National Technical University of Athens School of Electrical and Computer Engineering

Computational Cryptography 2nd Set of Exercises

Deadline for submission: December 18, 2024

Exercise 1. Let n = pq be a Blum integer, and let $y \in QR(n)$. Prove that the principal square root of $y \pmod{n}$ (i.e., the square root of y that is also a quadratic residue) is given by the formula $x \equiv y^{((p-1)(q-1)+4)/8} \pmod{n}$.

Exercise 2. Consider the variation of DES-X with 2 keys k_1 , k_2 , where the encryption of a plaintext M is performed as follows:

$$Enc_{k_1,k_2}(M) = E_{k_1}(M \oplus k_2),$$

where E is the encryption function of DES.

Does the above system provide more security than the classical DES? Assume that the adversary has the ability for Known-Plaintext Attack (KPA) (possesses enough plaintext-ciphertext pairs).

Exercise 3.

1. A DES key k is weak if the function DES_k is an involution. Find 4 weak keys for DES.

Note: For a finite set S, a one-to-one and onto function $f : S \to S$ is an involution if f(f(x)) = x for all $x \in S$.

2. A DES key k is semi-weak if it is not weak and there exists a key k' such that:

$$\mathsf{DES}_k^{-1} = \mathsf{DES}_{k'}$$

Find 4 semi-weak keys for DES.

$$\mathsf{DES}_k^{-1} = \mathsf{DES}_{k'}$$

Exercise 4. Let the encryption of a message n blocks: $x = x_1 || \dots || x_n$ by a cipher E in CBC mode be denoted as $y = y_1 || \dots || y_n$, where y is the corresponding ciphertext.

- 1. Show that information can be extracted in the case of collisions (i.e., $y_i = y_j$ for $i \neq j$).
- 2. What is the probability of collision for a block size of 64 bits?
- 3. For what value of n is the attack useful?

Exercise 5. Given an oracle AES_k that can take binary strings and produce encryptions based on the AES cipher using the secret key k.

- 1. Describe an algorithm to determine the block size used by the oracle.
- 2. Describe an algorithm to determine if the oracle uses ECB mode.
- 3. Describe an algorithm to decrypt any message generated by AES_k in ECB mode. For this purpose, you can use AES_k to produce encryptions of messages of your choice. (Hint: Exploit the fact that you can learn the block size.) What is the complexity of your algorithm if the block size is *l* bits?

Exercise 6. Examine the RC4 pseudo-random number generator. Prove that the second byte (key) of the output is equal to 0 with a probability approximately equal to 2^{-7} . Begin by showing that if, after the Key Scheduling Algorithm (KSA) phase, it holds for the permutation array P that P[2] = 0 and P[1] \neq 2, then the second byte of the output is equal to 0 with probability 1.

Exercise 7. Let $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a pseudo-random function. Examine the following functions in terms of their pseudorandomness:

- 1. $F_1(k, x) = F(k, x) ||0|$
- 2. $F_2(k, x) = F(k, x) \oplus x$
- 3. $F_3(k, x) = F(k, x \oplus 1^n)$
- 4. $F_4(k, x) = F(k, x) ||F(k, F(k, x))|$

Exercise 8. Consider the Blum-Blum-Shub (BBS) pseudo-random bit generator with a Blum integer n = pq.

(a) Determine the period of the generator as a function of n and s_0 . Explain why gcd(p-1, q-1) should be small.

(b) "Safe primes" are special prime numbers of the form p = 2p' + 1 where p' is also prime. We call a SafeSafe prime a safe prime p = 2p' + 1 for which p' is also a safe prime and $p'' \equiv 1 \pmod{4}$, where p'' = (p'-1)/2. What is the **maximum** period of the generator in the case where both p and q are SafeSafe primes? Provide a proof for your claim.

Exercise 9. (Programming complement of the previous exercise)

Constructing a Blum integer n = pq with "SafeSafe" primes p, q, each having 20 binary digits as defined in question (b) of exercise 8, we will simulate the BBS generator by choosing s_0 to maximize its period. (a) Write a program that constructs the generator appropriately (i.e., finds a "smartly" chosen s_0) for specific p, q that you will select according to the conditions mentioned above.

(b) Extend the above program to simulate the generator and experimentally verify its theoretically calculated period.

Exercise 10.

- 1. Let $H : \{0,1\}^* \to \{0,1\}^n$ be a hash function, which, when given input $m = x \oplus w$, produces output $H(m) = H(x) \oplus H(w)$. Examine H in terms of the difficulty of finding collisions.
- 2. Let H be a hash function $H(x) = H_1(x)||H_2(x)||H_3(x)$ where at least one of H_1 , H_2 , H_3 is collision-free. Is H also collision-free?

Exercise 11.

Given a hash function $H_1 : \{0, 1\}^{2n} \to \{0, 1\}^n$. This function is used in a Merkle tree of height h with input being a binary sequence $x_0x_1 \ldots x_{2^h}$ where each x_i is a binary sequence of size n bits. Through successive applications of H_1 , the Merkle tree can be considered as a hash function H that compresses strings of size $n2^h$ into strings of size n. Show that if H_1 has difficulty in finding collisions, then H also has difficulty in finding collisions.

Exercise 12.

- Given a cryptosystem CS and an adversary A that can recover the key from a ciphertext of CS with non-negligible probability. Prove that CS does not provide CPA security.
- Given a cryptosystem CS that encrypts all messages using the CBC mode. However, instead of choosing a new IV each time, CS increments the previous IV by 1. In other words, for the *i*-th message: IV_i ← IV_{i-1} + 1. Show how an adversary can win the CPA game for CS with non-negligible probability.
- Show that the Output Feedback (OFB) encryption mode does not provide CCA security.

In all exercises, we use " \oplus " to denote XOR and "||" for concatenation.

Short instructions: (a) Try to solve the exercises on your own, (b) Discuss with your fellow students, (c) Search for ideas on the internet — in this order and after dedicating enough time to each stage! In any case, the answers must be *strictly individual*. You may be asked to briefly present some of your solutions.