party computes a block.

 $Y_r = 1 \iff r$ is a uniquly successful round $\mathbf{E}[Y_r] = np(1-p)^{n-1} > np(1-pn) \ge f(1-f)$

Adversary. For each query j,

 $Z_j = 1 \iff$ the adversary computed a block with his *j*-th query $\mathbf{E}[Z_r] = \mathbf{E}[Z_1 + \dots + Z_t] = \mathbf{E}[Z_r] = \mathbf{E}[Z_1] + \dots + \mathbf{E}[Z_t] = \mathbf{p}t$

Chain-Growth Lemma

Chain-Growth Lemma. Suppose that at round r an honest party has a chain of length l. Then, by round $s \ge r$, every honest party has adopted a chain of length at least

 $\ell + X_r + \cdots + X_{s-1}.$

Chain-Growth Lemma

Chain-Growth Lemma. Suppose that at round r an honest party has a chain of length l. Then, by round $s \ge r$, every honest party has adopted a chain of length at least

 $\ell + X_r + \cdots + X_{s-1}.$

Chernoff Bound. Suppose $\{X_i : i \in [n]\}$ are mutually independent Boolean random variables, with $\Pr[X_i = 1] = p$, for all $i \in [n]$. Let $X = \sum_{i=1}^{n} X_i$ and $\mu = pn$. Then, for any $\delta \in (0, 1]$,

 $\Pr[X \le (1-\delta)\mu] \le e^{-\delta^2 \mu/2} \text{ and } \Pr[X \ge (1+\delta)\mu] \le e^{-\delta^2 \mu/3}.$

Chain-Growth Lemma

Chain-Growth Lemma. Suppose that at round r an honest party has a chain of length l. Then, by round $s \ge r$, every honest party has adopted a chain of length at least

 $\ell + X_r + \cdots + X_{s-1}.$

Chernoff Bound. Suppose $\{X_i : i \in [n]\}$ are mutually independent Boolean random variables, with $\Pr[X_i = 1] = p$, for all $i \in [n]$. Let $X = \sum_{i=1}^{n} X_i$ and $\mu = pn$. Then, for any $\delta \in (0, 1]$, $\Pr[X \le (1 - \delta)\mu] \le e^{-\delta^2 \mu/2}$ and $\Pr[X \ge (1 + \delta)\mu] \le e^{-\delta^2 \mu/3}$.

Chain-growth property. With probability at least $1 - e^{-\Omega(\epsilon^2 fs)}$, the chain of any honest party increases by at least

 $(1-\epsilon)fs \approx (1-\epsilon)pns$

blocks after s consecutive rounds. ($E[X_1 + \cdots + X_s] = fs \approx pns$.)

Common-Prefix Lemma

Common-Prefix Lemma. The probability that at a given round two parties have chains that disagree in the last k blocks, is at most $e^{-\Omega(k)}$. (The party with the shortest chain should be honest.)

Common-Prefix Lemma

Common-Prefix Lemma. The probability that at a given round two parties have chains that disagree in the last k blocks, is at most $e^{-\Omega(k)}$. (The party with the shortest chain should be honest.)

Observation. Suppose the *l*-the block of a chain was computed by an honest party in a uniquely successful round. Then any other *l*-th block has been computed by the adversary.

Common-Prefix Lemma. The probability that at a given round two parties have chains that disagree in the last k blocks, is at most $e^{-\Omega(k)}$. (The party with the shortest chain should be honest.)

Observation. Suppose the *l*-the block of a chain was computed by an honest party in a uniquely successful round. Then any other *l*-th block has been computed by the adversary.

Common-Prefix Lemma. The probability that at a given round two parties have chains that disagree in the last k blocks, is at most $e^{-\Omega(k)}$. (The party with the shortest chain should be honest.)

Observation. Suppose the *l*-the block of a chain was computed by an honest party in a uniquely successful round. Then any other *l*-th block has been computed by the adversary.

Proof. Suppose a block of height l was computed by an honest party at a round u with $Y_u = 1$. If any honest party computed a block of height l at any round r < u, then any honest party is trying to extend a chain of length at least l at round u. Similarly for r > u.

Common-Prefix Lemma. The probability that at a given round two parties have chains that disagree in the last k blocks, is at most $e^{-\Omega(k)}$. (The party with the shortest chain should be honest.)

Proof. Let r^* be the last round in which a block before the fork was computed by an honest party. Set $S = \{r^* + 1, \dots, r-1\}$.

Common-Prefix Lemma. The probability that at a given round two parties have chains that disagree in the last k blocks, is at most $e^{-\Omega(k)}$. (The party with the shortest chain should be honest.)

Proof. Let r^* be the last round in which a block before the fork was computed by an honest party. Set $S = \{r^* + 1, \dots, r - 1\}$. By the Observation, to every uniquely successful round in S corresponds an adversarial block computed in S.

Common-Prefix Lemma. The probability that at a given round two parties have chains that disagree in the last k blocks, is at most $e^{-\Omega(k)}$. (The party with the shortest chain should be honest.)

Proof. Let r^* be the last round in which a block before the fork was computed by an honest party. Set $S = \{r^* + 1, \dots, r-1\}$. By the Observation, to every uniquely successful round in S corresponds an adversarial block computed in S. It follows that

Uniquely successful
rounds in S \leq Adversarial successes in S.

Common-Prefix Lemma. The probability that at a given round two parties have chains that disagree in the last k blocks, is at most $e^{-\Omega(k)}$. (The party with the shortest chain should be honest.)

Proof. Let r^* be the last round in which a block before the fork was computed by an honest party. Set $S = \{r^* + 1, \dots, r-1\}$. By the Observation, to every uniquely successful round in S corresponds an adversarial block computed in S. It follows that

Uniquely successful
rounds in S \leq Adversarial successes in S. $E[\sum Y_i] \approx pn(1-f)|S|$ $E[\sum Z_i] = pt|S|.$

Proof of the common-prefix lemma (cont'd)

Recall that $\mathbf{E}[Y_i] > f(1-f)$. Let $Y(S) = \sum_{r \in S} Y_r$. Then, since $\mathbf{E}[Y(S)] = \sum_{r \in S} f(1-f) = f(1-f)|S|$, by the Chernoff bound,

$$\Pr[Y(S) \le (1 - \epsilon)f(1 - f)|S|] = e^{-\Omega(|S|)}$$

Similarly

 $\Pr[Z(S) \ge (1 + \epsilon)pt|S|] = e^{-\Omega(|S|)}.$

Proof of the common-prefix lemma (cont'd)

Recall that $\mathbf{E}[Y_i] > f(1-f)$. Let $Y(S) = \sum_{r \in S} Y_r$. Then, since $\mathbf{E}[Y(S)] = \sum_{r \in S} f(1-f) = f(1-f)|S|$, by the Chernoff bound,

 $\Pr[\Upsilon(S) \le (1-\epsilon)f(1-f)|S|] = e^{-\Omega(|S|)}.$

Similarly

 $\Pr[Z(S) \ge (1 + \epsilon)pt|S|] = e^{-\Omega(|S|)}.$

Honest Majority Assumption. $t < (1 - \delta)n$ for $\delta > 3\epsilon + 3f$.

Proof of the common-prefix lemma (cont'd)

Recall that $\mathbf{E}[Y_i] > f(1-f)$. Let $Y(S) = \sum_{r \in S} Y_r$. Then, since $\mathbf{E}[Y(S)] = \sum_{r \in S} f(1-f) = f(1-f)|S|$, by the Chernoff bound,

 $\Pr[Y(S) \le (1-\epsilon)f(1-f)|S|] = e^{-\Omega(|S|)}.$

Similarly

 $\Pr[Z(S) \ge (1 + \epsilon)pt|S|] = e^{-\Omega(|S|)}.$

Honest Majority Assumption. $t < (1 - \delta)n$ for $\delta > 3\epsilon + 3f$.

Assuming these bad events don't occur (union bound) and the Honest Majority Assumption

$$Z(S) < (1 + \epsilon)pt|S|$$

$$< (1 + \epsilon)(1 - \delta)pn|S| \qquad \{ t < (1 - \delta)n \}$$

$$< (1 + \epsilon)(1 - \delta) \cdot \frac{f}{1 - f} \cdot |S| \qquad \{ (1 - f)pn < f \}$$

$$< (1 - \epsilon)f|S| \qquad \{ \delta > 3\epsilon + 3f \}$$

$$< Y(S)$$

Bitcoin Backbone, Consensus, Variable Difficulty

16/16