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Why Complexity?

Computational Complexity: Quantifying the amount of
computational resources required to solve a given task.
Classify computational problems according to their inherent
difficulty in complexity classes, and prove relations among them.

Structural Complexity: “The study of the relations between
various complexity classes and the global properties of individual
classes. [...] The goal of structural complexity is a thorough
understanding of the relations between the various complexity
classes and the internal structure of these complexity classes.” [J.
Hartmanis]
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Problems....

Decision Problems
Have answers of the form “yes” or “no”.

Encoding: each instance x of the problem is represented as a string
of an alphabet Σ (|Σ| ≥ 2).

Decision problems have the form “Is x in L?”, where L is a
language, L ⊆ Σ∗.

So, for an encoding of the input, using the alphabet Σ, we
associate the following language with the decision problem Π:

L(Π) = {x ∈ Σ∗ | x is a representation of a “yes” instance of the problem Π}

Example

Given a number x, is this number prime? (x
?
∈ PRIMES)

Given graph G and a number k, is there a clique with k (or more) nodes
in G?
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Problems....

Search Problems
Have answers of the form of an object.

Relation R(x, y) connecting instances x with answers (objects) y
we wish to find for x.

Given instance x, find a y such that (x, y) ∈ R.

Example
FACTORING: Given integer N, find its prime decomposition:

N = pk11 pk22 · · · p
km
m
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Problems....

Optimization Problems

For each instance x there is a set of Feasible Solutions F(x).

To each s ∈ F(x) we map a positive integer c(x), using the
objective function c(s).

We search for the solution s ∈ F(x) which minimizes (or
maximizes) the objective function c(s).

Example
The Traveling Salesperson Problem (TSP):
Given a finite set C = {c1, . . . , cn} of cities and a distance
d(ci, cj) ∈ Z+, ∀(ci, cj) ∈ C2, we ask for a permutation π of C, that
minimizes this quantity:

n−1∑
i=1

d(cπ(i), cπ(i+1)) + d(cπ(n), cπ(1))
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Problems....

A Model Discussion

There are many computational models (RAM, Turing Machines
etc).

The Church-Turing Thesis states that all computation models
are equivalent. That is, every computation model can be simulated
by a Turing Machine.

In Complexity Theory, we consider efficiently computable the
problems which are solved (aka the languages that are decided) in
polynomial number of steps (Edmonds-Cobham Thesis).�� ��Efficiently Computable ≡ Polynomial-Time Computable
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Problems....

Computational Complexity classifies problems into classes,
and studies the relations and the structure of these classes.

We have decision problems with boolean answer, or
function/optimization problems which output an object as an
answer.

Given some nice properties of polynomials, we identify
polynomial-time algorithms as efficient algorithms.

Summary
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Definitions

Definition
A Turing Machine M is a quintuple M = (Q,Σ, δ, q0,F):

Q = {q0, q1, q2, q3, . . . , qn, qyes, qno} is a finite set of states.

Σ is the alphabet. The tape alphabet is Γ = Σ ∪ {t}.

q0 ∈ Q is the initial state.

F ⊆ Q is the set of final states.

δ : (Q \ F)× Γ→ Q× Γ× {S,L,R} is the transition function.

A TM is a “programming language” with a single data structure (a
tape), and a cursor, which moves left and right on the tape.

Function δ is the program of the machine.
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Definitions

Turing Machines and Languages

Definition
Let L ⊆ Σ∗ be a language and M a TM such that, for every string
x ∈ Σ∗:

If x ∈ L, then M(x) = “yes”

If x /∈ L, then M(x) = “no”

Then we say that M decides L.

Alternatively, we say that M(x) = L(x), where L(x) = χL(x) is the
characteristic function of L (if we consider 1 as “yes” and 0 as
“no”).

If L is decided by some TM M, then L is called a recursive
language.
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Definitions

Definition
If for a language L there is a TM M, which if x ∈ L then M(x) = “yes”,
and if x /∈ L then M(x) ↑, we call L recursively enumerable.

*By M(x) ↑ we mean that M does not halt on input x (it runs forever).

Theorem
If L is recursive, then it is recursively enumerable.

Proof: Exercise

Definition
If f is a function, f : Σ∗ → Σ∗, we say that a TM M computes f if, for
any string x ∈ Σ∗, M(x) = f(x). If such M exists, f is called a
recursive function.

Turing Machines can be thought as algorithms for solving string
related problems.
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Definitions

Multitape Turing Machines

We can extend the previous Turing Machine definition to obtain a
Turing Machine with multiple tapes:

Definition
A k-tape Turing Machine M is a quintuple M = (Q,Σ, δ, q0,F):

Q = {q0, q1, q2, q3, . . . , qn, qhalt, qyes, qno} is a finite set of states.

Σ is the alphabet. The tape alphabet is Γ = Σ ∪ {t}.

q0 ∈ Q is the initial state.

F ⊆ Q is the set of final states.

δ : (Q \ F)×Γk → Q× (Γ×{S,L,R})k is the transition function.
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Properties of Turing Machines

Bounds on Turing Machines

We will characterize the “performance” of a Turing Machine by
the amount of time and space required on instances of size n, when
these amounts are expressed as a function of n.

Definition
Let T : N→ N. We say that machine M operates within time T(n) if,
for any input string x, the time required by M to reach a final state is at
most T(|x|). Function T is a time bound for M.

Definition
Let S : N→ N. We say that machine M operates within space S(n) if,
for any input string x, M visits at most S(|x|) locations on its work tapes
(excluding the input tape) during its computation. Function S is a space
bound for M.
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Properties of Turing Machines

Multitape Turing Machines

Theorem
Given any k-tape Turing Machine M operating within time T(n), we can
construct a TM M′ operating within time O

(
T2(n)

)
such that, for any

input x ∈ Σ∗, M(x) = M′(x).

Proof: See Th.2.1 (p.30) in [1].

�
�

�
�

This is a strong evidence of the robustness of our model:
Adding a bounded number of strings does not increase their
computational capabilities, and affects their efficiency only polynomially.
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Properties of Turing Machines

Linear Speedup

Theorem
Let M be a TM that decides L ⊆ Σ∗, that operates within time T(n).
Then, for every ε > 0, there is a TM M′ which decides the same
language and operates within time T′(n) = εT(n) + n+ 2.

Proof: See Th.2.2 (p.32) in [1].

If, for example, T is linear, i.e. something like cn, then this theorem
states that the constant c can be made arbitrarily close to 1. So, it is fair
to start using the O (·) notation in our time bounds.

A similar theorem holds for space:

Theorem
Let M be a TM that decides L ⊆ Σ∗, that operates within space S(n).
Then, for every ε > 0, there is a TM M′ which decides the same
language and operates within space S′(n) = εS(n) + 2.
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NTMs

Nondeterministic Turing Machines

We will now introduce an unrealistic model of computation:

Definition
A Turing Machine M is a quintuple M = (Q,Σ, δ, q0,F):

Q = {q0, q1, q2, q3, . . . , qn, qhalt, qyes, qno} is a finite set of states.

Σ is the alphabet. The tape alphabet is Γ = Σ ∪ {t}.

q0 ∈ Q is the initial state.

F ⊆ Q is the set of final states.

δ : (Q \ F)× Γ→ Pow(Q× Γ× {S,L,R}) is the transition
relation.
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NTMs

Nondeterministic Turing Machines

In this model, an input is accepted if there is some sequence of
nondeterministic choices that results in “yes”.

An input is rejected if there is no sequence of choices that lead to
acceptance.

Observe the similarity with recursively enumerable languages.

Definition
We say that M operates within bound T(n), if for every input x ∈ Σ∗

and every sequence of nondeterministic choices, M reaches a final state
within T(|x|) steps.

The above definition requires that M does not have computation
paths longer than T(n), where n = |x| the length of the input.

The amount of time charged is the depth of the computation tree.
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NTMs

Examples of Nondeterministic Computations

Example

✓ ✓
Accepting computation Rejecting Computation

Without loss of generality, the computation trees are binary, full
and complete. (why?)
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NTMs

A recursive language is decided by a TM.

A recursive enumerable language is accepted by a TM that
halts only if x ∈ L.

Multiple tape TMs can be simulated by a one-tape TM with
quadratic overhead.

Linear speedup justifies the O (·) notation.

Nondeterministic TMs move in “parallel universes”, making
different choices simultaneously.

A Deterministic TM computation is a path.

A Nondeterministic TM computation is a tree, i.e.
exponentially many paths ran simultaneously.

Summary
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Diagonalization

Diagonalization

Suppose there is a town with just one
barber, who is male. In this town,
the barber shaves all those, and only
those, men in town who do not shave
themselves. Who shaves the barber?

Diagonalization is a technique that was used in many different cases:

http://www.coopertoons.com/education/diagonal/diagonalargument.html
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Diagonalization

Diagonalization

Theorem
The functions from N to N are uncountable.

Proof: Let, for the sake of contradiction that are countable: ϕ1, ϕ2, . . . .
Consider the following function: f(x) = ϕx(x) + 1. This function must
appear somewhere in this enumeration, so let ϕy = f(x). Then
ϕy(x) = ϕx(x) + 1, and if we choose y as an argument, then
ϕy(y) = ϕy(y) + 1. □

Using the same argument:

Theorem
The functions from {0, 1}∗ to {0, 1} are uncountable.
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Simulation

Machines as strings

It is obvious that we can represent a Turing Machine as a string:
just write down the description and encode it using an alphabet, e.g.
{0, 1}.
We denote by ⌞M⌟ the TM M’s representation as a string.

Also, if x ∈ Σ∗, we denote by Mx the TM that x represents.

Keep in mind that:
Every string represents some TM.

Every TM is represented by infinitely many strings.

There exists (at least) an uncomputable function from {0, 1}∗ to
{0, 1}, since the set of all TMs is countable.
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Simulation

The Universal Turing Machine

So far, our computational models are specified to solve a single
problem.

Turing observed that there is a TM that can simulate any other
TM M, given M’s description as input.

Theorem
There exists a TM U such that for every x,w ∈ Σ∗, U(x,w) = Mw(x).
Also, if Mw halts within T steps on input x, then U(x,w) halts within
CT logT steps, where C is a constant independent of x, and depending
only on Mw’s alphabet size number of tapes and number of states.

Proof: See section 3.1 in [1], and Th. 1.9 and section 1.7 in [2].
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Undecidability

The Halting Problem

Consider the following problem: “Given the description of a TM M,
and a string x, will M halt on input x? ” This is called the
HALTING PROBLEM.

We want to compute this problem ! ! ! (Given a computer
program and an input, will this program enter an infinite loop?)

In language form: H = {⌞M⌟; x | M(x) ↓}, where “ ↓ ” means that
the machine halts, and “ ↑ ” that it runs forever.

Theorem
H is recursively enumerable.

Proof: See Th.3.1 (p.59) in [1]
In fact, H is not just a recursively enumerable language:
If we had an algorithm for deciding H, then we would be able to derive
an algorithm for deciding any r.e. language (RE-complete).
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Undecidability

The Halting Problem

But....

Theorem
H is not recursive.

Proof: See Th.3.1 (p.60) in [1]

Suppose, for the sake of contradiction, that there is a TM MH that
decides H.

Consider the TM D:
D(⌞M⌟) : if MH(⌞M⌟; ⌞M⌟) = “yes” then ↑ else “yes”

What is D(⌞D⌟)?

If D(⌞D⌟) ↑, then MH accepts the input, so ⌞D⌟; ⌞D⌟ ∈ H, so
D(D) ↓.

If D(⌞D⌟) ↓, then MH rejects ⌞D⌟; ⌞D⌟, so ⌞D⌟; ⌞D⌟ /∈ H, so
D(D) ↑. □
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Undecidability

Recursive languages are a proper subset of recursive enumerable
ones.

Recall that the complement of a language L is defined as:

L = {x ∈ Σ∗ | x /∈ L} = Σ∗ \ L

Theorem
1 If L is recursive, so is L.
2 L is recursive if and only if L and L are recursively enumerable.

Proof: Exercise

Let E(M) = {x | (q0, ▷, ε)
M∗→ (q, y t xt, ε}

E(M) is the language enumerated by M.

Theorem
L is recursively enumerable iff there is a TM M such that L = E(M).
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Undecidability

More Undecidability

The HALTING PROBLEM, our first undecidable problem, was
the first, but not the only undecidable problem. Its spawns a wide
range of such problems, via reductions.

To show that a problem A is undecidable we establish that, if there
is an algorithm for A, then there would be an algorithm for H,
which is absurd.

Theorem
The following languages are not recursive:

1 {⌞M⌟ | M halts on all inputs}
2 {⌞M⌟; x | There is a y such that M(x) = y}
3 {⌞M⌟; x | The computation of M uses all states of M}
4 {⌞M⌟; x; y | M(x) = y}
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range of such problems, via reductions.

To show that a problem A is undecidable we establish that, if there
is an algorithm for A, then there would be an algorithm for H,
which is absurd.

Theorem
The following languages are not recursive:

1 {⌞M⌟ | M halts on all inputs}
2 {⌞M⌟; x | There is a y such that M(x) = y}
3 {⌞M⌟; x | The computation of M uses all states of M}
4 {⌞M⌟; x; y | M(x) = y}
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Undecidability

Rice’s Theorem

The previous problems lead us to a more general conclusion:�
�

�
�

Any non-trivial property of languages of
Turing Machines is undecidable

If a TM M accepts a language L, we write L = L(M).

Theorem (Rice’s Theorem)
Suppose that C is a proper, non-empty subset of the set of all recursively
enumerable languages. Then, the following problem is undecidable:

Given a Turing Machine M, is L(M) ∈ C?
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Undecidability

Rice’s Theorem

Proof: See Th.3.2 (p.62) in [1]

We can assume that ∅ /∈ C (why?).

Since C is nonempty, ∃ L ∈ C, accepted by the TM ML.

Let MH the TM accepting the HALTING PROBLEM for an
arbitrary input x. For each x ∈ Σ∗, we construct a TM M as
follows:
M(y) : if MH(x) = “yes” then ML(y) else ↑

We claim that: L(M) ∈ C if and only if x ∈ H.

Proof of the claim:
If x ∈ H, then MH(x) = “yes”, and so M will accept y or never halt,
depending on whether y ∈ L. Then the language accepted by M is
exactly L, which is in C.
If MH(x) ↑, M never halts, and thus M accepts the language ∅,
which is not in C. □
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Undecidability

TMs are encoded by strings.

The Universal TM U(x, ⌞M⌟) can simulate any other TM M
along with an input x.

The Halting Problem is recursively enumerable, but not
recursive.

Many other problems can be proved undecidable, by a
reduction from the Halting Problem.

Rice’s theorem states that any non-trivial property of TMs is an
undecidable problem.

Summary
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Introduction

Parameters used to define complexity classes:

Model of Computation (Turing Machine, RAM, Circuits)

Mode of Computation (Deterministic, Nondeterministic,
Probabilistic)

Complexity Measures (Time, Space, Circuit Size-Depth)

Other Parameters (Randomization, Interaction)
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Introduction

Our first complexity classes

Definition
Let L ⊆ Σ∗, and T, S : N→ N:

We say that L ∈ DTIME[T(n)] if there exists a TM M deciding L,
which operates within the time bound O (T(n)), where n = |x|.
We say that L ∈ DSPACE[S(n)] if there exists a TM M deciding
L, which operates within space bound O (S(n)), that is, for any
input x, requires space at most S(|x|).

We say that L ∈ NTIME[T(n)] if there exists a nondeterministic
TM M deciding L, which operates within the time bound
O (T(n)).

We say that L ∈ NSPACE[S(n)] if there exists a nondeterministic
TM M deciding L, which operates within space bound O (S(n)).
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Introduction

Our first complexity classes

The above are Complexity Classes, in the sense that they are sets
of languages.

All these classes are parameterized by a function T or S, so they
are families of classes (for each function we obtain a complexity
class).

Definition (Complementary complexity class)

For any complexity class C, coC denotes the class: {L | L ∈ C}, where
L = Σ∗ \ L = {x ∈ Σ∗ | x /∈ L}.

We want to define “reasonable” complexity classes, in the sense
that we want to “compute more problems”, given more
computational resources.
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Constructible Functions

Constructible Functions

Can we use all computable functions to define Complexity
Classes?

Theorem (Gap Theorem)
For any computable functions r and a, there exists a computable function
f such that f(n) ≥ a(n), and

DTIME[f(n)] = DTIME[r(f(n))]

That means, for r(n) = 22
n
, the incementation from f(n) to 22

f(n)

does not allow the computation of any new function!

So, we must use some restricted families of functions:
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Constructible Functions

Constructible Functions

Definition (Time-Constructible Function)
A nondecreasing function T : N→ N is time constructible if
T(n) ≥ n and there is a TM M that computes the function
x 7→ ⌞T(|x|)⌟ in time T(n).

Definition (Space-Constructible Function)
A nondecreasing function S : N→ N is space-constructible if
S(n) > log n and there is a TM M that computes S(|x|) using S(|x|)
space, given x as input.

The restriction T(n) ≥ n is to allow the machine to read its input.

The restriction S(n) > log n is to allow the machine to “remember”
the index of the cell of the input tape that it is currently reading.
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Complexity Classes

Constructible Functions

Also, if f1(n), f2(n) are time/space-constructible functions, so are
f1 + f2, f1 · f2 and ff21 .

If we use only constructible functions, we can prove Hierarchy
Theorems, stating that with more resources we can compute more
languages:

Theorem (Hierarchy Theorems)
Let t1, t2 be time-constructible functions, and s1, s2 be
space-constructible functions. Then:

1 If t1(n) log t1(n) = o(t2(n)), then DTIME(t1) ⊊ DTIME(t2).
2 If t1(n+ 1) = o(t2(n)), then NTIME(t1) ⊊ NTIME(t2).
3 If s1(n) = o(s2(n)), then DSPACE(s1) ⊊ DSPACE(s2).
4 If s1(n) = o(s2(n)), then NSPACE(s1) ⊊ NSPACE(s2).
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Complexity Classes

Constructible Functions
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Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

Theorem

DTIME[n] ⊊ DTIME[n1.5]

Proof (Diagonalization): See Th.3.1 (p.69) in [2]

Let D be the following machine:

On input x, run for |x|1.4 steps U(Mx, x);
If U(Mx, x) = b, then return 1− b;
Else return 0;

Clearly, L = L(D) ∈ DTIME[n1.5]

We claim that L /∈ DTIME[n]:
Let L ∈ DTIME[n]⇒ ∃ M : M(x) = D(x) ∀x ∈ Σ∗, and M
works for O (|x|) steps.
The time to simulate M using U is c|x| log |x|, for some c.



Complexity Classes Oracles & The Polynomial Hierarchy

Complexity Classes
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Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

Proof (cont’d):
∃n0 : n1.4 > cn log n ∀n ≥ n0
There exists a xM, s.t. xM = ⌞M⌟ and |xM| > n0 (why?) Then,
D(xM) = 1−M(xM) (while we have also that D(x) = M(x), ∀x)

Contradiction!! □

So, we have the hierachy:

DTIME[n] ⊊ DTIME[n2] ⊊ DTIME[n3] ⊊ · · ·

We will later see that the class containing the problems we can
efficiently solve (recall the Edmonds-Cobham Thesis) is the class
P =

⋃
c∈NDTIME[nc].
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Relations among Complexity Classes

Hierarchy Theorems tell us how classes of the same kind relate to
each other, when we vary the complexity bound.
The most interesting results concern relationships between classes
of different kinds:

Theorem
Suppose that T(n), S(n) are time-constructible and space-constructible
functions, respectively.Then:

1 DTIME[T(n)] ⊆ NTIME[T(n)]
2 DSPACE[S(n)] ⊆ NSPACE[S(n)]
3 NTIME[T(n)] ⊆ DSPACE[T(n)]
4 NSPACE[S(n)] ⊆ DTIME[2O(S(n))]

Corollary

NTIME[T(n)] ⊆
⋃
c>1

DTIME[c
T(n)

]
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Relations among Complexity Classes

Proof: See Th.7.4 (p.147) in [1]

1 Trivial
2 Trivial
3 We can simulate the machine for each nondeterministic choice,

using at most T(n) steps in each simulation.
There are exponentially many simulations, but we can simulate
them one-by-one, reusing the same space.

4 Recall the notion of a configuration of a TM: For a k-tape
machine, is a 2k− 2 tuple: (q, i,w2, u2, . . . ,wk−1, uk−1)
How many configurations are there?

|Q| choices for the state
n+ 1 choices for i, and
Fewer than |Σ|(2k−2)S(n) for the remaining strings

So, the total number of configurations on input size n is at most
nc

S(n)
1 = 2O(S(n)).
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Relations among Complexity Classes

Proof (cont’d):

Definition (Configuration Graph of a TM)

The configuration graph of M on input x, denoted G(M, x), has as
vertices all the possible configurations, and there is an edge between
two vertices C and C′ if and only if C′ can be reached from C in one
step, according to M’s transition function.

So, we have reduced this simulation to REACHABILITY*
problem (also known as S-T CONN), for which we know there is
a poly-time (O

(
n2
)

) algorithm.

So, the simulation takes
(
2O(S(n))

)2 ∼ 2O(S(n)) steps. □

*REACHABILITY: Given a graph G and two nodes v1, vn ∈ V, is there a
path from v1 to vn?
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Relations among Complexity Classes

The essential Complexity Hierarchy

Definition

L = DSPACE[log n]

NL = NSPACE[log n]

P =
⋃
c∈N

DTIME[nc]

NP =
⋃
c∈N

NTIME[nc]

PSPACE =
⋃
c∈N

DSPACE[nc]

NPSPACE =
⋃
c∈N

NSPACE[nc]
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Relations among Complexity Classes

The essential Complexity Hierarchy

Definition

EXP =
⋃
c∈N

DTIME[2n
c
]

NEXP =
⋃
c∈N

NTIME[2n
c
]

EXPSPACE =
⋃
c∈N

DSPACE[2n
c
]

NEXPSPACE =
⋃
c∈N

NSPACE[2n
c
]

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP
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Relations among Complexity Classes

The essential Complexity Hierarchy
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Certificates & Quantifiers

Certificate Characterization of NP

Definition
Let R ⊆ Σ∗ × Σ∗ a binary relation on strings.

R is called polynomially decidable if there is a DTM deciding the
language {x; y | (x, y) ∈ R} in polynomial time.

R is called polynomially balanced if (x, y) ∈ R implies
|y| ≤ |x|k, for some k ≥ 1.

Theorem
Let L ⊆ Σ∗ be a language. L ∈ NP if and only if there is a polynomially
decidable and polynomially balanced relation R, such that:

L = {x | ∃y R(x, y)}

This y is called succinct certificate, or witness.
So, an NP Search Problem is the problem of computing witnesses.
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Certificates & Quantifiers

Proof: See Pr.9.1 (p.181) in [1]

(⇐) If such an R exists, we can construct the following NTM deciding
L:
“On input x, guess a y, such that |y| ≤ |x|k, and then test (in poly-time)
if (x, y) ∈ R. If so, accept, else reject.” Observe that an accepting
computation exists if and only if x ∈ L.

(⇒) If L ∈ NP, then ∃ an NTM N that decides L in time |x|k, for some
k. Define the following R:
“(x, y) ∈ R if and only if y is an encoding of an accepting computation
of N(x).”
R is polynomially balanced and decidable (why?), so, given by
assumption that N decides L, we have our conclusion. □
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Certificates & Quantifiers

Certificate Characterization of NP

Example (Encoding of a computation path)

0 1

0

✓

0 1

1

0

0 1

0

0

✓

1

1

1

010 and 111 encode accepting paths.
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Certificates & Quantifiers

Can creativity be automated?

As we saw:

Class P: Efficient Computation

Class NP: Efficient Verification

So, if we can efficiently verify a mathematical proof, can we create
it efficiently?

If P = NP...
For every mathematical statement, and given a page limit, we would
(quickly) generate a proof, if one exists.

Given detailed constraints on an engineering task, we would (quickly)
generate a design which meets the given criteria, if one exists.

Given data on some phenomenon and modeling restrictions, we would
(quickly) generate a theory to explain the data, if one exists.

See “A. Wigderson: Knowledge, Creativity and P versus NP”

http://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/AW09/AW09.pdf
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Certificates & Quantifiers

Complementary complexity classes

Deterministic complexity classes are in general closed under
complement (coL = L, coP = P, coPSPACE = PSPACE).

Complementaries of non-deterministic complexity classes are
very interesting:

The class coNP contains all the languages that have succinct
disqualifications (the analogue of succinct certificate for the class
NP). The “no” instance of a problem in coNP has a short proof of
its being a “no” instance.

So:
P ⊆ NP ∩ coNP

Note the similarity and the difference with R = RE ∩ coRE.
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Certificates & Quantifiers

Quantifier Characterization of Complexity Classes

Definition
We denote as C = (Q1/Q2), where Q1,Q2 ∈ {∃, ∀}, the class C of
languages L satisfying:

x ∈ L⇒ Q1y R(x, y)

x /∈ L⇒ Q2y ¬R(x, y)

P = (∀/∀)
NP = (∃/∀)
coNP = (∀/∃)
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Space Computation

Savitch’s Theorem

REACHABILITY ∈ NL. See Ex.2.10 (p.48) in [1]

Theorem (Savitch’s Theorem)

REACHABILITY ∈ DSPACE[log2 n]

Proof: See Th.7.4 (p.149) in [1]

REACH(x, y, i) : “There is a path from x to y, of length ≤ i”.

We can solve REACHABILITY if we can compute
REACH(x, y, n), for any nodes x, y ∈ V, since any path in G can
be at most n long.

If i = 1, we can check whether REACH(x, y, i).

If i > 1, we use recursion:
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Proof (cont’d):

def REACH( s , t , k )
i f k = = 1 :

i f ( s == t or ( s , t ) in e d g e s ) : re turn t r u e
i f k > 1 :

for u in v e r t i c e s :
i f (REACH( s , u , f l o o r ( k / 2 ) ) and
(REACH( u , t , c e i l ( k / 2 ) ) ) : re turn t r u e

re turn f a l s e

We generate all nodes u one after the other, reusing space.

The algorithm has recursion depth of dlog ne.
For each recursion level, we have to store s, t, k and u, that is,
O (log n) space.

Thus, the total space used is O
(

log2 n
)

. □
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Space Computation

Savitch’s Theorem

Corollary

NSPACE[S(n)] ⊆ DSPACE[S2(n)], for any space-constructible
function S(n) ≥ log n.

Proof:

Let M be the nondeterministic TM to be simulated.

We run the algorithm of Savitch’s Theorem proof on the
configuration graph of M on input x.

Since the configuration graph has c
S(n)

nodes, O
(
S2(n)

)
space

suffices. □

Corollary

PSPACE = NPSPACE
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Space Computation

NL-Completeness

In Complexity Theory, we “connect” problems in a complexity
class with partial ordering relations, called reductions, which
formalize the notion of “a problem that is at least as hard as
another”.
A reduction must be computationally weaker than the class in
which we use it.

Definition
A language L1 is logspace reducible to a language L2, denoted
L1 ≤ℓ

m L2, if there is a function f : Σ∗ → Σ∗, computable by a DTM in
O (log n) space, such that for all x ∈ Σ∗:

x ∈ L1 ⇔ f(x) ∈ L2

We say that a language A is NL-complete if it is in NL and for every
B ∈ NL, B ≤ℓ

m A.
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Space Computation

NL-Completeness

Theorem
REACHABILITY is NL-complete.

Proof: See Th.4.18 (p.89) in [2]

We ’ve argued why REACHABILITY ∈ NL.

Let L ∈ NL, that is, it is decided by a O (log n) NTM N.

Given input x, we can construct the configuration graph of N(x).

We can assume that this graph has a single accepting node.

We can construct this in logspace: Given configurations C,C′ we
can in space O

(
|C|+ |C′|

)
= O (log |x|) check the graph’s

adjacency matrix if they are connected by an edge.

It is clear that x ∈ L if and only if the produced instance of
REACHABILITY has a “yes” answer. □



Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

NL-Completeness

Theorem
REACHABILITY is NL-complete.

Proof: See Th.4.18 (p.89) in [2]

We ’ve argued why REACHABILITY ∈ NL.

Let L ∈ NL, that is, it is decided by a O (log n) NTM N.

Given input x, we can construct the configuration graph of N(x).

We can assume that this graph has a single accepting node.

We can construct this in logspace: Given configurations C,C′ we
can in space O

(
|C|+ |C′|

)
= O (log |x|) check the graph’s

adjacency matrix if they are connected by an edge.

It is clear that x ∈ L if and only if the produced instance of
REACHABILITY has a “yes” answer. □



Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

Certificate Definition of NL

We want to give a characterization of NL, similar to the one we
gave for NP.

A certificate may be polynomially long, so a logspace machine
may not have the space to store it.

So, we will assume that the certificate is provided to the machine
on a separate tape that is read once.
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Space Computation

Certificate Definition of NL

Definition
A language L is in NL if there exists a deterministic TM M with an
additional special read-once input tape, such that for every x ∈ Σ∗:

x ∈ L⇔ ∃y, |y| ∈ poly(|x|),M(x, y) = 1

where by M(x, y) we denote the output of M where x is placed on its
input tape, and y is placed on its special read-once tape, and M uses at
most O (log |x|) space on its read-write tapes for every input x.

What if remove the read-once restriction and allow the TM’s head to
move back and forth on the certificate, and read each bit multiple times?
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Space Computation

Immerman-Szelepscényi

Theorem (The Immerman-Szelepscényi Theorem)

REACHABILITY ∈ NL

Proof: See Th.4.20 (p.91) in [2]

It suffices to show a O (log n) verification algorithm A such that:
∀ (G, s, t), ∃ a polynomial certificate u such that:
A((G, s, t), u) = “yes” iff t is not reachable from s.

A has read-once access to u.

G’s vertices are identified by numbers in {1, . . . , n} = [n]

Ci: “The set of vertices reachable from s in ≤ i steps.”

Membership in Ci is easily certified:

∀i ∈ [n]: v0, . . . , vk along the path from s to v, k ≤ i.

The certificate is at most polynomial in n.



Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

Immerman-Szelepscényi
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Space Computation

The Immerman-Szelepscényi Theorem

Proof (cont’d):
We can check the certificate using read-once access:

1 v0 = s
2 for j > 0, (vj−1, vj) ∈ E(G)
3 vk = v
4 Path ends within at most i steps

We now construct two types of certificates:
1 A certificate that a vertex v /∈ Ci, given |Ci|.
2 A certificate that |Ci| = c, for some c, given |Ci−1|.

Since C0 = {s}, we can provide the 2nd certificate to convince the
verifier for the sizes of C1, . . . ,Cn

Cn is the set of vertices reachable from s.



Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

The Immerman-Szelepscényi Theorem

Proof (cont’d):

Since the verifier has been convinced of |Cn|, we can use the 1st
type of certificate to convince the verifier that t /∈ Cn.

Certifying that v /∈ Ci, given |Ci|
The certificate is the list of certificates that u ∈ Ci, for every
u ∈ Ci.
The verifier will check:

1 Each certificate is valid
2 Vertex u, given a certificate for u, is larger than the previous.
3 No certificate is provided for v.
4 The total number of certificates is exactly |Ci|.
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Space Computation

The Immerman-Szelepscényi Theorem

Proof (cont’d):
Certifying that v /∈ Ci, given |Ci−1|
The certificate is the list of certificates that u ∈ Ci−1, for every u ∈ Ci−1

The verifier will check:
1 Each certificate is valid
2 Vertex u, given a certificate for u, is larger than the previous.
3 No certificate is provided for v or for a neighbour of v.
4 The total number of certificates is exactly |Ci−1|.

Certifying that |Ci| = c, given |Ci−1|
The certificate will consist of n certificates, for vertices 1 to n, in
ascending order.
The verifier will check all certificates, and count the vertices that have
been certified to be in Ci. If |Ci| = c, it accepts. □
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The Immerman-Szelepscényi Theorem

Corollary

For every space constructible S(n) > log n:

NSPACE[S(n)] = coNSPACE[S(n)]

Proof:

Let L ∈ NSPACE[S(n)]. We will show that ∃ S(n) space-bounded
NTM M deciding L:

M on input x uses the above certification procedure on the
configuration graph of M. □

Corollary

NL = coNL
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Space Computation

What about Undirected Reachability?

UNDIRECTED REACHABILITY captures the phenomenon of
configuration graphs with both directions.
H. Lewis and C. Papadimitriou defined the class SL (Symmetric
Logspace) as the class of languages decided by a Symmetric
Turing Machine using logarithmic space.
Obviously,

L ⊆ SL ⊆ NL
As in the case of NL, UNDIRECTED REACHABILITY is
SL-complete.
But in 2004, Omer Reingold showed, using expander graphs, a
deterministic logspace algorithm for UNDIRECTED
REACHABILITY, so:

Theorem (Reingold, 2004)

L = SL
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Our Complexity Hierarchy Landscape

L

NL
= coNL

P NP

NPC

co
NP

PSPACE
= NPSPACE

EXP

NEXP
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Reductions & Completeness

Karp Reductions

Definition
A language L1 is Karp reducible to a language L2, denoted by
L1 ≤p

m L2, if there is a function f : Σ∗ → Σ∗, computable by a
polynomial-time DTM, such that for all x ∈ Σ∗:

x ∈ L1 ⇔ f(x) ∈ L2

Definition
Let C be a complexity class.

We say that a language A is C-hard (or ≤p
m-hard for C) if for every

B ∈ C, B ≤p
m A.

We say that a language A is C-complete, if it is C-hard, and also
A ∈ C.
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Reductions & Completeness

Karp reductions vs logspace redutions

Theorem
A logspace reduction is a polynomial-time reduction.

Proof: See Th.8.1 (p.160) in [1]

Let M the logspace reduction TM.

M has 2O(log n) possible configurations.

The machine is deterministic, so no configuration can be repeated
in the computation.

So, the computation takes O
(
nk
)

time, for some k. □
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Reductions & Completeness

Circuits and CVP

Definition (Boolean circuits)
For every n ∈ N an n-input, single output Boolean Circuit C is a
directed acyclic graph with n sources and one sink.

All nonsource vertices are called gates and are labeled with one of ∧
(and), ∨ (or) or ¬ (not).
The vertices labeled with ∧ and ∨ have fan-in (i.e. number or incoming
edges) 2.
The vertices labeled with ¬ have fan-in 1.
For every vertex v of C, we assign a value as follows: for some input
x ∈ {0, 1}n, if v is the i-th input vertex then val(v) = xi, and otherwise
val(v) is defined recursively by applying v’s logical operation on the
values of the vertices connected to v.
The output C(x) is the value of the output vertex.
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Reductions & Completeness

Circuits and CVP

Definition (CVP)
Circuit Value Problem (CVP): Given a circuit C and an assignment x to
its variables, determine whether C(x) = 1.

CVP ∈ P.

Example

REACHABILITY ≤ℓ
m CVP: Graph G→ circuit R(G):

The gates are of the form:
gi,j,k, 1 ≤ i, j ≤ n, 0 ≤ k ≤ n.
hi,j,k, 1 ≤ i, j, k ≤ n

gi,j,k is true iff there is a path from i to j without intermediate
nodes bigger than k.

hi,j,k is true iff there is a path from i to j without intermediate
nodes bigger than k, and k is used.
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Reductions & Completeness

Circuits and CVP

Example

Input gates: gi,j,0 is true iff (i = j or (i, j) ∈ E(G)).

For k = 1, . . . , n: hi,j,k = (gi,k,k−1 ∧ gk,j,k−1)

For k = 1, . . . , n: gi,j,k = (gi,j,k−1 ∨ hi,j,k)

The output gate g1,n,n is true iff there is a path from 1 to n using
no intermediate paths above n (sic).

We also can compute the reduction in logspace: go over all
possible i, j, k’s and output the appropriate edges and sorts for the
variables (1, . . . , 2n3 + n2).
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Reductions & Completeness

Composing Reductions

Theorem

If L1 ≤ℓ
m L2 and L2 ≤ℓ

m L3, then L1 ≤ℓ
m L3.

Proof: See Prop.8.2 (p.164) in [1]

Let R,R′ be the aforementioned reductions.
We have to prove that R′(R(x)) is a logspace reduction.
But R(x) may by longer than log |x|...

We simulate MR′ by remembering the head position i of the input
string of MR′ , i.e. the output string of MR.
If the head moves to the right, we increment i and simulate MR
long enough to take the ith bit of the output.
If the head stays in the same position, we just remember the ith bit.
If the head moves to the left, we decrement i and start MR from
the beginning, until we reach the desired bit. □
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Reductions & Completeness

Closure under reductions

Complete problems are the maximal elements of the reductions
partial ordering.

Complete problems capture the essence and difficulty of a
complexity class.

Definition
A class C is closed under reductions if for all A,B ⊆ Σ∗:
If A ≤ B and B ∈ C, then A ∈ C.

P,NP, coNP,L,NL,PSPACE,EXP are closed under Karp and
logspace reductions.

If an NP-complete language is in P, then P = NP.

If L is NP-complete, then L̄ is coNP-complete.

If a coNP-complete problem is in NP, then NP = coNP.
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If a coNP-complete problem is in NP, then NP = coNP.
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Reductions & Completeness

P-Completeness

Theorem
If two classes C and C′ are both closed under reductions and there is an
L ⊆ Σ∗ complete for both C and C′, then C = C′.

Consider the Computation Table T of a poly-time TM M(x):�� ��Tij represents the contents of tape position j at step i.

But how to remember the head position and state?
At the ith step: if the state is q and the head is in position j, then
Tij ∈ Σ× Q.

We say that the table is accepting if T|x|k−1,j ∈ (Σ× {qyes}), for
some j.

Observe that Tij depends only on the contents of the same or
adjacent positions at time i− 1.



Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

P-Completeness

Theorem
If two classes C and C′ are both closed under reductions and there is an
L ⊆ Σ∗ complete for both C and C′, then C = C′.

Consider the Computation Table T of a poly-time TM M(x):�� ��Tij represents the contents of tape position j at step i.

But how to remember the head position and state?
At the ith step: if the state is q and the head is in position j, then
Tij ∈ Σ× Q.

We say that the table is accepting if T|x|k−1,j ∈ (Σ× {qyes}), for
some j.

Observe that Tij depends only on the contents of the same or
adjacent positions at time i− 1.



Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

P-Completeness

Theorem
CVP is P-complete.

Proof: See Th. 8.1 (p.168) in [1]

We have to show that for any L ∈ P there is a reduction R from L
to CVP.

R(x) must be a variable-free circuit such that x ∈ L⇔ R(x) = 1.

Tij depends only on Ti−1,j−1,Ti−1,j,Ti−1,j+1.

Let Γ = Σ ∪ (Σ× Q).

Encode s ∈ Γ as (s1, . . . , sm), where m = dlog |Γ|e.
Then the computation table can be seen as a table of binary entries
Sijℓ, 1 ≤ ℓ ≤ m.

Sijℓ depends only on the 3m entries Si−1,j−1,ℓ′ , Si−1,j,ℓ′ , Si−1,j+1,ℓ′ ,
where 1 ≤ ℓ′ ≤ m.
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Reductions & Completeness

P-Completeness

Proof (cont’d):

So, there are m Boolean Functions f1, . . . , fm : {0, 1}3m → {0, 1}
s.t.:

Sijℓ = fℓ(
−→
S i−1,j−1,

−→
S i−1,j,

−→
S i−1,j+1)

Thus, there exists a Boolean Circuit C with 3m inputs and m
outputs computing Tij.

C depends only on M, and has constant size.

R(x) will be (|x|k − 1)× (|x|k − 2) copies of C.

The input gates are fixed.

R(x)’s output gate will be the first bit of C|x|k−1,1.

The circuit C is fixed, so we can generate indexed copies of C,
using O (log |x|) space for indexing. □
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Reductions & Completeness

CIRCUIT SAT & SAT

Definition (CIRCUIT SAT)
Given Boolen Circuit C, is there a truth assignment x appropriate to C,
such that C(x) = 1?

Definition (SAT)
Given a Boolean Expression ϕ in CNF, is it satisfiable?

Example

CIRCUIT SAT ≤ℓ
m SAT:

Given C→ Boolean Formula R(C), s.t. C(x) = 1⇔ R(C)(x) = T.

Variables of C→ variables of R(C).

Gate g of C→ variable g of R(C).
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Reductions & Completeness

CIRCUIT SAT & SAT

Example

Gate g of C→ clauses in R(C):
g variable gate: add (¬g ∨ x) ∧ (g ∨ ¬x) ≡ g⇔ x
g TRUE gate: add (g)
g FALSE gate: add (¬g)
g NOT gate & pred(g) = h: add (¬g ∨ ¬h) ∧ (g ∨ h) ≡ g⇔ ¬h
g OR gate & pred(g) = {h, h′}: add
(¬h ∨ g) ∧ (¬h′ ∨ g) ∧ (h ∨ h′ ∨ ¬g) ≡ g⇔ (h ∨ h′)
g AND gate & pred(g) = {h, h′}: add
(¬g ∨ h) ∧ (¬g ∨ h′) ∧ (¬h ∨ ¬h′ ∨ g) ≡ g⇔ (h ∧ h′)
g output gate: add (g)

R(C) is satisfiable if and only if C is.

The construction can be done within log |x| space. □
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Reductions & Completeness

Bounded Halting Problem

We can define the time-bounded analogue of HP:

Definition (Bounded Halting Problem (BHP))

Given the code ⌞M⌟ of an NTM M, and input x and a string 0t, decide
if M accepts x in t steps.

Theorem
BHP is NP-complete.

Proof:

BHP ∈ NP.

Let A ∈ NP. Then, ∃ NTM M deciding A in time p(|x|), for some
p ∈ poly(|x|).

The reduction is the function R(x) = 〈⌞M⌟, x, 0p(|x|)〉. □
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Reductions & Completeness

Cook’s Theorem

Theorem (Cook’s Theorem)
SAT is NP-complete.

Proof: See Th.8.2 (p.171) in [1]

SAT ∈ NP.

Let L ∈ NP. We will show that L ≤ℓ
m CIRCUIT SAT ≤ℓ

m SAT.

Since L ∈ NP, there exists an NPTM M deciding L in nk steps.

Let (c1, . . . , cnk) ∈ {0, 1}n
k

a certificate for M (recall the binary
encoding of the computation tree).
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Reductions & Completeness

Cook’s Theorem

Proof (cont’d):

If we fix a certificate, then the computation is deterministic (the
language’s Verifier V(x, y) is a DPTM).

So, we can define the computation table T(M, x,−→c ).

As before, all non-top row and non-extreme column cells Tij will
depend only on Ti−1,j−1,Ti−1,j,Ti−1,j+1 and the nondeterministic
choice ci−1.

We now fixed a circuit C with 3m+ 1 input gates.

Thus, we can construct in log |x| space a circuit R(x) with variable
gates c1, . . . cnk corresponding to the nondeterministic choices of
the machine.

R(x) is satisfiable if and only if x ∈ L. □
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Reductions & Completeness

NP-completeness: Web of Reductions

Many NP-complete problems stem from Cook’s Theorem via
reductions:

3SAT,MAX2SAT,NAESAT

IS,CLIQUE,VERTEX COVER,MAX CUT

TSP(D), 3COL

SET COVER,PARTITION,KNAPSACK,BIN PACKING

INTEGER PROGRAMMING (IP): Given m inequalities oven n
variables ui ∈ {0, 1}, is there an assignment satisfying all the
inequalities?

Always remember that these are decision versions of the
corresponding optimization problems.

But 2SAT, 2COL ∈ P.
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Reductions & Completeness

NP-completeness: Web of Reductions

Example

SAT ≤ℓ
m IP:

Every clause can be expressed as an inequality, eg:

(x1 ∨ x̄2 ∨ x̄3) −→ x1 + (1− x2) + (1− x3) ≥ 1

This method is generalized by the notion of Constraint Satisfaction
Problems.

A Constraint Satisfaction Problem (CSP) generalizes SAT by
allowing clauses of arbitrary form (instead of ORs of literals).�



�
	3SAT is the subcase of qCSP, where arity q = 3 and the constraints

are ORs of the involved literals.
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Reductions & Completeness

Quantified Boolean Formulas

Definition (Quantified Boolean Formula)
A Quantified Boolean Formula F is a formula of the form:

F = ∃x1∀x2∃x3 · · ·Qnxn ϕ(x1, . . . , xn)

where ϕ is plain (quantifier-free) boolean formula.

Let TQBF the language of all true QBFs.

Example

F = ∃x1∀x2∃x3 [(x1 ∨ ¬x2) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)]

The above is a True QBF ((1, 0, 0) and (1, 1, 1) satisfy it).
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Reductions & Completeness

Quantified Boolean Formulas

Theorem
TQBF is PSPACE-complete.

Proof: See Th. 19.1 (p.456) in [1] – Th.4.13 (p.84) in [2]

TQBF ∈ PSPACE:
Let ϕ be a QBF, with n variables and length m.
Recursive algorithm A(ϕ):
If n = 0, then there are only constants, hence O (m) time/space.
If n > 0:
A(ϕ) = A (ϕ|x1=0) ∨ A (ϕ|x1=1), if Q1 = ∃, and
A(ϕ) = A (ϕ|x1=0) ∧ A (ϕ|x1=1), if Q1 = ∀.
Both recursive computations can be run on the same space.
So spacen,m = spacen−1,m +O (m)⇒ spacen,m = O (n · m).
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Reductions & Completeness

Quantified Boolean Formulas

Proof (cont’d):

Now, let M a TM with space bound p(n).

We can create the configuration graph of M(x), having size
2O(p(n)).

M accepts x iff there is a path of length at most 2O(p(n)) from the
initial to the accepting configuration.

Using Savitch’s Theorem idea, for two configurations C and C′ we
have:
REACH(C,C′, 2i)⇔
⇔ ∃C′′ [REACH(C,C′′, 2i−1) ∧ REACH(C′′,C′, 2i−1)

]

But, this is a bad idea: Doubles the size each time.

Instead, we use additional variables:
∃C′′∀D1∀D2

[
(D1 = C ∧ D2 = C′′) ∨ (D1 = C′′ ∧ D2 = C′)

]
⇒

REACH(D1,D2, 2
i−1)
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Reductions & Completeness

Quantified Boolean Formulas

Proof (cont’d):

The base case of the recursion is C1 → C2, and can be encoded as
a quantifier-free formula.

The size of the formula in the ith step is
spacei ≤ spacei−1 +O (p(n))⇒ O

(
p2(n)

)
. □
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Descriptive Complexity

*Logical Characterizations

Descriptive complexity is a branch of computational complexity
theory and of finite model theory that characterizes complexity
classes by the type of logic needed to express the languages in
them.

Theorem (Fagin’s Theorem)
The set of all properties expressible in Existential Second-Order Logic is
precisely NP.

Theorem
The class of all properties expressible in Horn Existential Second-Order
Logic with Successor is precisely P.

HORNSAT is P-complete.
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Descriptive Complexity

We define complexity classes using a computation
model/mode and complexity measures.

Time/Space constructible functions are used as complexity
measures.

Classes of the same kind form proper hierarchies.

NP is the class of easily verifiable problems: given a certificate,
one can efficiently verify that it is correct.

Savitch’s Theorem implies that PSPACE = NPSPACE.

Summary 1/2
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Descriptive Complexity

Reductions relate problems with respect to hardness.

Complete problems reflect the difficulty of the class.

REACHABILITY is NL-complete.

Immerman-Szelepscényi’s Theorem implies that NL = coNL.

Circuit Value Problem (CVP) is P-complete under logspace
reductions.

CIRCUIT SAT and SAT are NP-complete.

True Quantified Boolean Formula (TQBF) is
PSPACE-complete.

Summary 2/2



Complexity Classes Oracles & The Polynomial Hierarchy

Contents

Introduction
Turing Machines
Undecidability
Complexity Classes
Oracles & The Polynomial Hierarchy
The Structure of NP
Randomized Computation
Non-Uniform Complexity
Interactive Proofs
Inapproximability
Derandomization of Complexity Classes
Counting Complexity
Epilogue



Complexity Classes Oracles & The Polynomial Hierarchy

Oracle Classes

Oracle TMs and Oracle Classes

Definition

A Turing Machine M? with oracle is a multi-string deterministic TM
that has a special string, called query string, and three special states:
q? (query state), and qYES, qNO (answer states). Let A ⊆ Σ∗ be an
arbitrary language. The computation of oracle machine MA proceeds
like an ordinary TM except for transitions from the query state: From
the q? moves to either qYES, qNO, depending on whether the current query
string is in A or not.

The answer states allow the machine to use this answer to its
further computation.

The computation of M? with oracle A on iput x is denoted as
MA(x).
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Oracle Classes

Oracle TMs and Oracle Classes

Definition
Let C be a time complexity class (deterministic or nondeterministic).
Define CA to be the class of all languages decided by machines of the
same sort and time bound as in C, only that the machines have now
oracle access to A. Also, we define: CC21 =

⋃
L∈C2 C

L
1 .

For example, PNP =
⋃

L∈NP P
L. Note that PSAT = PNP.

Theorem

There exists an oracle A for which PA = NPA.

Proof: Th.14.4 (p.340) in [1]

Take A to be a PSPACE-complete language.Then:

PSPACE ⊆ PA ⊆ NPA ⊆ PSPACEA = PSPACEPSPACE ⊆ PSPACE. □
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Oracle Classes

Oracle TMs and Oracle Classes

Theorem

There exists an oracle B for which PB 6= NPB.

Proof: Th.14.5 (p.340-342) in [1]

We will find a language L ∈ NPB \ PB.
Let L = {1n | ∃x ∈ B with |x| = n}.
L ∈ NPB (why?)
We will define the oracle B ⊆ {0, 1}∗ such that L /∈ PB:
Let M?

1,M
?
2, . . . an enumeration of all PDTMs with oracle, such

that every machine appears infinitely many times in the
enumeration.
We will define B iteratively: B0 = ∅, and B =

⋃
i≥0 Bi.

In ith stage, we have defined Bi−1, the set of all strings in B with
length < i.
Let also X the set of exceptions.
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Oracle Classes

Proof (cont’d):

We simulate M
Bi−1

i (1i) for ilog i steps.

How do we answer the oracle questions “Is x ∈ B”?

If |x| < i, we look for x in Bi−1.

→ If x ∈ Bi−1, M
Bi−1

i goes to qYES
→ Else M

Bi−1

i goes to qNO

If |x| ≥ i, M
Bi−1

i goes to qNO ,and x→ X.

Suppose that after at most ilog i steps the machine rejects.
Then we define Bi = Bi−1 ∪ {x ∈ {0, 1}∗ : |x| = i, x /∈ X}
so 1i ∈ L, and L(MBi

i ) 6= L.
Why {x ∈ {0, 1}∗ : |x| = i, x /∈ X} 6= ∅ ? ?

If the machine accepts, we define Bi = Bi−1, so that 1i /∈ L.

If the machine fails to halt in the allotted time, we set Bi = Bi−1,
but we know that the same machine will appear in the
enumeration with an index sufficiently large. □
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A First Barrier: The Limits of Diagonalization

As we saw, an oracle can transfer us to an alternative
computational “universe”.
(We saw a universe where P = NP, and another where P 6= NP)

Diagonalization is a technique that relies in the facts that:�
�

�
�

TMs are (effectively) represented by strings.

A TM can simulate another without much overhead in
time/space.

So, diagonalization or any other proof technique relies only on
these two facts, holds also for every oracle.

Such results are called relativizing results.
E.g., PA ⊆ NPA, for every A ∈ {0, 1}∗.

The above two theorems indicate that P vs. NP is a
nonrelativizing result, so diagonalization and any other
relativizing method doesn’t suffice to prove it.
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Oracle Classes

Cook Reductions

A problem A is Cook-Reducible to a problem B, denoted by
A ≤p

T B, if there is an oracle DTM MB which in polynomial time
decides A (making at most polynomial many queries to B).

That is: A ∈ PB.

A ≤p
m B⇒ A ≤p

T B

A ≤p
T A

Theorem

P,PSPACE are closed under ≤p
T.

Is NP closed under ≤p
T? (cf. Problem Sets!)
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*Random Oracles

We proved that:
∃A ⊆ Σ∗ : PA = NPA

∃B ⊆ Σ∗ : PB 6= NPB

What if we chose the oracle language at random?

Now, consider the set U = Pow(Σ∗), and the sets:

{A ∈ U : PA = NPA}

{B ∈ U : PB 6= NPB}

Can we compare these two sets, and find which is larger?

Theorem (Bennet, Gill)

PrB⊆Σ∗
[
PB 6= NPB] = 1

See H. Vollmer & K.W. Wagner, “Measure one Results in Computational Complexity Theory”

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.5215&rep=rep1&type=pdf
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Polynomial Hierarchy Definition

∆p
0 = Σp

0 = Πp
0 = P

∆p
i+1 = PΣp

i

Σp
i+1 = NPΣp

i

Πp
i+1 = coNPΣp

i

PH ≡
⋃
i⩾0

Σp
i

Σp
0 = P

∆p
1 = P, Σp

1 = NP, Πp
1 = coNP

∆p
2 = PNP, Σp

2 = NPNP, Πp
2 = coNPNP
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Theorem

Let L be a language , and i ≥ 1. L ∈ Σp
i iff there is a polynomially

balanced relation R such that the language {x; y : (x, y) ∈ R} is in Πp
i−1

and
L = {x : ∃y, s.t. : (x, y) ∈ R}

Proof (by Induction): Th.17.8 (p.425) in [1]�� ��For i = 1:
{x; y : (x, y) ∈ R} ∈ P,so L = {x|∃y : (x, y) ∈ R} ∈ NP ✓

�� ��For i > 1:
If ∃R ∈ Πp

i−1, we must show that L ∈ Σp
i ⇒

∃ NTM with Σp
i−1 oracle: NTM(x) guesses a y and asks Σp

i−1

oracle whether (x, y) /∈ R.
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Proof (cont’d):
If L ∈ Σp

i , we must show the existence of R:

L ∈ Σp
i ⇒ ∃ NTM MK, K ∈ Σp

i−1, which decides L.

K ∈ Σp
i−1 ⇒ ∃S ∈ Πp

i−2 : (z ∈ K⇔ ∃w : (z,w) ∈ S).

We must describe a relation R (we know: x ∈ L⇔ accepting
computation of MK(x))

Query Steps: “yes”→ zi has a certificate wi st (zi,wi) ∈ S.

So, R(x, y) =“(x, y) ∈ R iff y records an accepting computation
ofM?on x , together with a certificate wi for each yes query zi in the
computation.”

We must show {x; y : (x, y) ∈ R} ∈ Πp
i−1:

Check that all steps of M? are legal (poly time).
Check that (zi,wi) ∈ S (in Πp

i−2, and thus in Πp
i−1).

For all “no” queries z′i , check z′i /∈ K (another Πp
i−1). □
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Corollary

Let L be a language , and i ≥ 1. L ∈ Πp
i iff there is a polynomially

balanced relation R such that the language {x; y : (x, y) ∈ R} is in Σp
i−1

and
L = {x : ∀y, |y| ≤ |x|k, s.t. : (x, y) ∈ R}

Corollary

Let L be a language , and i ≥ 1. L ∈ Σp
i iff there is a polynomially

balanced, polynomially-time decicable (i+ 1)-ary relation R such that:

L = {x : ∃y1∀y2∃y3...Qyi, s.t. : (x, y1, ..., yi) ∈ R}

where the ith quantifier Q is ∀, if i is even, and ∃, if i is odd.
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Remark

Σp
i = (∃∀∃ · · ·Qi︸ ︷︷ ︸

i quantifiers

/ ∀∃∀ · · ·Q′
i︸ ︷︷ ︸

i quantifiers

) Πp
i = (∀∃∀ · · ·Qi︸ ︷︷ ︸

i quantifiers

/ ∃∀∃ · · ·Q′
i︸ ︷︷ ︸

i quantifiers

)

Theorem

If for some i ≥ 1, Σp
i = Πp

i , then for all j > i:

Σp
j = Πp

j = ∆p
j = Σp

i

Or, the polynomial hierarchy collapses to the ith level.

Proof: Th.17.9 (p.427) in [1]

It suffices to show that: Σp
i = Πp

i ⇒ Σp
i+1 = Σp

i .
Let L ∈ Σp

i+1 ⇒ ∃R ∈ Πp
i : L = {x|∃y : (x, y) ∈ R}

Πp
i = Σp

i ⇒ R ∈ Σp
i

(x, y) ∈ R⇔ ∃z : (x, y, z) ∈ S, S ∈ Πp
i−1.

So, x ∈ L⇔ ∃y; z : (x, y, z) ∈ S, S ∈ Πp
i−1, hence L ∈ Σp

i . □
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Corollary
If P=NP, or even NP=coNP, the Polynomial Hierarchy collapses to the
first level.

QSATi Definition

Given expression ϕ, with Boolean variables partitioned into i sets Xi,is
ϕ satisfied by the overall truth assignment of the expression:

∃X1∀X2∃X3.....QXiϕ

where Q is ∃ if i is odd, and ∀ if i is even.

Theorem

For all i ≥ 1 QSATi is Σp
i -complete.
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Theorem
If there is a PH-complete problem, then the polynomial hierarchy
collapses to some finite level.

Proof: Th.17.11 (p.429) in [1]

Let L is PH-complete.

Since L ∈ PH, ∃i ≥ 0 : L ∈ Σp
i .

But any L′ ∈ Σp
i+1 reduces to L.

Since PH is closed under reductions, we imply that L′ ∈ Σp
i , so

Σp
i = Σp

i+1. □

Theorem
PH ⊆ PSPACE

PH ?
= PSPACE (Open). If it was, then PH has complete

problems, so it collapses to some finite level.
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Relativized Results

Let’s see how the inclusion of the Polynomial Hierarchy to Polynomial
Space, and the inclusions of each level of PH to the next relativizes:

PHA 6= PSPACEA relative to some oracle A ⊆ Σ∗.
(Yao 1985, Håstad 1986)

PrA[PHA 6= PSPACEA] = 1
(Cai 1986, Babai 1987)

(∀i ∈ N) Σp,A
i ⊊ Σp,A

i+1 relative to some oracle A ⊆ Σ∗.
(Yao 1985, Håstad 1986)

PrA[(∀i ∈ N) Σp,A
i ⊊ Σp,A

i+1] = 1
(Rossman-Servedio-Tan, 2015)
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The Complexity of Optimization Problems

Self-Reducibility of SAT

For a Boolean formula ϕ with n variables and m clauses.
It is easy to see that:�� ��ϕ ∈ SAT⇔ (ϕ|x1=0 ∈ SAT) ∨ (ϕ|x1=1 ∈ SAT)
Thus, we can self-reduce SAT to instances of smaller size.
Self-Reducibility Tree of depth n:

Example

ϕ(x1, x2)

ϕ|x1=0

ϕ|x1=0,x2=0 ϕ|x1=0,x2=1

ϕ|x1=1

ϕ|x1=1,x2=0 ϕ|x1=1,x2=1
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Self-Reducibility of SAT

Definition (FSAT)
FSAT: Given a Boolean expression ϕ, if ϕ is satisfiable then return a
satisfying truth assignment for ϕ. Otherwise return “no”.

FP is the function analogue of P: it contains functions computable
by a DTM in poly-time.

FSAT ∈ FP⇒ SAT ∈ P.

What about the opposite?

If SAT ∈ P, we can use the self-reducibility property to fix
variables one-by-one, and retrieve a solution.

We only need 2n calls to the alleged poly-time algorithm for SAT.
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What about the opposite?

If SAT ∈ P, we can use the self-reducibility property to fix
variables one-by-one, and retrieve a solution.

We only need 2n calls to the alleged poly-time algorithm for SAT.
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The Complexity of Optimization Problems

What about TSP?

We can solve TSP using a hypothetical algorithm for the
NP-complete decision version of TSP:

We can find the cost of the optimum tour by binary search (in
the interval [0, 2n]).

When we find the optimum cost C, we fix it, and start changing
intercity distances one-by one, by setting each distance to C+ 1.

We then ask the NP-oracle if there still is a tour of optimum cost
at most C:

If there is, then this edge is not in the optimum tour.
If there is not, we know that this edge is in the optimum tour.

After at most n2 (polynomial) oracle queries, we can extract the
optimum tour, and thus have the solution to TSP.
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The Complexity of Optimization Problems

The Classes PNP and FPNP

PSAT is the class of languages decided in pol time with a SAT
oracle (Polynomial number of adaptive queries).
SAT is NP-complete⇒ PSAT=PNP.
FPNP is the class of functions that can be computed by a
poly-time DTM with a SAT oracle.
FSAT,TSP ∈ FPNP.

Definition (Reductions for Function Problems)

A function problem A reduces to B if there exists R, S ∈ FL such that:

x ∈ A⇒ R(x) ∈ B.

If z is a correct output of R(x), then S(z) is a correct output of x.

Theorem

TSP is FPNP-complete.
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Oracle TMs have one-step oracle access to some language.

There exist oracles A,B ⊆ Σ∗ such that PA = NPA and
PB 6= NPB.

Relativizing results hold for every oracle.

A Cook reduction A ≤p
T B is a poly-time TM deciding A, by

using B as an oracle.
The Polynomial Hierarchy can be viewed as:

Oracle hierarchy of consecutive NP oracles.
Quantifier hierarchy of alternating quantifiers.

If for some i ≥ 1 Σp
i = Πp

i , or there is a PH-complete
problem, then PH collapses to some finite level.

Optimization problems with decision version in NP (such as
TSP) are in FPNP.

Summary
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The Complexity of Optimization Problems

The Complexity Universe
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The Structure of NP Randomized Computation

Existence of NP-“Intermediate” Problems

Problems...

After years of efforts, there are problems in NP without a
polynomial-time algorithm or a completeness proof.

Famous examples: FACTORINGD, GI (Graph Isomorphism).
(where FACTORINGD is the problem of deciding if a given
number has a factor ≤ k).

So, are there NP problems that are neither in P nor NP-complete?
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Existence of NP-“Intermediate” Problems

Degrees

The ≤p
T-degree of a language A consists of all languages L such

that L ≡p
T A (that is, L ≤p

T A ∧ A ≤p
T L).

There are three possibilities:
P = NP, thus all languages in NP are ≤p

T-complete for NP, so NP
contains exactly one ≤p

T-degree.

P 6= NP, and NP contains two different degrees: P and
NP-complete languages.

P 6= NP, and NP contains more degrees, so there exists a language
in NP \ P that is not NP-complete.

We will show that the second case cannot happen.
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Existence of NP-“Intermediate” Problems

Enumerations

Recall that any string can potentially encode a TM.
(We map all the invalid encodings to the “empty” TM M0, which
reject all strings.)

A TM M is encoded by infinitely many strings.

So, there exists a function e(x) such that:
1 For every x ∈ Σ∗, e(x) represents a TM.
2 Every TM is represented by at least one e(x).
3 The code of the TM e(x) can be easily decoded.

Such a function is called an enumeration of TMs (Deterministic
or Nondeterministic).
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Existence of NP-“Intermediate” Problems

Enumerations

When we consider classes like P or NP, we can easily enumerate
only these machines, a subclass of all DTMs (NTMs):

Recall that if a function is time-constructible, there exists a DTM
halting after exactly t(n) moves. Such a machine is called a
t(n)-clock machine.

For any DTM M1, we can attach a t(n)-clock machine M2 and
obtain a “product” machine M3 = 〈M1,M2〉, which halts if either
M1 or M2 halts, and accepts only if M1 accepts.
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Existence of NP-“Intermediate” Problems

Enumerations

Consider the functions pi(n) = ni, i ≥ 1.

If {Mx} is an enumeration of DTMs, let M⟨x,i⟩ be the machine Mx
attached with a pi(n)-clock machine.

Then, {M⟨x,i⟩} is an enumeration of all polynomial-time
clocked machines, and it is an enumeration of languages in P,
such that:

Every machine M⟨x,i⟩ accepts a language in P.
Every language in P is accepted by at least a machine in the
enumeration (in fact, by infinite number of machines).
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Existence of NP-“Intermediate” Problems

Enumerations

The same holds for NP.
(enumerate all poly-time alarm clocked NTMs)

We can do the same trick with space, using a yardstick, a DTM
that halts after visiting exactly s(n) memory cells.

We can also enumerate all the functions in FP, and all
polynomial-time oracle DTMs or NTMs.

This list will not contain all the poly-time bounded machines!
(Reminder: It is undecidable to determine whether a given TM halts in
polynomial time for all inputs.)
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Existence of NP-“Intermediate” Problems

Ladner’s Theorem

Theorem (Ladner)
If P 6= NP, there exists a language in NP, which is neither in P nor
NP-complete.

Proof (Blowing holes in SAT): Th. 14.1 (p.330) in [1]

Idea: We will construct a language A by taking an NP-complete
language, and “blow holes” to it, so that it is no longer
NP-complete, neither in P.

Let {Mi} an enumeration of all polynomial-time clocked TMs.

Let {Fi} an enumeration of all polynomial-time clocked functions.

Define A as follows:

A = {x | x ∈ SAT ∧ f(|x|) is even}
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Existence of NP-“Intermediate” Problems

Ladner’s Theorem

Proof (cont’d):

If f ∈ FP, then A ∈ NP: Guess a truth assignment, compute
f(|x|) and verify.

We define f by a polynomial-time TM Mf computing it.

Let also MSAT be the machine that decides SAT, and
f(0) = f(1) = 2.

On input 1n, Mf operates in two stages, each lasting for exactly n
steps:�� ��First Stage
Mf computes f(0), f(1), . . . until it runs out of time.

Let f(x) = k the last value of f it was able to compute.
Then Mf outputs either k or k+ 1, to be determined in the next
stage:
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Existence of NP-“Intermediate” Problems

Ladner’s Theorem

Proof (cont’d):�� ��Second Stage
If k = 2i:

Mf tries to find a z ∈ {0, 1}∗ such that Mi(z) outputs the wrong
answer to “z ∈ A” question (Mi(z) 6= A(z)):

Simulate Mi(z),MSAT(z), f(|z|) for all z in lexicographic order.
If such a string is found in the allotted time, output k+ 1, else
output k.

If k = 2i− 1:
Mf tries to find a string z such that Fi(z) is an incorrect Karp
reduction from SAT to A (MSAT(z) 6= A(Fi(z))):

Simulate Fi(z),MSAT(z),MSAT(Fi(z)), f(|Fi(z)|) for all z in
lexicographic order.
If such a string is found in the allotted time, output k+ 1, else
output k.

Mf runs in polynomial time.
f(n+ 1) ≥ f(n).
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Existence of NP-“Intermediate” Problems

Ladner’s Theorem

Proof (cont’d):

We claim that A /∈ P:

Suppose that A ∈ P. Then, there is an i s.t. L(Mi) = A.

Then, the second stage of Mf with k = 2i will never find a z
satisfying the desired property.

f(n) = 2i for all n ≥ n0, for some n0.

So, f(n) is even for all but finitely many n.

A coincides with SAT on all but finitely many input sizes.

Then SAT ∈ P, contradiction!
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Existence of NP-“Intermediate” Problems

Ladner’s Theorem

Proof (cont’d):

We claim that A is not NP-complete:

Suppose that A is NP-complete, then there is a reduction Fi from
SAT to A.

Then, the second stage of Mf with k = 2i− 1 will never find a z
satisfying the desired property.

So, f(n) is odd on all but finitely many input sizes.

Then A is a finite language, hence in P, contradiction! □
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Existence of NP-“Intermediate” Problems

Using the same technique, we can prove an analog of Post’s
problem in Recursion Theory:

Theorem

If P 6= NP, there exist A,B ∈ NP such that A ≰p
T B and B ≰p

T A.

Ladner’s Theorem (generalized by Schöning) implies also that:

Corollary

If P 6= NP, then for every language B ∈ NP \ P, there exists a set
A ∈ NP \ P such that A ≤p

T B and B ≰p
T A.�

�
�


So, if P 6= NP, then NP contains
infinitely many distinct ≤p

T-degrees.
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Padding

Polynomial-Time Isomorphism

All NP-complete problems are related through reductions.

Many reductions can be converted to stronger relations:

Definition
Two languages A,B ⊆ Σ∗ are polynomial-time isomorphic if there
exists a function h : Σ∗ → Σ∗ such that:

1 h is a bijection.
2 For all x ∈ Σ∗: x ∈ A⇔ h(x) ∈ B.
3 Both h and h−1 are polynomial-time computable.

Functions h and h−1 are then called polynomial-time isomorphisms.

Which reductions are polynomial-time isomorphisms?
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Padding

Padding Functions

Definition
Let L ⊆ Σ∗ be a language. We say that function pad : Σ∗ × Σ∗ → Σ∗

is a padding function for L if it has the following properties:
1 It is computable in logarithmic space.
2 Forall x, y ∈ Σ∗, pad(x, y) ∈ L⇔ x ∈ L.
3 Forall x, y ∈ Σ∗, |pad(x, y)| > |x|+ |y|
4 There is a logarithmic-space algorithm, which, given pad(x, y)

recovers y.

Such languages are called paddable.

Function pad is essentially a length-increasing reduction from L to
itself that “encodes” another string y into the instance of L.
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Padding

Padding Functions Examples

Example (SAT)

Let x an instance with n variables and m clauses. Let y ∈ Σ∗:
pad(x, y) is an instance of SAT containing all clauses of x, plus m+ |y|
more clauses, and |y|+ 1 more variables.

The first m clauses are copies of xn+1 clause.

The last m+ ith (i = 1, · · · , |y|) are either ¬xn+i+1 (if y(i) = 0 )
or xn+i+1 (if y(i) = 1).

Is that a padding function?
1 It is log-space computable.
2 It doesn’t affect x’s satisfiability.
3 It is length increasing.
4 Given pad(x, y) we can find where the “added” part begins.
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Polynomial-Time Isomorphism

Padding Functions

We would like to have this kind of implication:
(A ≤p

m B) ∧ (B ≤p
m A) ?⇒(A isomorphic to B).

But, unfortunately, this is not sufficient.

We finally want to have a polynomial-time version of
Schröder-Bernstein Theorem:

Theorem (Schröder-Bernstein)
If there exists a 1-1 mapping from a set A to a set B, and a 1-1 mapping
from B to A, then there is a bijection between A and B.

To achieve this analogy, we need to “enhance” our reductions with
the previous features (1-1, length increasing, and polynomial time
computable and invertible).
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Polynomial-Time Isomorphism

Padding Functions

We can use padding function to transform regular reductions to
“desired” ones:

Theorem
Let R be a reduction from A to B, and pad a padding function for B.
Then, the function mapping x ∈ Σ∗ to pad(R(x), x) is a
length-increasing 1-1 reduction. Furthermore, there exists R−1,
computable in logarithmic space, which given pad(R(x), x) recovers x.

Theorem (Polynomial-time version of Schröder-Bernstein Theorem)

Let A and B be paddable languages. If A ≤p
m B and B ≤p

m A, then A
and B are polynomial-time isomorphic.
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Polynomial-Time Isomorphism

Padding Functions

Corollary
The following NP-complete languages are pol. isomorphic:
SAT, VERTEX COVER, HAMILTON PATH, CLIQUE, MAX CUT,
TRIPARTITE MATCHING, KNAPSACK

We can (almost trivially) find padding functions for every known
NP-complete problem.

Definition (Berman-Hartmanis Conjecture)
All NP-complete languages are polynomial-time isomorphic to each
other!

Berman-Hartmanis Conjecture⇒ P 6= NP (why?)
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Applications of Padding

Translation Results

Theorem
If NEXP 6= EXP, then P 6= NP.

Proof:
We will prove that if P = NP, then NEXP = EXP.
Let L ∈ NTIME[2n

c
] and M a TM deciding it. We define:

Lp = {x$2
|x|c | x ∈ L}

Lp is in NP: Simulate M(x) for 2|x|
c

steps and output the answer.
The running time of this machine is polynomial in its input size.
By our assumption, Lp ∈ P.
We can use the machine in P to decide L in EXP: on input x, pad
it using 2|x|

c
$’s, and use the machine in P to decide Lp.

The running time is 2|x|
c
, so L ∈ EXP. □
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Applications of Padding

Separation Results

Let E = DTIME[2O(n)].

Theorem

E 6= PSPACE

Proof:

Assume that E = PSPACE.

Let L ∈ DTIME[2n
2

].

We define:
Lp = {x$ℓ | x ∈ L ∧ |x$ℓ| = |x|2}

Lp ∈ DTIME[2n]

From our assumption: Lp ∈ PSPACE⇒ Lp ∈ DSPACE[nk], for
some k ∈ N.
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Given x, add ℓ = |x|2 − |x| $’s, and simulate the nk-space-bounded
machine on the padded input.
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Density

Density of Languages

Definition
Let L ⊆ Σ∗ be a language. We define as its density the following
function from N→ N:

densL(n) = |{x ∈ L : |x| ≤ n}|

densL(n) is the number of strings in L of length up to n.

Theorem
If A,B ⊆ Σ∗ are polynomial-time isomorphic, then densA and densB are
polynomially related.

Proof:
All x ∈ A with |x| ≤ n are mapped to y ∈ B with |y| ≤ p(n),
where p is the polynomial bound of the isomorphism.
The mapping is 1-1, so densA(n) ≤ densB(p(n)). □
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Density

Sparse Languages

Definition
A language L is sparse if there exists a polynomial q such that for every
n ∈ N : densL(n) ≤ q(n).

Theorem
If a language A is paddable, then it is not sparse.

Proof:
Let A ⊆ Σ∗ with padding function p : Σ∗ × Σ∗ → Σ∗.
Suppose that A is sparse: ∃q ∀n ∈ N : densA(n) ≤ q(n).
Since p ∈ FP, ∃ r ∈ poly(n) : |p(x, y)| ≤ r(|x|+ |y|).
Fix a x ∈ A, since p is 1-1 :

2n ≤ |{p(x, y) : |y| ≤ n}| ≤ densA(r(|x|+ n)) ≤ q(r(|x|+ n))

Thus, 2n/q(r(|x|+ n)) ≤ 1. Contradiction! □
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Sparse Languages

Theorem
If the Berman-Hartmanis conjecture is true, then all NP-complete and
all coNP-complete languages are not sparse.

Proof:

Berman-Hartmanis conjecture is true⇒ every NP-complete
language A is polynomial-time isomorphic to SAT.

Let f be this isomorphism, and padSAT a padding function for
SAT.

Define pA(x, y) := f−1
(padSAT(f(x), y))

Then x ∈ A⇔ f(x) ∈ SAT⇔ padSAT(f(x), y) ∈ SAT⇔
f−1

(padSAT(f(x), y)) ∈ A.

padSAT and f are polynomial time computable and invertible.
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Density

Sparse Languages

Proof (cont’d):

So, pA is a padding function for A, hence A is paddable.

By the previous theorem, A is not sparse.

Also, the complements of paddable languages are paddable
(why?), so coNP-complete languages are also not sparse. □

Theorem (Mahaney)

If P 6= NP, all NP-complete languages are not sparse.
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Sparse Languages

Theorem (Mahaney)

For any sparse S 6= ∅, SAT ≤p
m S if and only if P = NP.

Proof: (Ogihara-Watanabe)

(⇐) trivial.

(⇒) Let LSAT the language:

LSAT = {〈ϕ, σ〉 |ϕ boolean formula, and ∃τ, τ � σ : ϕ|τ = T}

Note that 〈ϕ, 1n〉 ∈ LSAT⇔ ϕ ∈ SAT, so LSAT is
NP-complete.

Also, if σ1 � σ2 and 〈ϕ, σ1〉 ∈ LSAT, then 〈ϕ, σ2〉 ∈ LSAT.

So, LSAT ≤p
m S, and let f be the reduction.
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Sparse Languages

Proof (cont’d):

Consider the self-reducibility tree of ϕ as a partial assignments
tree:

ϕ(x1, x2, x3)

ϕ|x1=0

ϕ|x1x2=00

ϕ|000 ϕ|001

ϕ|x1x2=01

ϕ|010 ϕ|011

ϕ|x1=1

ϕ|x1x2=10

ϕ|100 ϕ|101

ϕ|x1x2=11

ϕ|110 ϕ|111
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Density

Sparse Languages

Proof (cont’d):
We will use the reduction f as a subroutine to an algorithm for
SAT.
If the algorithm is in polynomial time, P = NP.

Since f ∈ FP, |f(x)| ≤ p(|x|), for a polynomial p and every
x ∈ Σ∗.
Also, since S sparse, let the polynomial q(n) = |S ∩ Σ≤p(n)|.
The algorithm will work on the p.a. tree by pruning some nodes at
each level:

Start from root.
If the next level has > q(n) nodes,
prune until the nodes will be ≤ q(n).
Output 1 if there is a satisfying t.a.

At the end, there will be n levels with at most q(n) nodes each, so
the tree is polynomial.
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Sparse Languages

Proof (cont’d):
Pruning Procedure

Remove Duplicates:
If f(〈ϕ, σ1〉) = f(〈ϕ, σ2〉) and σ1 � σ2, then we throw away σ2.

Remove leftmost nodes:
If there are > q(n) nodes, remove the leftmost partial assignment,
until there are q(n) nodes left.

Correctness: If ϕ satisfiable, at the end of iteration on each level,
there is an ancestor of the lexicographically smallest t.a. of ϕ.
For duplicates removal, since f(〈ϕ, σ2〉) ∈ S⇒ f(〈ϕ, σ1〉) ∈ S, ϕ
has a satifying t.a. smaller than σ1.
For leftmost nodes removal, if the level contains more than q
nodes, there will be at least one σ s.t. f(〈ϕ, σ〉) /∈ S (S has ≤ q(n)
strings). Then ϕ will not have a satisfying t.a. smaller than σ, so all
partial t.a.’s to the left of σ can be pruned. □



The Structure of NP Randomized Computation

Density

Sparse Languages

Proof (cont’d):
Pruning Procedure

Remove Duplicates:
If f(〈ϕ, σ1〉) = f(〈ϕ, σ2〉) and σ1 � σ2, then we throw away σ2.

Remove leftmost nodes:
If there are > q(n) nodes, remove the leftmost partial assignment,
until there are q(n) nodes left.

Correctness: If ϕ satisfiable, at the end of iteration on each level,
there is an ancestor of the lexicographically smallest t.a. of ϕ.
For duplicates removal, since f(〈ϕ, σ2〉) ∈ S⇒ f(〈ϕ, σ1〉) ∈ S, ϕ
has a satifying t.a. smaller than σ1.
For leftmost nodes removal, if the level contains more than q
nodes, there will be at least one σ s.t. f(〈ϕ, σ〉) /∈ S (S has ≤ q(n)
strings). Then ϕ will not have a satisfying t.a. smaller than σ, so all
partial t.a.’s to the left of σ can be pruned. □



The Structure of NP Randomized Computation

Density

Sparse Languages

Proof (cont’d):
Pruning Procedure

Remove Duplicates:
If f(〈ϕ, σ1〉) = f(〈ϕ, σ2〉) and σ1 � σ2, then we throw away σ2.

Remove leftmost nodes:
If there are > q(n) nodes, remove the leftmost partial assignment,
until there are q(n) nodes left.

Correctness: If ϕ satisfiable, at the end of iteration on each level,
there is an ancestor of the lexicographically smallest t.a. of ϕ.

For duplicates removal, since f(〈ϕ, σ2〉) ∈ S⇒ f(〈ϕ, σ1〉) ∈ S, ϕ
has a satifying t.a. smaller than σ1.
For leftmost nodes removal, if the level contains more than q
nodes, there will be at least one σ s.t. f(〈ϕ, σ〉) /∈ S (S has ≤ q(n)
strings). Then ϕ will not have a satisfying t.a. smaller than σ, so all
partial t.a.’s to the left of σ can be pruned. □



The Structure of NP Randomized Computation

Density

Sparse Languages

Proof (cont’d):
Pruning Procedure

Remove Duplicates:
If f(〈ϕ, σ1〉) = f(〈ϕ, σ2〉) and σ1 � σ2, then we throw away σ2.

Remove leftmost nodes:
If there are > q(n) nodes, remove the leftmost partial assignment,
until there are q(n) nodes left.

Correctness: If ϕ satisfiable, at the end of iteration on each level,
there is an ancestor of the lexicographically smallest t.a. of ϕ.
For duplicates removal, since f(〈ϕ, σ2〉) ∈ S⇒ f(〈ϕ, σ1〉) ∈ S, ϕ
has a satifying t.a. smaller than σ1.

For leftmost nodes removal, if the level contains more than q
nodes, there will be at least one σ s.t. f(〈ϕ, σ〉) /∈ S (S has ≤ q(n)
strings). Then ϕ will not have a satisfying t.a. smaller than σ, so all
partial t.a.’s to the left of σ can be pruned. □



The Structure of NP Randomized Computation

Density

Sparse Languages

Proof (cont’d):
Pruning Procedure

Remove Duplicates:
If f(〈ϕ, σ1〉) = f(〈ϕ, σ2〉) and σ1 � σ2, then we throw away σ2.

Remove leftmost nodes:
If there are > q(n) nodes, remove the leftmost partial assignment,
until there are q(n) nodes left.

Correctness: If ϕ satisfiable, at the end of iteration on each level,
there is an ancestor of the lexicographically smallest t.a. of ϕ.
For duplicates removal, since f(〈ϕ, σ2〉) ∈ S⇒ f(〈ϕ, σ1〉) ∈ S, ϕ
has a satifying t.a. smaller than σ1.
For leftmost nodes removal, if the level contains more than q
nodes, there will be at least one σ s.t. f(〈ϕ, σ〉) /∈ S (S has ≤ q(n)
strings). Then ϕ will not have a satisfying t.a. smaller than σ, so all
partial t.a.’s to the left of σ can be pruned. □



The Structure of NP Randomized Computation

Density

Classes like NP, PSPACE or FP can be effectively
enumerated.

If P 6= NP, there exist problems in NP which are not
NP-complete neither in P.

We can obtain polynomial-time isomorphisms between
languages, given they are interreducible and paddable.

Berman-Hartmanis Conjecture postulates that all NP-complete
languages are polynomial-time isomorphic to each other.

We can use padding to translate upwards equalities between
complexity classes.

If P 6= NP, then a sparse set cannot be ≤p
m-hard for NP.

Summary
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Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

1 Two polynomials are equal if they have the same coefficients for
corresponding powers of their variable.

2 A polynomial is identically zero if all its coefficients are equal to
the additive identity element.

3 How we can test if a polynomial is identically zero?

4 We can choose uniformly at random r1, . . . , rn from a set S ⊆ F.
5 We are wrong with a probability at most:

Theorem (Schwartz-Zippel Lemma)

Let Q(x1, . . . , xn) ∈ F[x1, . . . , xn] be a multivariate polynomial of total
degree d. Fix any finite set S ⊆ F, and let r1, . . . , rn be chosen
indepedently and uniformly at random from S. Then:

Pr[Q(r1, . . . , rn) = 0|Q(x1, . . . , xn) 6= 0] ≤ d
|S|
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Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

Proof (By Induction on n):

Base: Pr[Q(r) = 0|Q(x) 6= 0] ≤ d/|S|
Step:

Q(x1, . . . , xn) =
k∑

i=0

xi1Qi(x2, . . . , xn)

where k ≤ d is the largest exponent of x1 in Q.
deg(Qk) ≤ d− k⇒ Pr[Qk(r2, . . . , rn) = 0] ≤ (d− k)/|S|
Suppose that Qk(r2, . . . , rn) 6= 0. Then:

q(x1) = Q(x1, r2, . . . , rn) =
k∑

i=0

xi1Qi(r2, . . . , rn)

deg(q(x1)) = k, and q(x1) 6= 0!
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Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

Proof (cont’d):
The base case now implies that:

Pr[q(r1) = Q(r1, . . . , rn) = 0] ≤ k/|S|

Thus, we have shown the following two equalities:

Pr[Qk(r2, . . . , rn) = 0] ≤ d− k
|S|

Pr[Qk(r1, r2, . . . , rn) = 0|Qk(r2, . . . , rn) 6= 0] ≤ k
|S|

Using the following identity: Pr[E1] ≤ Pr[E1|E2] + Pr[E2] we obtain
that the requested probability is no more than the sum of the above,
which proves our theorem! □
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Computational Model

Probabilistic Turing Machines

A Probabilistic Turing Machine is a TM as we know it, but with
access to a “random source”, that is an extra (read-only) tape
containing random-bits!

Randomization on:
Output (one or two-sided)
Running Time

Definition (Probabilistic Turing Machines)

A Probabilistic Turing Machine is a TM with two transition functions δ0, δ1.
On input x, we choose in each step with probability 1/2 to apply the transition
function δ0 or δ1, indepedently of all previous choices.

We denote by M(x) the random variable corresponding to the output of
M at the end of the process.

For a function T : N→ N, we say that M runs in T(|x|)-time if it halts
on x within T(|x|) steps (regardless of the random choices it makes).
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Definition (Probabilistic Turing Machines)

A Probabilistic Turing Machine is a TM with two transition functions δ0, δ1.
On input x, we choose in each step with probability 1/2 to apply the transition
function δ0 or δ1, indepedently of all previous choices.

We denote by M(x) the random variable corresponding to the output of
M at the end of the process.

For a function T : N→ N, we say that M runs in T(|x|)-time if it halts
on x within T(|x|) steps (regardless of the random choices it makes).
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Complexity Classes

BPP Class

Definition (BPP Class)

For T : N→ N, let BPTIME[T(n)] the class of languages L such that
there exists a PTM which halts in O (T(|x|)) time on input x, and
Pr[M(x) = L(x)] ≥ 2/3.
We define:

BPP =
⋃
c∈N

BPTIME[nc]

The class BPP represents our notion of efficient (randomized)
computation!

We can also define BPP using certificates:
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Complexity Classes

BPP Class

Definition (Alternative Definition of BPP)
A language L ∈ BPP if there exists a poly-time TM M and a
polynomial p ∈ poly(n), such that for every x ∈ {0, 1}∗:

Prr∈{0,1}p(n) [M(x, r) = L(x)] ≥ 2

3

P ⊆ BPP

BPP ⊆ EXP (Trivial Derandomization)

The “P vs BPP” question.
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Error Reduction

Error Reduction for BPP

How important is 2/3?

Theorem (Error Reduction for BPP)

Let L ⊆ {0, 1}∗ be a language and suppose that there exists a poly-time
PTM M such that for every x ∈ {0, 1}∗:

Pr[M(x) = L(x)] ≥ 1

2
+ |x|−c

Then, for every constant d > 0, ∃ poly-time PTM M′ such that for every
x ∈ {0, 1}∗:

Pr[M′(x) = L(x)] ≥ 1− 2−|x|d
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Error Reduction

Quantifier Characterizations

Definition (Majority Quantifier)

Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be a predicate, and ε a rational
number, such that ε ∈

(
0, 12

)
. We denote by (∃+y, |y| = k)R(x, y) the

following predicate:
“There exist at least

(
1
2 + ε

)
· 2k strings y of length m for which

R(x, y) holds.”

We call ∃+ the overwhelming majority quantifier.

∃+r means that the fraction r of the possible certificates of a
certain length satisfy the predicate for the certain input.
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Error Reduction

Quantifier Characterizations

Definition

We denote as C = (Q1/Q2), where Q1,Q2 ∈ {∃, ∀, ∃+}, the class C of
languages L satisfying:

x ∈ L⇒ Q1y R(x, y)

x /∈ L⇒ Q2y ¬R(x, y)

P = (∀/∀)
NP = (∃/∀)
coNP = (∀/∃)
BPP = (∃+/∃+) = coBPP

Corollary

∃+ = ∃+1/2+ε = ∃
+
2/3 = ∃

+
3/4 = ∃

+
0.99 = ∃

+
1−2−p(|x|)
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Error Reduction

RP Class

In the same way, we can define classes that contain problems with
one-sided error:

Definition
The class RTIME[T(n)] contains every language L for which there
exists a PTM M running in O (T(|x|)) time such that:

x ∈ L⇒ Pr[M(x) = 1] ≥ 2
3

x /∈ L⇒ Pr[M(x) = 0] = 1

We define
RP =

⋃
c∈N

RTIME[nc]

Similarly we define the class coRP.
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Error Reduction

Quantifier Characterizations

RP ⊆ BPP, coRP ⊆ BPP
RP = (∃+/∀)

⊆ (∃/∀) = NP (every accepting path is a certificate!)
coRP = (∀/∃+) ⊆ (∀/∃) = coNP

Theorem (Decisive Characterization of BPP)

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀)

The above characterization is decisive, in the sense that if we replace ∃+
with ∃, the two predicates are still complementary (i.e. R1 ⇒ ¬R2), so
they still define a complexity class.
In the above characterization of BPP, if we replace ∃+ with ∃, we
obtain very easily a well-known result:

Corollary (Sipser-Gács Theorem)

BPP ⊆ Σp
2 ∩Πp

2
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The Structure of NP Randomized Computation

Zero-Error

ZPP Class

And now something completely different:
What if the random variable was the running time and not the
output?

We say that M has expected running time T(n) if the expectation
E[TM(x)] is at most T(|x|) for every x ∈ {0, 1}∗.
(TM(x) is the running time of M on input x, and it is a random variable!)

Definition
The class ZTIME[T(n)] contains all languages L for which there exists
a machine M that runs in an expected time O (T(|x|)) such that for
every input x ∈ {0, 1}∗, whenever M halts on x, the output M(x) it
produces is exactly L(x). We define:

ZPP =
⋃
c∈N

ZTIME[nc]
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Zero-Error

ZPP Class

The output of a ZPP machine is always correct!

The problem is that we aren’t sure about the running time.

We can easily see that ZPP = RP ∩ coRP.

The next Hasse diagram summarizes the previous inclusions:
(Recall that ∆Σp

2 = Σp
2 ∩Πp

2 = NPNP ∩ coNPNP)
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Zero-Error

PSPACE
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The Structure of NP Randomized Computation

Semantic Classes

Semantic vs. Syntactic Classes

Every NPTM defines some language in NP:
x ∈ L⇔ #accepting paths 6= 0

We can get an effective enumeration of all NPTMs, each deciding
an NP language.

But not every NPTM decides a language in RP:
e.g., the NPTM that has exactly one accepting path.

In this case, there is no way to tell whether the machine will always
halt with the certified output. We call these classes semantic.

So we have:
Syntactic Classes (like P, NP)
Semantic Classes (like RP, BPP, NP ∩ coNP, TFNP)
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Semantic Classes

Complete Problems for BPP?

Any syntactic class has a “free” complete problem:

{〈M, x, 1t〉 : M ∈M and M(x) = yes in t steps}

whereM is the class of TMs of the variant that defines the class.

In semantic classes, this complete language is usually undecidable.

The defining property of BPTIME machines is semantic!

If finally P = BPP, then BPP will have complete problems!!

For the same reason, in semantic classes we cannot prove
Hierarchy Theorems using Diagonalization.
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Additional Classes and Properties

The Class PP

Definition
A language L ∈ PP if there exists an NPTM M, such that for every
x ∈ {0, 1}∗: x ∈ L if and only if more than half of the computations of
M on input x accept.

Or, equivalently:

Definition
A language L ∈ PP if there exists a poly-time TM M and a polynomial
p ∈ poly(n), such that for every x ∈ {0, 1}∗:

x ∈ L⇔
∣∣∣{y ∈ {0, 1}p(|x|) : M(x, y) = 1

}∣∣∣ ≥ 1

2
· 2p(|x|)
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Additional Classes and Properties

The Class PP

The defining property of PP is syntactic, any NPTM can define a
language in PP.

Due to the lack of a gap between the two cases, we cannot amplify
the probability with polynomially many repetitions, as in the case
of BPP.

PP is closed under complement.

A breakthrough result of R. Beigel, N. Reingold and D. Spielman
is that PP is closed under intersection!

The syntactic definition of PP gives the possibility for complete
problems:

Consider the problem MAJSAT:
Given a Boolean Expression, is it true that the majority of the 2n

truth assignments to its variables (that is, at least 2n−1 + 1 of
them) satisfy it?
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Additional Classes and Properties

The Class PP

Theorem
MAJSAT is PP-complete!

MAJSAT is not likely in NP, since the (obvious) certificate is not
very succinct!

Theorem

NP ⊆ PP ⊆ PSPACE

Proof: Th.11.3 (p.257) in [1]

It is easy to see that PP ⊆ PSPACE:
We can simulate any PP machine by enumerating all strings y of length
p(n) and verify whether PP machine accepts. The PSPACE machine
accepts if and only if there are more than 2p(n)−1 such y’s (by using a
counter).
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Additional Classes and Properties

The Class PP

Proof (cont’d):
Now, for NP ⊆ PP, let A ∈ NP. That is, ∃p ∈ poly(n) and a poly-time
and balanced predicate R such that:

x ∈ A ⇔ (∃y, |y| = p(|x|)) : R(x, y)

Consider the following TM:
M accepts input (x, by), with |b| = 1 and |y| = p(|x|), if and
only if R(x, y) = 1 or b = 1.

If x ∈ A, then ∃ at least one y s.t. R(x, y).
Thus, Pr[M(x) accepts] ≥ 1/2 + 2−(p(n)+1).

If x /∈ A, then Pr[M(x) accepts] = 1/2. □
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Additional Classes and Properties

Other Results

Theorem
If NP ⊆ BPP, then NP = RP.

Proof:

RP is closed under ≤p
m-reducibility.

It suffices to show that if SAT ∈ BPP, then SAT ∈ RP.

Recall that SAT has the self-reducibility property:
ϕ(x1, . . . , xn): ϕ ∈ SAT⇔ (ϕ|x1=0 ∈ SAT ∨ ϕ|x1=1 ∈ SAT).

SAT ∈ BPP: ∃ PTM M computing SAT with error probability
bounded by 2−|ϕ|.

We can use the self-reducibility of SAT to produce a truth
assignment for ϕ as follows:
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Additional Classes and Properties

Other Results

Proof (cont’d):

Input: A Boolean formula ϕ with n variables
If M(ϕ) = 0 then reject ϕ;
For i = 1 to n
→ If M(ϕ|x1=α1,...,xi−1=αi−1,xi=0) = 1 then let αi = 0
→ ElseIf M(ϕ|x1=α1,...,xi−1=αi−1,xi=1) = 1 then let αi = 1
→ Else reject ϕ and halt;
If ϕ|x1=α1,...,xn=αn = 1 then accept F
Else reject F

Note that M1 accepts ϕ only if a t.a. t(xi) = αi is found.
Therefore, M1 never makes mistakes if ϕ /∈ SAT.
If ϕ ∈ SAT, then M rejects ϕ on each iteration of the loop w.p. ≤ 2−|ϕ|.
So, if ϕ ∈ SAT, Pr[M1 accepting x] ≥ (1− 2−|ϕ|)n, which is greater
than 1/2 for |ϕ| ≥ n > 1. □
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Other Results

Proof (cont’d):

Input: A Boolean formula ϕ with n variables
If M(ϕ) = 0 then reject ϕ;
For i = 1 to n
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Else reject F

Note that M1 accepts ϕ only if a t.a. t(xi) = αi is found.
Therefore, M1 never makes mistakes if ϕ /∈ SAT.
If ϕ ∈ SAT, then M rejects ϕ on each iteration of the loop w.p. ≤ 2−|ϕ|.
So, if ϕ ∈ SAT, Pr[M1 accepting x] ≥ (1− 2−|ϕ|)n, which is greater
than 1/2 for |ϕ| ≥ n > 1. □



The Structure of NP Randomized Computation
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Relativized Results

Theorem

Relative to a random oracle A, PA = BPPA. That is,

PrA∈{0,1}∗ [P
A = BPPA] = 1

Also,
BPPA ⊊ NPA, relative to a random oracle A.
There exists an A such that: PA 6= RPA.
There exists an A such that: RPA 6= coRPA

There exists an A such that: RPA 6= NPA.

Corollary
There exists an A such that:

PA 6= RPA 6= NPA ⊈ BPPA
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The Structure of NP Randomized Computation

Additional Classes and Properties

Randomized Computation uses random bits, and either the
output is a random variable (BPP for two-sided and RP for
one-sided error) or the running time (ZPP).

The error for BPP and RP can be reduced to be exponentially
close to 0, by polynomially many repetitions.

BPP is in the second level of PH.

ZPP = RP ∩ coRP.

Semantic classes like BPP,RP,ZPP don’t seem to have
complete problems.

Summary



Non-Uniform Complexity Interactive Proofs

Contents

Introduction
Turing Machines
Undecidability
Complexity Classes
Oracles & The Polynomial Hierarchy
The Structure of NP
Randomized Computation
Non-Uniform Complexity
Interactive Proofs
Inapproximability
Derandomization of Complexity Classes
Counting Complexity
Epilogue



Non-Uniform Complexity Interactive Proofs

Boolean Circuits

Boolean Circuits

A Boolean Circuit is a natural model of nonuniform computation,
a generalization of hardware computational methods.

A non-uniform computational model allows us to use a different
“algorithm” to be used for every input size, in contrast to the
standard (or uniform) Turing Machine model, where the same
T.M. is used on (infinitely many) input sizes.

Each circuit can be used for a fixed input size, which limits or
model.
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Boolean Circuits

Definition (Boolean circuits)
For every n ∈ N an n-input, single output Boolean Circuit C is a
directed acyclic graph with n sources and one sink.

All nonsource vertices are called gates and are labeled with one of ∧
(and), ∨ (or) or ¬ (not).
The vertices labeled with ∧ and ∨ have fan-in (i.e. number or incoming
edges) 2.
The vertices labeled with ¬ have fan-in 1.
The size of C, denoted by |C|, is the number of vertices in it.
For every vertex v of C, we assign a value as follows: for some input
x ∈ {0, 1}n, if v is the i-th input vertex then val(v) = xi, and otherwise
val(v) is defined recursively by applying v’s logical operation on the
values of the vertices connected to v.
The output C(x) is the value of the output vertex.
The depth of C is the length of the longest directed path from an input
node to the output node.
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Boolean Circuits

To overcome the fixed input length size, we need to allow families
(or sequences) of circuits to be used:

Definition
Let T : N→ N be a function. A T(n)-size circuit family is a sequence
{Cn}n∈N of Boolean circuits, where Cn has n inputs and a single output,
and its size |Cn| ≤ T(n) for every n.

These infinite families of circuits are defined arbitrarily: There is
no pre-defined connection between the circuits, and also we
haven’t any ”guarantee” that we can construct them efficiently.

Like each new computational model, we can define a complexity
class on it by imposing some restriction on a complexity measure:
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Boolean Circuits

Definition
We say that a language L is in SIZE[T(n)] if there is a T(n)-size circuit
family {Cn}n∈N, such that ∀x ∈ {0, 1}n:

x ∈ L⇔ Cn(x) = 1

Definition
P/poly is the class of languages that are decidable by polynomial size
circuits families:

P/poly =
⋃
c∈N

SIZE[nc]

Theorem (Nonuniform Hierarchy Theorem)

For every functions T,T ′ : N→ N with 2n

n > T ′(n) > 10T(n) > n,

SIZE[T(n)] ⊊ SIZE[T ′(n)]
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TMs taking advice

Turing Machines that take advice

Definition
Let T, a : N→ N. The class of languages decidable by T(n)-time
Turing Machines with a(n) bits of advice, denoted

DTIME[T(n)/a(n)]

contains every language L such that there exists a sequence {dn}n∈N of
strings, with dn ∈ {0, 1}a(n) and a Turing Machine M satisfying:

x ∈ L⇔ M(x, dn) = 1

for every x ∈ {0, 1}n, where on input (x, dn) the machine M runs for at
most O (T(n)) steps.
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TMs taking advice

Turing Machines that take advice

Theorem (Alternative Definition of P/poly)

P/poly =
⋃

c,k∈N
DTIME[nc/nk]

Proof: (⊆) Let L ∈ P/poly. Then, ∃{Cn}n∈N : C|x| = L(x).
We can use Cn ’s encoding as an advice string for each n.
(⊇) Let L ∈ DTIME[nc/nk]. Then, since CVP is P-complete, we
construct for every n a circuit Dn such that, for
x ∈ {0, 1}n, dn ∈ {0, 1}a(n):

Dn(x, dn) = M(x, dn)

Then, let Cn(x) = Dn(x, dn) ( We hard-wire the advice string! )
Since a(n) = nk, the circuits have polynomial size. □
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Relationship among Complexity Classes

Theorem

P ⊊ P/poly

For the subset inclusion, recall that CVP is P-complete.

But why proper inclusion?

Consider the following language: U = {1n|n ∈ N}.

U ∈ P/poly.

Now consider this:

UH = {1n|n’s binary expression encodes a pair ⌞M, x⌟ s.t.M(x) ↓}

It is easy to see that UH ∈ P/poly, but....
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Relationship among Complexity Classes

Theorem (Karp-Lipton Theorem)

If NP ⊆ P/poly, then PH = Σp
2.

Proof Sketch:

It suffices to show that Πp
2 ⊆ Σp

2.
(Recall that Σp

2 = Πp
2 ⇒ PH = Σp

2)

So, we can get a function ϕ(x, y) ∈ FP s.t. :

x ∈ L⇔ ∀y[ϕ(x, y) ∈ SAT]

Since SAT ∈ P/poly, ∃{Cn}n∈N s.t. C|ϕ|(ϕ(x, y)) = 1 iff ϕ
satisfiable.

The idea is to nondeterministically guess such a circuit:
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Relationship among Complexity Classes

If x ∈ L:
�� ��Since L ∈ Πp

2, x ∈ L⇒ ∀y[ϕ(x, y) ∈ SAT]

We will guess a correct C, and ∀y ϕ(x, y) will be satisfiable, so C
will accept all y’s:

x ∈ L⇒ ∃C ∀y [C(ϕ(x, y)) = 1]

If x /∈ L:
�� ��Since L ∈ Πp

2, x /∈ L⇒ ∃y[ϕ(x, y) /∈ SAT]

Then, there will be a y0 for which ϕ(x, y0) is not satisfiable. So, for
all guesses of C, ϕ(x, y0) will always be rejected:

x /∈ L⇒ ∀C ∃y [C(ϕ(x, y)) = 0]

That is a Σp
2 question, so L ∈ Σp

2 ⇒ Πp
2 ⊆ Σp

2. □

Theorem (Meyer’s Theorem)

If EXP ⊆ P/poly, then EXP = Σp
2.
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Relationship among Complexity Classes

Theorem

BPP ⊊ P/poly

Proof: Recall that if L ∈ BPP, then ∃ PTM M such that:

Prr∈{0,1}poly(n) [M(x, r) 6= L(x)] < 2−n

Then, taking the union bound:

Pr [∃x ∈ {0, 1}n : M(x, r) 6= L(x)] = Pr

 ⋃
x∈{0,1}n

M(x, r) 6= L(x)

 ≤
≤

∑
x∈{0,1}n

Pr [M(x, r) 6= L(x)] < 2−n + · · ·+ 2−n = 1

So, ∃rn ∈ {0, 1}poly(n), s.t. ∀x{0, 1}n: M(x, rn) = L(x).
Using {rn}n∈N as advice string, we have the non-uniform machine. □
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Relationship among Complexity Classes

Intermission: What kind of proof was that?

How did we prove the previous theorem?

We constructed implicitily a probability space around an object
we wish to prove its existence.

If we randomly choose an existing object, the probability that the
result is of the prescribed kind is > 0.

That technique is called The Probabilistic Method.

In the same way, showing that the probability is < 1 proves the
existence of an object that does not satisfy the prescribed
properties.

See: Noga Alon, Joel H. Spencer, The Probabilistic Method, 4th Edition, Wiley Publishing, 2016
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Relationship among Complexity Classes

Theorem
The following are equivalent:

1 A ∈ P/poly.
2 There exists a sparse set S such that A ∈ PS (or A ≤p

T S).

Proof:
(2)⇒ (1)

Let A ∈ PS, and M the machine that decides it.

On inputs of lenght n, there are at most polynomially many strings
in S that can be queried by M in polynomial time.

We hard-wire these strings in M, and transform it into a circuit.
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Relationship among Complexity Classes

Theorem
The following are equivalent:

1 A ∈ P/poly.
2 There exists a sparse set S such that A ∈ PS (or A ≤p

T S).

Proof (cont’d):
(1)⇒ (2)

If A ∈ P/poly, by using an advice function d, we can encode d(n)
as a sparse oracle:

S = {〈1n, pn〉 | pn is a prefix of d(n), n ≥ 0}

We can retrieve the advice string by iteratively querying the
oracle:

At first query 〈1n, 0〉, 〈1n, 1〉.
Then, for a prefix p we query 〈1n, p0〉, 〈1n, p1〉 etc... □
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Relationship among Complexity Classes

Algorithms for Circuits

Definition (Circuit Complexity or Worst-Case Hardness)

For a finite Boolean Function f : {0, 1}n → {0, 1}, we define the
(circuit) complexity of f, denoted CC(f), as the size of the smallest
Boolean Circuit computing f (that is, C(x) = f(x), ∀x ∈ {0, 1}n).

Definition (MCSP)
Given the truth table of a Boolean function f and an integer S, does
CC(f) ≤ S?

Definition (CAPP)
Given circuit C and a constant ε > 0, output u such that:
|Prx [C(x) = 1]− u| < ε.
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Algorithms for Circuits

MCSP ∈ NP.
But, MCSP doesn’t seem to be NP-complete.
(Murray, Williams, 2017)

Theorem (Kabanets, Cai, 2000)
If MCSP ∈ P, then:

EXPNP has new circuit lower bounds.

BPP = ZPP.

FACTORING(D),GI ∈ BPP.
No strong PRGs / PRFs.

Theorem (IKW02)

If CAPP can be computed in 2n
o(1)

time for all circuits of size n, then
NEXP ⊈ P/poly.
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Relationship among Complexity Classes

*Hierarchies for Semantic Classes with advice

We have argued why we can’t obtain Hierarchies for semantic
measures using classical diagonalization techniques. But with
using small advice we can obtain the following results:

Theorem ([Bar02], [GST04])
For a, b ∈ R, with 1 ≤ a < b:

BPTIME(na)/1 ⊊ BPTIME(nb)/1

Theorem ([FST05])
For any 1 ≤ a ∈ R there is a real b > a such that:

RTIME(nb)/1 ⊊ RTIME(na)/ log(n)1/2a
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Relationship among Complexity Classes

Subclasses of P/poly

We can define subclasses of P/poly by restricting the depth of the
circuit:

Definition (Classes NC)

A language L is in NCi if L is decided by a circuit family {Cn}n∈N,
where Cn has gates with fan-in 2, poly(n) size and O

(
logi n

)
depth. Let

NC =
⋃

i∈NNC
i.

Definition (Classes AC)

A language L is in ACi if L is decided by a circuit family {Cn}n∈N,
where Cn has gates with unbounded fan-in, poly(n) size and O

(
logi n

)
depth. Let AC =

⋃
i∈N AC

i.

NCi ⊆ ACi ⊆ NCi+1, for all i ≥ 0.
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Relationship among Complexity Classes

Uniform Families of Circuits

We saw that P/poly contains undecidable languages.
The definition of P/poly is merely existential, since we haven’t a
way to construct such an infinite family of circuits.
So, may be useful to restrict or attention to families we can
construct efficiently:

Theorem (P-Uniform Families)

A circuit family {Cn}n∈N is P-uniform if there is a polynomial-time T.M.
that on input 1n outputs the description of the circuit Cn.

Theorem
A language L is computable by a P-uniform circuit family iff L ∈ P.

We can define in the same way logspace-uniform circuit families,
constructed by logspace-TMs.
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Non-Uniform Complexity Interactive Proofs

The Quest for Lower Bounds

Circuit Lower Bounds

The significance of proving lower bounds for this computational
model is related to the famous ”P vs NP” problem, since:

NP∖ P/poly 6= ∅ ⇒ P 6= NP

Theorem (Shannon, 1949)

For every n > 1, there exists a function f : {0, 1}n → {0, 1} that cannot
be computed by a circuit C of size 2n/(10n).

But after decades of efforts, the best lower bound for an NP
language is 5n− o(n) (2005).

There are better lower bounds for some special cases (restricted
classes of circuits): bounded depth circuits, monotone circuits, and
bounded depth circuits with ”counting” gates.
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The Quest for Lower Bounds

Boolean Functions

A boolean function is symmetric if it depends only on the number
of 1’s in the input, and not on their positions. There are only 2n+1

symmetric functions out of the 22
n

boolean functions.

Example

Threshold function: THRk(x1, . . . , xn) = 1 iff x1 + · · ·+ xn ≥ k

Majority function: MAJ(x1, . . . , xn) = 1 iff x1 + · · ·+ xn ≥ dn/2e
Parity function: PAR(x1, . . . , xn) = 1 iff
x1 + · · ·+ xn ≡ 1 ( mod 2)

Modular function: MODk(x1, . . . , xn) = 1 iff
x1 + · · ·+ xn ≡ 0 ( mod k)
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The Quest for Lower Bounds

Boolean Functions

We can encode graph-theoretic properties using boolean
functions.

Consider f : {0, 1}(
n
2
) → {0, 1}.

We associate every input variable with an edge of a n-vertices
graph G.

Example

Does the given graph contain at least
(k
2

)
edges?

Does the given graph contain a clique with
(k
2

)
edges?

Let CLIQUEk,n : {0, 1}(
n
2
) → {0, 1}, s.t. CLIQUEk,n = 1 iff the

encoded graph has a k-clique.
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The Quest for Lower Bounds

An essential lower bound: Kannan’s Theorem

Theorem (Kannan’s Theorem)

For every k ∈ N, there is a language in Σp
4 ∩Πp

4 that is not in SIZE[n
k].

Proof:

Let k ∈ N.

For every n, let Cn be the (lexicographically) first circuit such that
Cn cannot be computed by any circuit of size at most nk.

By the Hierarchy Theorem, we know that such a circuit exists.

So, if L is decided by {Cn}n∈N, then L /∈ SIZE[nk].
We claim that L ∈ Σp

4. We need to ensure that:
C cannot be computed in SIZE[nk].
C is the minimum circuit (in ≤lex-ordering) with that property.
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The Quest for Lower Bounds

An essential lower bound: Kannan’s Theorem

Proof (cont’d):

x ∈ L iff:

∃C ∈ SIZE[nk+1
] such that

∀C′ ∈ SIZE[nk]
∀D, 〈D〉 ≤lex 〈C〉
∃x′ ∈ {0, 1}n : C′(x′) 6= C(x′).
∃D′ ∈ SIZE[nk] such that
∀y ∈ {0, 1}n : D(y) = D′(y):
C(x) = 1.

We need 4 alternations of quantifiers starting with ∃, hence
L ∈ Σp

4.

By flipping the predicate we prove also that L ∈ Σp
4. □
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The Quest for Lower Bounds

An essential lower bound: Kannan’s Theorem

Corollary

For every k ∈ N, there is a language in Σp
2 ∩Π

p
2 that is not in SIZE[nk].

Proof (cont’d):

Consider the two cases:

If SAT /∈ SIZE[nk], then we ’re done, since SAT ∈ NP.

If SAT ∈ SIZE[nk], that is if NP ⊆ P/poly, then by Karp-Lipton
Theorem we have that Σp

4 = Σp
2, and we have the desired

language by Kannan’s Theorem. □
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The Quest for Lower Bounds

Lower Bound Techniques

During the quest for Lower Bounds, two powerful methods were
developed:

Random Restrictions method, applied to bounded depth circuits.
One tries to “simplify” the circuit by depth reduction. Then, the
resulting circuit can’t compute certain functions.
Polynomial Approximation Method, where certain circuits are
represented as low-degree polynomials (probabilistic
representation). But, certain Boolean functions cannot be
approximated by such polynomials.

Reminder
Let PAR : {0, 1}n → {0, 1} be the parity function, which outputs the
modulo 2 sum of an n-bit input. That is:

PAR(x1, ..., xn) ≡
n∑

i=1

xi( mod 2)



Non-Uniform Complexity Interactive Proofs

The Quest for Lower Bounds

Lower Bound Techniques

During the quest for Lower Bounds, two powerful methods were
developed:

Random Restrictions method, applied to bounded depth circuits.
One tries to “simplify” the circuit by depth reduction. Then, the
resulting circuit can’t compute certain functions.

Polynomial Approximation Method, where certain circuits are
represented as low-degree polynomials (probabilistic
representation). But, certain Boolean functions cannot be
approximated by such polynomials.

Reminder
Let PAR : {0, 1}n → {0, 1} be the parity function, which outputs the
modulo 2 sum of an n-bit input. That is:

PAR(x1, ..., xn) ≡
n∑

i=1

xi( mod 2)



Non-Uniform Complexity Interactive Proofs

The Quest for Lower Bounds

Lower Bound Techniques

During the quest for Lower Bounds, two powerful methods were
developed:

Random Restrictions method, applied to bounded depth circuits.
One tries to “simplify” the circuit by depth reduction. Then, the
resulting circuit can’t compute certain functions.
Polynomial Approximation Method, where certain circuits are
represented as low-degree polynomials (probabilistic
representation). But, certain Boolean functions cannot be
approximated by such polynomials.

Reminder
Let PAR : {0, 1}n → {0, 1} be the parity function, which outputs the
modulo 2 sum of an n-bit input. That is:

PAR(x1, ..., xn) ≡
n∑

i=1

xi( mod 2)



Non-Uniform Complexity Interactive Proofs

The Quest for Lower Bounds

Lower Bound Techniques

During the quest for Lower Bounds, two powerful methods were
developed:

Random Restrictions method, applied to bounded depth circuits.
One tries to “simplify” the circuit by depth reduction. Then, the
resulting circuit can’t compute certain functions.
Polynomial Approximation Method, where certain circuits are
represented as low-degree polynomials (probabilistic
representation). But, certain Boolean functions cannot be
approximated by such polynomials.

Reminder
Let PAR : {0, 1}n → {0, 1} be the parity function, which outputs the
modulo 2 sum of an n-bit input. That is:

PAR(x1, ..., xn) ≡
n∑

i=1

xi( mod 2)



Non-Uniform Complexity Interactive Proofs

The Quest for Lower Bounds

Lower Bound Techniques

By using the Random Restrictions method, the following lower
bound can be proved:

Theorem (Furst, Saxe, Sipser, Ajtai)

PAR /∈ AC0

The above result (improved by Håstad and Yao) gives a relatively
tight lower bound of exp

(
Ω(n

1/(d−1)
)
)

, on the size of n-input
PAR circuits of depth d.

Corollary

NC0 ⊊ AC0 ⊊ NC1
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The Quest for Lower Bounds

Random Restrictions Method

In order to prove lower bounds for circuits of certain classes, we
have to obtain a “standard form” for each circuit:

Standard form of a circuit C:
1 Push all NOT gates to the bottom layer (according to De Morgan’s

Laws).

2 Each layer has the same type of gates, and adjacent layers have
different types of gates.

3 Each layer’s inputs are outputs of the previous layer.

We can easily see that every circuit (e.g. in AC0) can be
transformed to this standard form.
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The Quest for Lower Bounds

Switching Lemma

Definition (Random Restriction)

A p-random restriction ρ is a mapping from {x1, . . . , xn} to {0, 1, ⋆}
applied to the Boolean function f, and the result is a function f|ρ, where
its variables are set according to ρ, and ρ(xi) = ⋆ means that the
variable xi is left unassigned. Each xi takes a value in {0, 1, ⋆} with
probabilities:

Pr
ρ
[ρ(xi) = ⋆] = p

Pr
ρ
[ρ(xi) = 0] = Pr

ρ
[ρ(xi) = 1] =

1− p
2
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The Quest for Lower Bounds

Switching Lemma

Theorem (Håstad’s Switching Lemma)
Let f be a Boolean function that can be written as a t-DNF, and ρ a
p-random restriction. Then, for any integer s:

Pr
ρ
[f|ρ is not an s-CNF] ≤ (8pt)s

Proof Sketch (Razborov):

Let Rℓ denote the set of restrictions on n variables, leaving ℓ
variables unassigned, for 1 ≤ ℓ ≤ n.

|Rℓ| =
(n
ℓ

)
2n−ℓ

Let B be the set of bad restrictions, that is:

B(ℓ, s) = {ρ ∈ Rℓ | f|ρ is not an s-CNF}
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Switching Lemma

Proof Sketch (cont’d):

Lemma

For a t-DNF, it holds that |B(ℓ, s)| ≤ |Rℓ−s| · (2t)s.

We can prove the above lemma by constructing and injective
function from B(ℓ, s) to Rℓ−s × {0, 1}h, where h = O (s log t).

Then,

|B(ℓ, s)|
|Rℓ|

≤
( n
ℓ−s

)
2n−ℓ+s(2t)s(n
ℓ

)
2n−ℓ

≤
(

ℓ

n− ℓ

)s

(4t)s ≤ (8pt)s

for ℓ = pn and p ≤ 1/2. □
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Switching Lemma

Using the Switching Lemma we can prove that PAR /∈ AC0:

Let C an AC0 circuit, with a polynomial bound on the number of
gates, and constant depth.

We randomly restrict more and more variables, and each step will
reduce the depth by 1 (since we merge two levels with the same
type of gates).

After a constant number of steps, we will have a depth 2 circuit
(i.e. a k-DNF or k-CNF).

Such a formula can be made constant by fixing at most k of the
variables.

But PAR is not constant under any restriction of less than n
variables, so is not in AC0.
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*Decision Trees

Decision Trees are natural
computational models for
boolean functions.
For a function
f : {0, 1}n → {0, 1}, it is a
binary tree.
The internal nodes have labels
x1, . . . , xn, and each xi queries
the i-th bit of the input.
After querying the variable,
descend the tree light or left,
depending on the value.
The leaves have values from
{0, 1}, and is the value of the
function in the input path.

Example

x1

x2

0

0

x3

0

0

1

1

1

0

x2

x3

0

0

1

1

0

1

1

1

Decision Tree for MAJ(x1, x2, x3)
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*Decision Trees

Definition (Decision Tree Complexity)

The cost of a tree T on input x, denoted by cost(T, x) is the number of
bits of x examined by T. The Decision Tree Complexity of a Boolean
function f is:

DT(f) = min
T∈Tf

max
x∈{0,1}n

cost(T, x)

where Tf is the set of all decision trees computing f.

Obviously, DT(f) ≤ n for every f : {0, 1}n → {0, 1}.

Theorem (implied by Håstad’s Switching Lemma)
Let f be a Boolean function that can be written as a t-DNF, and ρ a
p-random restriction. Then, for any integer s:

Pr
ρ
[DT(f|ρ) > s] ≤ (8pt)s
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Circuits with counting gates

Definition

A language L is in ACC0[m1, . . . ,mk] if there is a circuit family
{Cn}n∈N where Cn has gates with unbounded fan-in, poly(n) size and
O (1) depth, and MODm1 , . . . ,MODmk gates accepting L.

ACC0 =
⋃

m1,...,mk

ACC0[m1, . . . ,mk]

A MODm gate outputs 0 if the sum of its inputs is 0 (modm), and
1 otherwise.

Theorem (Razborov-Smolensky,1987)

For distinct primes p and q, the function MODp is not in ACC0[q].
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Circuits with counting gates

Theorem (Razborov-Smolensky,1987)

For district primes p and q, the function MODp is not in ACC0[q].

Proof Sketch (for p = 2 and q = 3):

Lemma

For any circuit C ∈ ACC0 with n inputs, depth d and size S, and every
c < 1, there exists a polynomial p ∈ F3[x1, . . . , xn] such that:

deg(p) ≤ c
√
n

Prx∈{0,1}n [C(x) 6= p(x)] ≤ S · 2−(1/2)cn
1/2d

.
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Circuits with counting gates

On the other hand:

Lemma

Every polynomial p ∈ F3[x1, . . . , xn] of degree at most c
√
n, we have

that:
Prx∈{0,1}n [p(x) 6= PAR(x)] > 1/50

If we combine the above two lemmas, any circuit computing PAR
must have size exponential in n

1/2d
.
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Lower Bounds for NEXP: Algorithms vs Lower Bounds

Recently, breakthrough lower bounds for NEXP were proved.
Surprisingly, the lower bounds tradeoff were connected to certain
algorithmic improvements.

Let C a “usual” circuit class (like P/poly, AC0 etc.)
Define C-SAT the circuit satisfiability problem for the class C:

Definition (C-SAT)

Given a circuit Cn from class C, is there a x ∈ {0, 1}n such that
C(x) = 1?

The trivial algorithm checks all inputs in O (2n · poly(n)) time.
If we can improve this algorithm, then we can use it to construct a
Boolean function in NEXP which has no C-circuits.
Hence:�� ��Better algorithm for C-SAT −→ NEXP ⊈ C



Non-Uniform Complexity Interactive Proofs

The Quest for Lower Bounds

Lower Bounds for NEXP: Algorithms vs Lower Bounds

Recently, breakthrough lower bounds for NEXP were proved.
Surprisingly, the lower bounds tradeoff were connected to certain
algorithmic improvements.
Let C a “usual” circuit class (like P/poly, AC0 etc.)
Define C-SAT the circuit satisfiability problem for the class C:

Definition (C-SAT)

Given a circuit Cn from class C, is there a x ∈ {0, 1}n such that
C(x) = 1?

The trivial algorithm checks all inputs in O (2n · poly(n)) time.
If we can improve this algorithm, then we can use it to construct a
Boolean function in NEXP which has no C-circuits.
Hence:�� ��Better algorithm for C-SAT −→ NEXP ⊈ C



Non-Uniform Complexity Interactive Proofs

The Quest for Lower Bounds

Lower Bounds for NEXP: Algorithms vs Lower Bounds

Recently, breakthrough lower bounds for NEXP were proved.
Surprisingly, the lower bounds tradeoff were connected to certain
algorithmic improvements.
Let C a “usual” circuit class (like P/poly, AC0 etc.)
Define C-SAT the circuit satisfiability problem for the class C:

Definition (C-SAT)

Given a circuit Cn from class C, is there a x ∈ {0, 1}n such that
C(x) = 1?

The trivial algorithm checks all inputs in O (2n · poly(n)) time.
If we can improve this algorithm, then we can use it to construct a
Boolean function in NEXP which has no C-circuits.

Hence:�� ��Better algorithm for C-SAT −→ NEXP ⊈ C



Non-Uniform Complexity Interactive Proofs

The Quest for Lower Bounds

Lower Bounds for NEXP: Algorithms vs Lower Bounds

Recently, breakthrough lower bounds for NEXP were proved.
Surprisingly, the lower bounds tradeoff were connected to certain
algorithmic improvements.
Let C a “usual” circuit class (like P/poly, AC0 etc.)
Define C-SAT the circuit satisfiability problem for the class C:

Definition (C-SAT)

Given a circuit Cn from class C, is there a x ∈ {0, 1}n such that
C(x) = 1?

The trivial algorithm checks all inputs in O (2n · poly(n)) time.
If we can improve this algorithm, then we can use it to construct a
Boolean function in NEXP which has no C-circuits.
Hence:�� ��Better algorithm for C-SAT −→ NEXP ⊈ C



Non-Uniform Complexity Interactive Proofs

The Quest for Lower Bounds

Lower Bounds for NEXP: Algorithms vs Lower Bounds

Theorem (Williams, 2010)

Let s(n) be a superpolynomial function. If CIRCUIT SAT on n inputs
and poly(n) size can be solved in 2n · poly(n)/s(n), then:

NEXP ⊈ P/poly

We can substitute P/poly with any other “usual” circuit class.

But, for circuits in ACC0 there are advancements. The work of
Yao, Beigel and Tarui showed that brute force can be beaten for
ACC0-SAT. Hence:

Theorem (Williams, 2011)

NEXP ⊈ ACC0

*We will later see a sketch of Williams’ proof (after discussing the Easy Witness Lemma)
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Monotone Circuits

Definition
For x, y ∈ {0, 1}n, we denote x � y if every bit that is 1 in x is also 1 in
y. A function f : {0, 1}n → {0, 1} is monotone if f(x) ≤ f(y) for every
x � y.

Definition
A Boolean Circuit is monotone if it contains only AND and OR gates,
and no NOT gates. Such a circuit can only compute monotone
functions.

Theorem (Razborov, Andreev, Alon, Boppana)

There exists some constant ϵ > 0 such that for every k ≤ n
1/4

, there is
no monotone circuit of size less than 2ϵ

√
k that computes CLIQUEk,n.

This is a significant lower bound (2Ω(n
1/8

)), but...
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Natural Proofs

Where is the problem finally?

Today, we know that a result for a lower bound using such
techniques would imply the inversion of strong one-way functions:

Definition (Razborov, Rudich 1994)
Let P be the predicate:

”A Boolean function f : {0, 1}n → {0, 1} doesn’t have nc-sized
circuits for some c ≥ 1.”

P(f) = 0, ∀f ∈ SIZE(nc) for a c ≥ 1. We call this nc-usefulness.
A predicate P is natural if:

There is an algorithm M ∈ E such that for a function
g : {0, 1}n → {0, 1}: M(g) = P(g) (Constructiveness)

For a random function g: Pr [P(g) = 1] ≥ 1
n (Largeness)
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Epilogue

Natural Proofs

Theorem
If strong one-way functions exist, then there exists a constant c ∈ N such
that there is no nc-useful natural predicate P .

Example

Håstad’s Switching Lemma defines the property:
P(f) = 1 iff f cannot be made constant by fixing a portion of the
variables.

The property is useful against AC0.

The property is constructive in E by enumerating all restrictions
and checking the inputs.

Also, the property satisfies the largeness condition, by calculating
the (negligible) fraction of Boolean functions that can be made
constant under restrictions.
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Håstad’s Switching Lemma defines the property:
P(f) = 1 iff f cannot be made constant by fixing a portion of the
variables.

The property is useful against AC0.

The property is constructive in E by enumerating all restrictions
and checking the inputs.

Also, the property satisfies the largeness condition, by calculating
the (negligible) fraction of Boolean functions that can be made
constant under restrictions.



Non-Uniform Complexity Interactive Proofs

Epilogue

Natural Proofs

Recently, it was shown that constructivity is unavoidable:

Theorem (Williams, 2013)

NEXP ⊈ C is equivalent to exhibiting a constructive property that is
useful against C.
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*Algorithms from Circuit Lower Bounds

We saw that better algorithms for C-SAT imply new lower bounds.

Is the opposite possible? Can lower bound techniques be used to
derive new algorithms?

Recall the problem APSP (All-pairs shortest paths):

The classic DP algorithm (Floyd-Washall) solves it in O
(
n3
)

,
where n the number of graph’s vertices.

By using the Razborov-Smolensky’s polynomial approximation
method, the following holds:

Theorem (Williams, 2016)
The All-Pairs Shortest Paths problem can be solved in time:

n3

2Ω(
√

log n)
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*Algorithms from Circuit Lower Bounds

Another significant problem is Orthogonal Vectors (OV):

Definition (OV)

Given two sets of vectors A,B ⊆ {0, 1}d, |A| = |B| = n, are there
x ∈ A and y ∈ B such that:

x · y =
∑
i∈[d]

xi · yi = 0 ?

The naïve algorithm solves the problem in O
(
n2d

)
time.

Theorem (Williams, 2016)
The Orthogonal Vectors problem can be solved in time:

n
2− 1

O(log d
log n )
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In non-uniform complexity, we allow the program size to grow
along with the input.

P/poly, the class of languages having polynomial-sized circuit
families, is the non-uniform analogue of P.

P/poly can be equivalently defined as the class of
polynomial-time TMs with polynomial advice.

P and BPP are contained in P/poly.

If NP ⊂ P/poly, then PH = Σp
2.

If EXP ⊂ P/poly, then EXP = Σp
2.

Summary 1/2
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Epilogue

Most Boolean functions require exponential-size circuits.

If we find an NP language which doesn’t have polynomial-size
circuits, then P 6= NP.

The Parity function is not in AC0.

Algorithmic improvements can imply circuit lower bounds.

The Natural Proofs barrier indicate that common lower bound
proof techniques do not suffice for proving the desired lower
bounds.

Summary 2/2
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Introduction

“Maybe Fermat had a proof! But an important party was
certainly missing to make the proof complete: the verifier. Each
time rumor gets around that a student somewhere proved P =
NP, people ask “Has Karp seen the proof?” (they hardly even
ask the student’s name). Perhaps the verifier is more important
than the prover.” (from [BM88])

The notion of a mathematical proof is related to the certificate
definition of NP.

We enrich this scenario by introducing interaction in the basic
scheme:
The person (or TM) who verifies the proof asks the person who
provides the proof a series of ”queries”, before he is convinced,
and if he is, he provide the certificate.
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Introduction

The first person will be called Verifier, and the second Prover.

In our model of computation, Prover and Verifier are interacting
Turing Machines.

We will categorize the various proof systems created by using:
various TMs (nondeterministic, probabilistic etc)
the information exchanged (private/public coins etc)
the number of TMs (IPs, MIPs,...)
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Warmup: Interactive Proofs with deterministic Verifier

Definition (Deterministic Proof Systems)
We say that a language L has a k-round deterministic interactive proof
system if there is a deterministic Turing Machine V that on input
x, α1, α2, . . . , αi runs in time polynomial in |x|, and can have a k-round
interaction with any TM P such that:

x ∈ L⇒ ∃P : 〈V,P〉(x) = 1 (Completeness)

x /∈ L⇒ ∀P : 〈V,P〉(x) = 0 (Soundness)

The class dIP contains all languages that have a k-round deterministic
interactive proof system, where p is polynomial in the input length.

〈V,P〉(x) denotes the output of V at the end of the interaction with P on
input x, and αi the exchanged strings.
The above definition does not place limits on the computational power of
the Prover!
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Warmup: Interactive Proofs with deterministic Verifier

But...

Theorem

dIP = NP

Proof: Trivially, NP ⊆ dIP. ✓
Let L ∈ dIP:

A certificate is a transcript (α1, . . . , αk) causing V to accept, i.e.
V(x, α1, . . . , αk) = 1.
We can efficiently check if V(x) = α1, V(x, α1, α2) = α3 etc...

If x ∈ L such a transcript exists!
Conversely, if a transcript exists, we can define define a proper P to
satisfy: P(x, α1) = α2, P(x, α1, α2, α3) = α4 etc., so that
〈V,P〉(x) = 1, so x ∈ L.

So L ∈ NP! □
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The class IP

Probabilistic Verifier: The Class IP

We saw that if the verifier is a simple deterministic TM, then the
interactive proof system is described precisely by the class NP.

Now, we let the verifier be probabilistic, i.e. the verifier’s queries
will be computed using a probabilistic TM:

Definition (Goldwasser-Micali-Rackoff)
For an integer k ≥ 1 (that may depend on the input length), a language
L is in IP[k] if there is a probabilistic polynomial-time T.M. V that can
have a k-round interaction with a T.M. P such that:

x ∈ L⇒ ∃P : Pr[〈V,P〉(x) = 1] ≥ 2
3 (Completeness)

x /∈ L⇒ ∀P : Pr[〈V,P〉(x) = 1] ≤ 1
3 (Soundness)
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Probabilistic Verifier: The Class IP

Definition
We also define:

IP =
⋃
c∈N

IP[nc]

The “output” 〈V,P〉(x) is a random variable.

We’ll see that IP is a very large class! (⊇ PH)

As usual, we can replace the completeness parameter 2/3 with
1− 2−ns and the soundness parameter 1/3 by 2−ns , without
changing the class for any fixed constant s > 0.

We can also replace the completeness constant 2/3 with 1
(perfect completeness), without changing the class, but replacing
the soundness constant 1/3 with 0, is equivalent with a
deterministic verifier, so class IP collapses to NP.
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Interactive Proof for Graph Non-Isomorphism

Definition
Two graphs G1 and G2 are isomorphic, if there exists a permutation π
of the labels of the nodes of G1, such that π(G1) = G2. If G1 and G2

are isomorphic, we write G1
∼= G2.

GI: Given two graphs G1,G2, decide if they are isomorphic.

GNI: Given two graphs G1,G2, decide if they are not isomorphic.

Obviously, GI ∈ NP and GNI ∈ coNP.

This proof system relies on the Verifier’s access to a private
random source which cannot be seen by the Prover, so we confirm
the crucial role the private coins play.
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The class IP

Interactive Proof for Graph Non-Isomorphism

Verifier: Picks i ∈ {1, 2} uniformly at random.
Then, it permutes randomly the vertices of Gi to get a
new graph H. Is sends H to the Prover.
Prover: Identifies which of G1, G2 was used to produce H.
Let Gj be the graph. Sends j to V.
Verifier: Accept if i = j. Reject otherwise.

If G1 ≇ G2, then the powerful prover can (nondeterministically) guess
which one of the two graphs is isomorphic to H, and so the Verifier
accepts with probability 1.

If G1
∼= G2, the prover can’t distinguish the two graphs, since a random

permutation of G1 looks exactly like a random permutation of G2. So,
the best he can do is guess randomly one, and the Verifier accepts with
probability (at most) 1/2, which can be reduced by additional repetitions.
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Arthur-Merlin Games

Babai’s Arthur-Merlin Games

Definition (Extended (FGMSZ89))
An Arhur-Merlin Game is a pair of interactive TMs A and M, and a
predicate R such that:

On input x, exactly 2q(|x|) messages of length m(|x|) are
exchanged, q,m ∈ poly(|x|).

A goes first, and at iteration 1 ≤ i ≤ q(|x|) chooses u.a.r. a string
ri of length m(|x|).

M’s reply in the ith iteration is yi = M(x, r1, . . . , ri) (M’s strategy).

For every M′, a conversation between A and M′ on input x is
r1y1r2y2 · · · rq(|x|)yq(|x|).

The set of all conversations is denoted by CONVM′

x ,
|CONVM′

x | = 2O(q(|x|)m(|x|)).
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Arthur-Merlin Games

Babai’s Arthur-Merlin Games

Definition (cont’d)
The predicate R maps the input x and a conversation to a Boolean
value.
The set of accepting conversations is denoted by ACCR,M

x , and is
the set:

{r1 · · · rq|∃y1 · · · yq s.t. r1y1 · · · rqyq ∈ CONVM
x ∧ R(r1y1 · · · rqyq) = 1}

A language L has an Arthur-Merlin proof system if:

There exists a strategy for M, such that for all x ∈ L: ACCR,M
x

CONVM
x
≥ 2

3

(Completeness)

For every strategy for M, and for every x /∈ L: ACCR,M
x

CONVM
x
≤ 1

3

(Soundness)
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Arthur-Merlin Games

Definitions

So, with respect to the previous IP definition:

Definition
For every k, the complexity class AM[k] is defined as a subset to IP[k]
obtained when we restrict the verifier’s messages to be random bits, and
not allowing it to use any other random bits that are not contained in
these messages.
We denote AM ≡ AM[2].

Merlin→ Prover
Arthur→ Verifier
Also, the class MA consists of all languages L, where there’s an
interactive proof for L in which the prover first sending a message, and
then the verifier is ”tossing coins” and computing its decision by doing a
deterministic polynomial-time computation involving the input, the
message and the random output.
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Public vs. Private Coins

Theorem

GNI ∈ AM[2]

Theorem
For every p ∈ poly(n):

IP (p(n)) = AM(p(n) + 2)

So,
IP[poly] = AM[poly]
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Arthur-Merlin Games

Properties of Arthur-Merlin Games

MA ⊆ AM

MA[1] = NP, AM[1] = BPP

AM could be intuitively approached as the probabilistic version of
NP (usually denoted as AM = BP·NP).

AM ⊆ Πp
2 and MA ⊆ Σp

2 ∩Πp
2.

MA ⊆ NPBPP, MABPP = MA, AMBPP = AM and
AM∆Σp

1 = AMNP∩coNP = AM

If we consider the complexity classes AM[k] (the languages that
have Arthur-Merlin proof systems of a bounded number of
rounds, they form an hierarchy:

AM[0] ⊆ AM[1] ⊆ · · · ⊆ AM[k] ⊆ AM[k+ 1] ⊆ · · ·

Are these inclusions proper ? ? ?
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Properties of Arthur-Merlin Games

Definition

We denote as C = (Q1/Q2), where Q1,Q2 ∈ {∃, ∀, ∃+}, the class C of
languages L satisfying:

x ∈ L⇒ Q1y R(x, y)

x /∈ L⇒ Q2y ¬R(x, y)

So: P = (∀/∀), NP = (∃/∀), coNP = (∀/∃)
BPP = (∃+/∃+), RP = (∃+/∀), coRP = (∀/∃+)

Arthur-Merlin Games

AM = BP · NP = (∃+∃/∃+∀)

MA = N · BPP = (∃∃+/∀∃+)

Similarly: AMA = (∃+∃∃+/∃+∀∃+) etc.



Non-Uniform Complexity Interactive Proofs

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Definition

We denote as C = (Q1/Q2), where Q1,Q2 ∈ {∃, ∀, ∃+}, the class C of
languages L satisfying:

x ∈ L⇒ Q1y R(x, y)

x /∈ L⇒ Q2y ¬R(x, y)

So: P = (∀/∀), NP = (∃/∀), coNP = (∀/∃)
BPP = (∃+/∃+), RP = (∃+/∀), coRP = (∀/∃+)

Arthur-Merlin Games

AM = BP · NP = (∃+∃/∃+∀)

MA = N · BPP = (∃∃+/∀∃+)

Similarly: AMA = (∃+∃∃+/∃+∀∃+) etc.



Non-Uniform Complexity Interactive Proofs

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Theorem
i MA = (∃∀/∀∃+)
ii AM = (∀∃/∃+∀)

Proof:

Lemma

BPP = (∃+/∃+) = (∃+∀/∀∃+) = (∀∃+/∃+∀) (1) (BPP-Theorem)

(∃∀/∀∃+) ⊆ (∀∃/∃+∀) (2)

i) MA = N · BPP = (∃∃+/∀∃+) (1)
= (∃∃+∀/∀∀∃+) ⊆ (∃∀/∀∃+)

(the last inclusion holds by quantifier contraction). Also,
(∃∀/∀∃+) ⊆ (∃∃+/∀∃+) = MA.
ii) Similarly, AM = BP ·NP = (∃+∃/∃+∀) = (∀∃+∃/∃+∀∀) ⊆ (∀∃/∃+∀).
Also, (∀∃/∃+∀) ⊆ (∃+∃/∃+∀) = AM.
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Theorem

MA ⊆ AM

Proof:
Obvious from (2): (∃∀/∀∃+) ⊆ (∀∃/∃+∀). □

Theorem
i AM ⊆ Πp

2

ii MA ⊆ Σp
2 ∩Πp

2

Proof:
i) AM = (∀∃/∃+∀) ⊆ (∀∃/∃∀) = Πp

2

ii) MA = (∃∀/∀∃+) ⊆ (∃∀/∀∃) = Σp
2, and

MA ⊆ AM⇒MA ⊆ Πp
2. So, MA ⊆ Σp

2 ∩Πp
2. □
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Properties of Arthur-Merlin Games

Theorem (Speedup Theorem)

For t(n) ≥ 2:
AM[2t(n)] = AM[t(n)]

The Arthur-Merlin Hierarchy collapses at its second level:

Theorem (Collapse Theorem)
For every k ≥ 2:

AM = AM[k] = MA[k+ 1]

Example

MAM = (∃∃+∃/∀∃+∀)
(1)
⊆ (∃∃+∀∃/∀∀∃+∀) ⊆ (∃∀∃/∀∃+∀)

(2)
⊆

⊆ (∀∃∃/∃+∀∀) ⊆ (∀∃/∃+∀) = AM
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Properties of Arthur-Merlin Games

Proof:

The general case is implied by the generalization of BPP-Theorem
(1) & (2):

(Q1∃+Q2/Q3∃+Q4) = (Q1∃+∀Q2/Q3∀∃+Q4) =
(Q1∀∃+Q2/Q3∃+∀Q4) (1′)

(Q1∃∀Q2/Q3∀∃+Q4) ⊆ (Q1∀∃Q2/Q3∃+∀Q4) (2′)

Using the above we can easily see that the Arthur-Merlin
Hierarchy collapses at the second level. (Try it!) □
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Properties of Arthur-Merlin Games

Theorem (BHZ)
If coNP ⊆ AM, then the Polynomial Hierarchy collapses at the second
level, and PH = Σp

2 = AM.

Proof: Our hypothesis states: (∀/∃) ⊆ (∀∃/∃+∀)
Then:

Σp
2 = (∃∀/∀∃)

Hyp.
⊆ (∃∀∃/∀∃+∀)

(2)
⊆ (∀∃∃/∃+∀∀) = (∀∃/∃+∀) =

AM ⊆ (∀∃/∃∀) = Πp
2. □

Corollary

If GI is NP-complete, then PH = Σp
2 = AM.
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Measure One Results

PA 6= NPA, PA = BPPA, NPA = AMA, for almost all oracles A.

Definition

almostC =
{
L|PrA∈{0,1}∗

[
L ∈ CA

]
= 1

}
Theorem

i almostP = BPP [BG81]
ii almostNP = AM [NW94]
iii almostPH = PH

Theorem (Kurtz)
For almost every pair of oracles B,C:

i BPP = PB ∩ PC

ii almostNP = NPB ∩ NPC
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Arithmetization

The power of Interactive Proofs

As we saw, Interaction alone does not gives us computational
capabilities beyond NP.

Also, Randomization alone does not give us significant power
(we know that BPP ⊆ Σp

2, and many researchers believe that
P = BPP, which holds under some plausible assumptions).

How much power could we get by their combination?

We know that for fixed k ∈ N, IP[k] collapses to

IP[k] = AM = BP · NP

a class that is “close” to NP (under similar assumptions, the
non-deterministic analogue of P vs. BPP is NP vs. AM.)

If we let k be a polynomial in the size of the input, how much
more power could we get?
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Shamir’s Theorem

The power of Interactive Proofs

Surprisingly:

Theorem (L.F.K.N. & Shamir)

IP = PSPACE
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Shamir’s Theorem

The power of Interactive Proofs

Lemma 1

IP ⊆ PSPACE

Proof:
If the Prover is an NP, or even a PSPACE machine, the lemma
holds.
But what if we have an omnipotent prover?
On any input, the Prover chooses its messages in order to
maximize the probability of V’s acceptance!
We consider the prover as an oracle, by assuming wlog that his
responses are one bit at a time.
The protocol has polynomially many rounds (say N=nc), which
bounds the messages and the random bits used.
So, the protocol is described by a computation tree T:
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The power of Interactive Proofs

Proof(cont’d):
Vertices of T are V’s configurations.
Random Branches (queries to the random tape)
Oracle Branches (queries to the prover)
For each fixed P, the tree TP can be pruned to obtain only random
branches.
Let Propt[E | F] the conditional probability given that the prover
always behaves optimally.
The acceptance condition is mN = 1.
For yi ∈ {0, 1}N and zi ∈ {0, 1} let:

Ri =

i∧
j=1

mj = yj

Si =
i∧

j=1

lj = zj
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The power of Interactive Proofs

Proof(cont’d):

Propt[mN = 1 | Ri−1 ∧ Si−1] =∑
yi

max
zi

Propt[mN = 1 | Ri ∧ Si] · Propt[Ri | Ri−1 ∧ Si−1]

Propt[Ri | Ri−1 ∧ Si−1] is PSPACE-computable, by simulating V.

Propt[mN = 1 | Ri ∧ Si] can be calculated by DFS on T.

The probability of acceptance is
Propt[mN = 1] = Propt[mN = 1 | R0 ∧ S0]

The prover can calculate its optimal move at any point in the
protocol in PSPACE by calculating Propt[mN = 1 | Ri ∧ Si] for
zi{0, 1} and choosing its answer to be the value that gives the
maximum. □
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Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Lemma 2

PSPACE ⊆ IP

For simplicity, we will construct an Interactive Proof for UNSAT
(a coNP-complete problem), showing that:

Theorem

coNP ⊆ IP

Let N be a prime.

We will translate a formula ϕ with m clauses and n variables
x1, . . . , xn to a polynomial p over the field (modN) (where
N > 2n · 3m), in the following way:
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Shamir’s Theorem

Arithmetization

Arithmetic generalization of a CNF Boolean Formula.

T −→ 1
F −→ 0
¬x −→ 1− x
∧ −→ ×
∨ −→ +

Example

(x3 ∨ ¬x5 ∨ x17) ∧ (x5 ∨ x9) ∧ (¬x3 ∨ x4)
↓

(x3 + (1− x5) + x17) · (x5 + x9) · ((1− x3) + x4)

Each literal is of degree 1, so the polynomial p is of degree at
most m.
Also, 0 < p < 3m.
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Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N −→ checks proof

q1(x) =
∑

p(x, x2, . . . xn) −→ checks if q1(0) + q1(1) = 0

←− sends r1 ∈ {0, . . . ,N− 1}

q2(x) =
∑

p(r1, x, x3, . . . xn) −→ checks if q2(0) + q2(1) = q1(r1)

←− sends r2 ∈ {0, . . . ,N− 1}
...

qn(x) = p(r1, . . . , rn−1, x) −→ checks if qn(0) + qn(1) = qn−1(rn−1)

picks rn ∈ {0, . . . ,N− 1}
checks if qn(rn) = p(r1, . . . , rn)
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Warmup: Interactive Proof for UNSAT

If ϕ is unsatisfiable,then∑
x1∈{0,1}

∑
x2∈{0,1}

· · ·
∑

xn∈{0,1}

p(x1, . . . , xn) ≡ 0 (modN)

and the protocol will succeed.

Also, the arithmetization can be done in polynomial time, and if
we take N = 2O(n+m), then the elements in the field can be
represented by O(n+ m) bits, and thus an evaluation of p in any
point of {0, . . . ,N− 1} can be computed in polynomial time.

We have to show that if ϕ is satisfiable, then the verifier will reject
with high probability.

If ϕ is satisfiable, then∑
x1∈{0,1}

∑
x2∈{0,1} · · ·

∑
xn∈{0,1} p(x1, . . . , xn) 6= 0 (modN)
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So, p1(0) + p1(1) 6= 0, so if the prover send p1 we ’re done.
If the prover send q1 6= p1, then the polynomials will agree on at
most m places. So, Pr [p1(r1) 6= q1(r1)] ≥ 1− m

N .
If indeed p1(r1) 6= q1(r1) and the prover sends p2 = q2, then the
verifier will reject since q2(0) + q2(1) = p1(r1) 6= q1(r1).
Thus, the prover must send q2 6= p2.
We continue in a similar way: If qi 6= pi, then with probability at
least 1− m

N , ri is such that qi(ri) 6= pi(ri).
Then, the prover must send qi+1 6= pi+1 in order for the verifier
not to reject.
At the end, if the verifier has not rejected before the last check,
Pr [pn 6= qn] ≥ 1− (n− 1)mN .
If so, with probability at least 1− m

N the verifier will reject since,
qn(x) and p(r1, . . . , rn−1, x) differ on at least that fraction of
points.
The total probability that the verifier will accept is at most nm

N .
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Arithmetization of QBF

∃ −→
∑

∀ −→
∏

Example

∀x1∃x2[(x1 ∧ x2) ∨ ∃x3(x̄2 ∧ x3)]

↓

∏
x1∈{0,1}

∑
x2∈{0,1}

(x1 · x2) + ∑
x3∈{0,1}

(1− x2) · x3
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Shamir’s Theorem

Arithmetization of QBF

But, every quantifier arithmetization may double the degree of
each variable, leading to an exponential degree polynomial. The
verifier can’t read this.

We can substitute the arithmetized polynomial with another,
agreeing with the original only on all boolean assignments:

Since if x = 0, 1 then xi = x, for all i, we can just get rid of the
exponents.

So, we can arithmetize Quantified Boolean Formulas, and with
slight modifications, the same protocol works.

Remember that the TQBF problem is PSPACE-complete.

Hence, PSPACE ⊆ IP. □
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PCPs

Epilogue: Probabilistically Checkable Proofs

But if we put a proof instead of a Prover?

The alleged proof is a string, and the (probabilistic) verification
procedure is given direct (oracle) access to the proof.

The verification procedure can access only few locations in the
proof!
We parameterize these Interactive Proof Systems by two
complexity measures:

Query Complexity
Randomness Complexity

The effective proof length of a PCP system is upper-bounded by
q(n) · 2r(n) (in the non-adaptive case).
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PCPs

PCP Definitions

Definition (PCP Verifiers)
Let L be a language and q, r : N→ N. We say that L has an
(r(n), q(n))-PCP verifier if there is a probabilistic polynomial-time
algorithm V (the verifier) satisfying:

Efficiency: On input x ∈ {0, 1}∗ and given random oracle access to a
string π ∈ {0, 1}∗ of length at most q(n) · 2r(n) (which we call the
proof), V uses at most r(n) random coins and makes at most q(n)
non-adaptive queries to locations of π. Then, it accepts or rejects.
Let Vπ(x) denote the random variable representing V’s output on input x
and with random access to π.
Completeness: If x ∈ L, then ∃π ∈ {0, 1}∗ : Pr [Vπ(x) = 1] = 1

Soundness: If x /∈ L, then ∀π ∈ {0, 1}∗ : Pr [Vπ(x) = 1] ≤ 1
2

We say that a language L is in PCP[r(n), q(n)] if L has a
(O(r(n)),O(q(n)))-PCP verifier.
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Main Results

Obviously:

PCP[0, 0] = ?
PCP[0, poly] = ?
PCP[poly, 0] = ?

A surprising result from Arora, Lund, Motwani, Safra, Sudan,
Szegedy states that:

Theorem

NP = PCP[log n, 1]
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PCPs

Properties

The restriction that the proof length is at most q2r is
inconsequential, since such a verifier can look on at most this
number of locations.

We have that PCP[r(n), q(n)] ⊆ NTIME[2O(r(n))q(n)], since a
NTM could guess the proof in 2O(r(n))q(n) time, and verify it
deterministically by running the verifier for all 2O(r(n)) possible
choices of its random coin tosses. If the verifier accepts for all
these possible tosses, then the NTM accepts.
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Introduction

Randomness offered much efficiency and power as a
computational resource.

Derandomization is the “transformation” of a randomized
algorithm to a deterministic one:
Simulate a probabilistic TM by a deterministic one, with (only)
polynomial loss of efficiency!

Indications:
Pseudorandomness
“Practical” examples of Derandomization

Possibilities concerning Randomized Languages:
Randomization always help! (BPP = EXP)
The extend to which Randomization helps is problem-specific.
True Randomness is never needed: Simulation is possible!
(BPP = P)
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Introduction

Yao, Blum and Micali introduced the concept of
hardness-randomness tradeoffs:
If we had a hard function, we could use it to compute a string that
“looks“ random to any feasible adversary (distinguisher).

In a cryprographic context, they introduced Pseudorandom
Generators.

Nisam & Wigderson weakened the hardness assumption (for the
purposes of Derandomization), introducing new tradeoffs between
hardness and randomness.

Impagliazzo & Wigderson proved that P=BPP if E requires
exponential-size circuits.



Derandomization of Complexity Classes

Introduction

Introduction

Yao, Blum and Micali introduced the concept of
hardness-randomness tradeoffs:
If we had a hard function, we could use it to compute a string that
“looks“ random to any feasible adversary (distinguisher).

In a cryprographic context, they introduced Pseudorandom
Generators.

Nisam & Wigderson weakened the hardness assumption (for the
purposes of Derandomization), introducing new tradeoffs between
hardness and randomness.

Impagliazzo & Wigderson proved that P=BPP if E requires
exponential-size circuits.



Derandomization of Complexity Classes

Pseudorandom Generators

Definitions

Definition (Yao-Blum-Micali Definition)

Let G : {0, 1}∗ → {0, 1}∗ be a polynomial-time computable function.
Also, let S : N→ N be a polynomial-time computable function such
that ∀n S(n) > n. We say that G is a pseudorandom generator of stretch
S(n), if |G(x)| = S(|x|) for every x ∈ {0, 1}∗, and for every
probabilistic polynomial-time algorithm A, there exists a negligible
function ε : N→ [0, 1] such that:∣∣∣Pr [A(G(Un)) = 1]− Pr

[
A(US(n)) = 1

]∣∣∣ < ε(n)

Stretch Function: S : N→ N
Computational Indistinguishability: any (efficient) algorithm A cannot
decide whether a string is an output of the generator, or a truly random
string.
Resources used: Its own computational complexity.
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Pseudorandom Generators

Definitions

Theorem
If one-way functions exist, then for every c ∈ N, there exists a
pseudorandom generator with stretch S(n) = nc.

Definition (Nisan-Wigderson Definition)

A distribution R over {0, 1}m is an (T, ε)-pseudorandom (for T ∈ N,
ε > 0) if for every circuit C, of size at most T:∣∣∣Pr [C(R) = 1]− Pr [C(Um) = 1]

∣∣∣ < ε

where Um denotes the uniform distribution over {0, 1}m. If S : N→ N,
a 2n-time computable function G : {0, 1}∗ → {0, 1}∗ is an
S(ℓ)-pseudorandom generator if |G(z)| = S(|z|) for every z ∈ {0, 1}∗
and for every ℓ ∈ N the distribution G(Uℓ) is
(S3(ℓ), 1

10)-pseudorandom.
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Pseudorandom Generators

Definitions

The choices of the constants 3 and 1
10 are arbitrary.

The functions S : N→ N will be considered time-constructible and
non-decreasing.
The main differences of these definitions are:

We allow non-uniform distinguishers, instead of TMs.
The generator runs in exponential time instead of polynomial.

Theorem
Suppose that there exists an S(ℓ)-pseudorandom generator for a
time-constructible nondecreasing S : N→ N. Then, for every
polynomial-time computable function ℓ : N→ N, and for some constant
c:

BPTIME[S(ℓ(n)] ⊆ DTIME[2cℓ(n)]
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Definitions
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polynomial-time computable function ℓ : N→ N, and for some constant
c:
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Proof:
Let L ∈ BPTIME[S(ℓ(n)], that is, there exists PTM A(x, r) such
that:

Pr
r∈{0,1}m

[A(x, r) = L(x)] ≥ 2/3

The idea is to replace the random string r with the output of the
generator G(z) and since A runs in S(ℓ) time, will not detect the
”switch“, and the probability of correctness will be
2/3− 1/10 > 1/2!
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Pseudorandom Generators

Definitions

Proof (cont’d):

On input x ∈ {0, 1}n, will compute A(x,G(z)), for all
z ∈ {0, 1}ℓ(n), and output the majority answer.

We claim that for sufficiently large n,
Prz [A(x,G(z)) = L(x)] ≥ 2/3− 1/10 > 1/2:

Suppose, for the sake of contradiction, that there exist an infinite
sequence of x’s such that Prz [A(x,G(z)) = L(x)] < 2/3− 1/10.

Then, there exists a distinguishers for G:

Construct a circuit C(r) = A(x, r) with size O
(
S2(ℓ)

)
.

Then:
Pr [C(r) = 1]− Pr [C(G(z)) = 1] > 1/10

which violates the generator’s indistinguishability. □
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Derandomization of Complexity Classes

Main Derandomization Results

Main Results

Corollary

If there exists a 2εℓ-pseudorandom generator for some constant
ε > 0, then BPP = P.

If there exists a 2ℓ
ε
-pseudorandom generator for some constant

ε > 0, then BPP ⊆ QuasiP.

If for every c > 1 there exists an ℓc-pseudorandom generator, then
BPP ⊆ SUBEXP.

where:

QuasiP =
⋃
c∈N

DTIME[2logc n] and SUBEXP =
⋂
ε>0

DTIME[2n
ε

]

We can relate the existence of PRGs with the (non-uniform) hardness of
certain Boolean functions. That is, the size of the smallest Boolean
Circuit which computes them.
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Main Derandomization Results

Main Results

Reminder (Worst-case hardness)

The worst-case hardness of f, denoted CC(f), as the size of the
smallest circuit computing f for every input (a.e.).

Definition (Average-case hardness)

The average-case hardness of f, denoted Havg(f), is largest number S
such that:

Prx∈{0,1}n [C(x) = f(x)] ≤ 1

2
+

1

S
for every Boolean Circuit C on n inputs with size at most S.
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Main Derandomization Results

Main Results

Theorem (PRGs from average-case hardness)
Let S : N→ N be time-constructible and non-decreasing. If there exists
f ∈ E such that Havg(f) ≥ S(n), then there exists an
S(δℓ)δ-peudorandom generator for some constant δ > 0.

We can connect Average-case hardness with worst-case hardness
using the following Lemma:

Theorem

Let f ∈ E be such that CC(f) ≥ S(n) for some time-constructible
nondecreasing S : N→ N.
Then, there exists a function g ∈ E and a constant c > 0 such that:
Havg(g) ≥ S(n/c)1/c for every sufficiently large n.
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Main Derandomization Results

Main Results

Theorem (Derandomizing under worst-case assumptions)
Let S : N→ N be time-constructible and nondecreasing. If there exists
f ∈ E such that ∀n : CC(f) ≥ S(n), then there exists a
S(δℓ)δ-peudorandom generator for some constant δ > 0.
In particular, the following hold:

1 If there exists f ∈ E = DTIME[2O(n)] and ε > 0 such that
CC(f) ≥ 2εn, then BPP = P.

2 If there exists f ∈ E and ε > 0 such that CC(f) ≥ 2n
ε

, then
BPP ⊆ QuasiP.

3 If there exists f ∈ E such that CC(f) ≥ n
ω(1)

, then
BPP ⊆ SUBEXP.
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Main Derandomization Results

Toy Example: One-bit Stretch Generator

We can construct a PRG extending the input by one bit, extracted
from a hard function:

Theorem
Let f a Boolean function with Havg(f) ≥ s, and a (ℓ+ 1)-PRG G, with
G(x) = x ◦ f(x). Then, G is (s− 3, 1/s)-pseudorandom.

The proof relies on the following lemma:

Lemma
Let f a Boolean function, and suppose that there is a circuit D such that:∣∣∣∣Pr

x
[D(x ◦ f(x)) = 1]− Pr

x,b
[D(x ◦ b) = 1]

∣∣∣∣ > ε

Then, there is a circuit A of size s+ 3 such that: Prx [A(x) = f(x)] > 1
2 + ε
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Main Derandomization Results

The Nisan-Wigderson Construction

Using a generalization of the above, we can at most double the size
of the PRG’s output.

For Derandomization results, we need exponential stretch!

So, we need a new idea!

We will use intersecting blocks of the input, where the intersection
is bounded:

Definition
Let (S1, . . . , Sm) a family of subsets of a universe U. Such a family is
an (l, a)-design if for every i, |Si| = l and for every i 6= j, |Si ∩ Sj| ≤ a.
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Main Derandomization Results

The Nisan-Wigderson Construction

We can efficiently construct such designs:

Lemma
For every integer l, c < 1, there is an (l, logm)-design (S1, . . . , Sm) over
the universe [t], where t = O (l/c) and m = 2cl. Such a design can be
constructed in O

(
2ttm2

)
.

Definition (Nisan-Wigderson Generator)

For a Boolean function f and a design S = (S1, . . . , Sm) over [t], the
Nisan-Wigderson generator is a function NWf,S : {0, 1}t → {0, 1}m,
defined as follows:

NWf,S(z) = f(z|S1) ◦ f(z|S2) ◦ · · · ◦ f(z|Sm)

where z|Si the substring of z obtained by selecting the bits indexed by Si.
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Theorem (Nisan-Wigderson)

Let f ∈ E and a δ > 0 such that Havg(f) ≥ 2δn. Then,
NWf,S : {0, 1}O(log m) → {0, 1}m is computable in poly(m) time and is
(2m, 1/8)-pseudorandom.

As before, the proof relies on the following lemma:

Lemma
Let f a Boolean function and S = (S1, . . . , Sm) a (l, logm)-design over
[t]. Suppose a circuit D is such that:∣∣∣∣Pr

r
[D(r) = 1]− Pr

z
[D(NWf,S(z)) = 1]

∣∣∣∣ > ε

Then, there exists a circuit C of size O
(
m2

)
such that:

|Pr
x
[D(C(x)) = f(x)]− 1/2| ≥ ε/m
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Main Derandomization Results

Uniform Derandomization of BPP

Theorem (IW98)
If EXP 6= BPP, then, for every δ > 0, every BPP algorithm can be
simulated deterministically in time 2n

δ

so that, for infinitely many n’s, this
simulation is correct on at least 1− 1

n fraction of all inputs of size n.

That’s the first (universal) Derandomization result, which implies
the non-trivial derandomization of BPP, under a fair (but open)
assumption!

But:
1 The simulation works only for infinitely many input lengths (i.o.

complexity)
2 May fail on a negligible fraction of inputs even of these lengths!
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Derandomization of Complexity Classes

Derandomization vs Circuit Lower Bounds

Derandomization Requires Circuit Lower Bounds

Recall the problem PIT (Polynomial Identity Testing), and that
PIT ∈ coRP.

Theorem (Kabanets, Impagliazzo, 2003)

If PIT ∈ P then either NEXP ⊈ P/poly or PERMANENT /∈ AlgP/poly.

If we prove Lower Bounds (for some language in EXP),
derandomization of BPP will follow.
On the other hand, the existence of a quick PRG would imply a
superpolynomial Circuit Lower Bound for EXP.
Derandomization requires Circuit Lower Bounds:

EXP ⊆ P/poly ⇒ EXP = MA

NEXP ⊆ P/poly ⇒ NEXP = EXP = MA

It is impossible to separate NEXP and MA without proving that
NEXP ⊈ P/poly.
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Derandomization of Complexity Classes

Derandomization vs Circuit Lower Bounds

Derandomization Requires Circuit Lower Bounds

Theorem
If PSPACE ⊂ P/poly, then PSPACE = MA.

Proof:

The interaction between Merlin and Arthur is a TQBF instance.

Recall that Merlin is a PSPACE machine.

Since PSPACE ⊂ P/poly by the assumption, Merlin is now a
polynomial size circuit family {Cn}.

The protocol is simple:
Given x, with |x| = n Merlin sends Cn to Arthur.
Arthur simulates the protocol by providing the randomness and
using Cn as Merlin. □
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Derandomization vs Circuit Lower Bounds

Derandomization Requires Circuit Lower Bounds

Theorem (BFNW93)
If EXP ⊂ P/poly, then EXP = MA.

Proof:

Since PSPACE ⊆ EXP, then by the previous lemma
PSPACE = MA.

Also, by Meyer’s Theorem, since EXP ⊂ P/poly, then EXP = Σp
2.

Hence,
EXP = Σp

2 ⊆ PSPACE = MA

□
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Derandomization of Complexity Classes

Derandomization vs Circuit Lower Bounds

A lower bound for P/poly

A natural question is for what complexity class do we have an
unconditional circuit lower bound?

Let MAEXP be the exponential-time version of Merlin-Arthur
games.

Theorem
MAEXP 6⊂ P/poly

Proof:

Suppose, for the sake of contradiction, that MAEXP ⊂ P/poly.
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A lower bound for P/poly

Proof (cont’d):

Then:

PSPACE ⊂ P/poly (since PSPACE ⊆ EXP ⊆MAEXP)

⇒ PSPACE = MA (By previous lemma)

⇒ EXPSPACE = MAEXP (Upwards translation via padding)

⇒ EXPSPACE ⊆ P/poly

But, we know unconditionally that EXPSPACE ⊈ P/poly :

In exponential space, we can:
Iterate over all Boolean functions, and for each function:
Check all polynomial size circuits, until we find a function than
cannot be computed by any of the circuits.
Simulate the function and give the same output.

□



Derandomization of Complexity Classes

Derandomization vs Circuit Lower Bounds

A lower bound for P/poly

Proof (cont’d):

Then:

PSPACE ⊂ P/poly (since PSPACE ⊆ EXP ⊆MAEXP)

⇒ PSPACE = MA (By previous lemma)

⇒ EXPSPACE = MAEXP (Upwards translation via padding)

⇒ EXPSPACE ⊆ P/poly

But, we know unconditionally that EXPSPACE ⊈ P/poly :

In exponential space, we can:
Iterate over all Boolean functions, and for each function:
Check all polynomial size circuits, until we find a function than
cannot be computed by any of the circuits.
Simulate the function and give the same output.

□



Derandomization of Complexity Classes

Derandomization vs Circuit Lower Bounds

A lower bound for P/poly

Proof (cont’d):

Then:

PSPACE ⊂ P/poly (since PSPACE ⊆ EXP ⊆MAEXP)

⇒ PSPACE = MA (By previous lemma)

⇒ EXPSPACE = MAEXP (Upwards translation via padding)

⇒ EXPSPACE ⊆ P/poly

But, we know unconditionally that EXPSPACE ⊈ P/poly :

In exponential space, we can:
Iterate over all Boolean functions, and for each function:
Check all polynomial size circuits, until we find a function than
cannot be computed by any of the circuits.
Simulate the function and give the same output.

□



Derandomization of Complexity Classes

Derandomization vs Circuit Lower Bounds

A lower bound for P/poly

Proof (cont’d):

Then:

PSPACE ⊂ P/poly (since PSPACE ⊆ EXP ⊆MAEXP)

⇒ PSPACE = MA (By previous lemma)

⇒ EXPSPACE = MAEXP (Upwards translation via padding)

⇒ EXPSPACE ⊆ P/poly

But, we know unconditionally that EXPSPACE ⊈ P/poly :

In exponential space, we can:
Iterate over all Boolean functions, and for each function:
Check all polynomial size circuits, until we find a function than
cannot be computed by any of the circuits.
Simulate the function and give the same output.

□



Derandomization of Complexity Classes

Derandomization vs Circuit Lower Bounds

A lower bound for P/poly

Proof (cont’d):

Then:

PSPACE ⊂ P/poly (since PSPACE ⊆ EXP ⊆MAEXP)

⇒ PSPACE = MA (By previous lemma)

⇒ EXPSPACE = MAEXP (Upwards translation via padding)

⇒ EXPSPACE ⊆ P/poly

But, we know unconditionally that EXPSPACE ⊈ P/poly :

In exponential space, we can:
Iterate over all Boolean functions, and for each function:
Check all polynomial size circuits, until we find a function than
cannot be computed by any of the circuits.
Simulate the function and give the same output.

□



Derandomization of Complexity Classes

Derandomization vs Circuit Lower Bounds

A Note on Infinitely Often

We say that a property P(n) (e.g. that f has circuit complexity
S(n)) holds almost everywhere (a.e.), when P(n) holds for all but
finite n’s.

We say that a property P(n) holds infinitely often (i.o.), when
there are infinitely many n’s such that P(n) holds.

Definition
Let C be a complexity class. The class io–C is the class containing all
languages that ”coincide“ with a language in C infinitely often. That is:

io–C = {L | ∃L′ ∈ C s.t. for infinitely many n’s: L∩{0, 1}n = L′∩{0, 1}n}

We can easily prove that C1 ⊆ C2 ⇒ io–C1 ⊆ io–C2.
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Derandomization vs Circuit Lower Bounds

The Easy Witness Lemma

Theorem (The Easy Witness Lemma, IKW01)
If NEXP ⊂ P/poly, then NEXP = EXP.

Proof Plan:

First, we will prove that:
If NEXP ⊂ P/poly then for every a ∈ N:
EXP 6⊆ io–

[
NTIME[2n

a
]/n

]
On the other hand, we will prove that:
If NEXP 6= EXP then there exists a ∈ N such that:
MA ⊆ io–

[
NTIME[2n

a
]/n

]
Since we assume that NEXP ⊂ P/poly, then EXP = MA by a
previous lemma.

So, the above will contradict each other!
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Derandomization of Complexity Classes

Derandomization vs Circuit Lower Bounds

The Easy Witness Lemma

Lemma
For any c ∈ N:

EXP 6⊂ io–SIZE[nc]

Proof:
The Size Hierarchy theorem implies that there exists a function fn
that cannot be computed by circuits of size nc almost everywhere,
but can be computed by circuits of size at most 2nc.

In exponential time, we can find the first such function
(lexicographically), and simulate it.
Let L ∈ EXP be this language.
If we assume that L ∈ io–SIZE[nc], then ∃{Cn}n∈N, |Cn| < nc,
where infinitely many circuits compute fn.
Contradiction, since fn can be computed only by finitely many
circuits. □



Derandomization of Complexity Classes

Derandomization vs Circuit Lower Bounds

The Easy Witness Lemma

Lemma
For any c ∈ N:

EXP 6⊂ io–SIZE[nc]

Proof:
The Size Hierarchy theorem implies that there exists a function fn
that cannot be computed by circuits of size nc almost everywhere,
but can be computed by circuits of size at most 2nc.
In exponential time, we can find the first such function
(lexicographically), and simulate it.
Let L ∈ EXP be this language.

If we assume that L ∈ io–SIZE[nc], then ∃{Cn}n∈N, |Cn| < nc,
where infinitely many circuits compute fn.
Contradiction, since fn can be computed only by finitely many
circuits. □



Derandomization of Complexity Classes

Derandomization vs Circuit Lower Bounds

The Easy Witness Lemma

Lemma
For any c ∈ N:

EXP 6⊂ io–SIZE[nc]

Proof:
The Size Hierarchy theorem implies that there exists a function fn
that cannot be computed by circuits of size nc almost everywhere,
but can be computed by circuits of size at most 2nc.
In exponential time, we can find the first such function
(lexicographically), and simulate it.
Let L ∈ EXP be this language.
If we assume that L ∈ io–SIZE[nc], then ∃{Cn}n∈N, |Cn| < nc,
where infinitely many circuits compute fn.

Contradiction, since fn can be computed only by finitely many
circuits. □



Derandomization of Complexity Classes

Derandomization vs Circuit Lower Bounds

The Easy Witness Lemma

Lemma
For any c ∈ N:

EXP 6⊂ io–SIZE[nc]

Proof:
The Size Hierarchy theorem implies that there exists a function fn
that cannot be computed by circuits of size nc almost everywhere,
but can be computed by circuits of size at most 2nc.
In exponential time, we can find the first such function
(lexicographically), and simulate it.
Let L ∈ EXP be this language.
If we assume that L ∈ io–SIZE[nc], then ∃{Cn}n∈N, |Cn| < nc,
where infinitely many circuits compute fn.
Contradiction, since fn can be computed only by finitely many
circuits. □



Derandomization of Complexity Classes

Derandomization vs Circuit Lower Bounds

The Easy Witness Lemma

Lemma
If NEXP ⊂ P/poly then for every a ∈ N there exists b = b(a) ∈ N such
that:

NTIME[2n
a
]/n ⊂ SIZE[nb]

Proof:

Let Ua(⌞Mi⌟, x) the Universal TM that simulates the ith TM (in
some enumeration) for 2|x|

a
steps.

L(Ua) ∈ NEXP, so by assumption L(Ua) ∈ P/poly.

So, ∃{Cn}, |Cn| = nc, for some c, s.t. C|x,i|(x, i) = Ua(⌞Mi⌟, x).
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Proof (cont’d):

Now, let L ∈ NTIME[2n
a
]/n.

Then, ∃{an}n∈N, |an| = n, and an index i (depending on L) s.t.
Mi(x, a|x|) = L(x).

As above, by assumption, ∃{Cn} s.t. C|x,a|x|,i|(x, a|x|, i) = L(x).

By hard-wiring (a|x|, i), we have the desired family, whose size
remains polynomial in n. □
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Proof:

Since NEXP 6= EXP there exists L ∈ NEXP \ EXP.

Since L ∈ NEXP, there exists NTM M, running in O
(
2n

c
)

s.t.:

x ∈ L⇐⇒ ∃y ∈ {0, 1}2|x|
c

M(x, y) = 1

But, L /∈ EXP, and that means that every attempt to decide L in
deterministic exponential time is doomed to fail!
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Derandomization of Complexity Classes

Derandomization vs Circuit Lower Bounds

The Easy Witness Lemma

Proof (cont’d):

We will consider only easy witnesses, that is, y’s that are truth
tables of small circuits (“compressed” witnesses).

Consider the following TM Md:

On input x of length |x| = n, enumerate over all nd-sized circuits
with nc inputs.

For any such C, let y = TT(C), |y| = 2n
c

and check whether
M(x, y) = 1.

If no such y is found, then reject. Else, accept.

Observe that L(Md) ∈ EXP, so it cannot decide L for infinitely
many input lengths.
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Derandomization vs Circuit Lower Bounds

The Easy Witness Lemma

Proof (cont’d):

So, for every d there exists an infinite sequence of inputs
Xd = {xdi }i∈Id , where Id ⊆ N is the set of bad input lengths, for
which:

Md(x
d
i ) 6= L(xdi )

Also, if x /∈ L then Md does not make a mistake (one-sided error).

If x ∈ L, the machine will err for inputs that have incompressible
witnesses, that is, strings that are not truth tables of circuits of size
|x|d.

So, we can construct a NTM M′
d, running in O

(
2n

c
)

, and uses n
bits of advice that can infinitely often find the truth table of a
function that cannot be computed by nd-sized circuits:
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The Easy Witness Lemma

Proof (cont’d):

On input of length n ∈ Id and advice string xdn, the machine M′
d:

Guesses a string y ∈ {0, 1}2nc

and checks if M(xdn, y) = 1.

If M accepts, then it prints y.

Since n ∈ Id, then xdi is falsely rejected by Md, and thus xdi ∈ L,
but any witness cannot be “compressed” to nd-sized circuits.

Hence, M′
d would print a y that is the truth table of a function that

doesn’t have nd-sized circuits, but only for input lengths from the
(infinite) set Id.
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Proof (cont’d):

Now, let L∗ ∈MA.

Then, there exists d such that on any input x, Merlin sends Arthur
a certificate y ∈ {0, 1}|x|d for verifying that x ∈ L∗.

Arthur can toss |x|d coins and decides whether to accept x.

If we restrict only for inputs x such that |x| ∈ Id, then we have a
TM M′

d as above that prints the truth table of a function that
doesn’t have nd-sized circuits.

We can use this function with the Nisan-Wigderson generator to
derandomize Arthur in (deterministic) time n

O(d)
.

The total time is 2n
c
+ n

O(d)
= O

(
2n

c
)

(c is independent of d),

and for infinitely many input lengths (∈ Id) we have:
L ∈ io–

[
NTIME[2n

a
]/n

]
. □
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Derandomization vs Circuit Lower Bounds

The Easy Witness Lemma

Now we can combine all the above to prove the Easy Witness
Lemma:

Theorem (The Easy Witness Lemma, IKW01)
If NEXP ⊂ P/poly, then NEXP = EXP.

Proof:
Suppose that NEXP ⊂ P/poly.

Then, for every a ∈ N: EXP 6⊆ io–
[
NTIME[2n

a
]/n

]
.

Also we have that NEXP ⊂ P/poly =⇒ EXP = MA.
Since we proved that:
NEXP 6= EXP =⇒ ∃a ∈ N: MA ⊆ io–

[
NTIME[2n

a
]/n

]
,

the contrapositive would imply:
∀a ∈ N:
EXP = MA 6⊆ io–

[
NTIME[2n

a
]/n

]
=⇒ NEXP = EXP. □
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Derandomization of Complexity Classes

Lower Bounds for NEXP

Succinct Problems

The instances of these problems have succinct representations as
circuits:
For a graph problem, the succinct representation of the instance
graph G would be a (small) circuit CG, such that for every vertices:

v1, v2 ∈ V(G), C(v̄1, v̄2) = 1 iff {v1, v2} ∈ E(G)
where v̄i we denote the binary representation of vi.

We also can have succinct SAT instances:
Let f{0, 1}3(n+1) → {0, 1}m, that takes as input a clause number
and outputs the clause description.
Let Cf be the (smallest) circuit computing f. Then Cf depends on
the “complexity” of f.
Also, every circuit encodes some 3CNF formula.

Theorem
Succinct versions of SAT, HC, 3COL, CLIQUE are NEXP-complete.
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Derandomization of Complexity Classes

Lower Bounds for NEXP

Consequences of Easy Witness Lemma

Definition (Succinct 3-SAT)

Given a circuit C on 3(n+ 1) inputs, of size poly(n), decide whether
the formula ϕC encoded by C is satisfiable.

Corollary (of Easy Witness Lemma)
If NEXP ⊂ P/poly, then SUCCINCT− 3SAT has a compressible
witness.

Proof:

In the proof of Easy Witness Lemma, instead of NEXP 6= EXP
(and the existence of a language in NEXP \ EXP), it suffices to
assume that SUCCINCT− 3SAT doesn’t have compressible
witnesses. □
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Theorem (Papadimitriou-Yannakakis)

For every language L ∈ NTIME[ 2
n

n10
] there exists an algorithm that

given x ∈ {0, 1}n, outputs a circuit C on n+O (log n) inputs, in time
O
(
n5
)
(and thus C has size O

(
n5
)
) such that:

x ∈ L⇐⇒ C(x) ∈ SUCCINCT− 3SAT

Recall that the number of clauses in a 3CNF formula is
(2 · 2n)3 = 23(n+1).

Let C be the instance of 3SAT of the above theorem.
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Lemma

If P ⊆ ACC0, then there exists an ACC0 circuit C0 that is equivalent to
C and |C0| = poly|C|.

Proof:

Circuit evaluation can be done in ACC0.

Given C, C0 can be obtained by hard-wiring the constants
corresponding to the description of C into the ACC0 evaluation
circuit, keeping the inputs that correspond to inputs of C free. □

Theorem
For every depth d there exists a δ = δ(d) > 0 and an algorithm, that
given an ACC0 circuit C on n inputs with depth d and size at most 2n

δ

,
the algorithm solves the circuit satisfiability problem of C in 2n−nδ time.
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Theorem

NEXP ⊈ ACC0

Proof Sketch:
Let L ∈ NTIME[ 2

n

n10
] and x ∈ {0, 1}n.

The above lemma states that there exists an ACC0 circuit
equivalent to C with comparable size.

Hence, we can guess it.
But, how can we verify that guess?
First attempt: Create a circuit that on input x outputs 1 iff
C(x) 6= C0(x) and run the ACC0 evaluation algorithm. But: C is
not an ACC0 circuit.
We treated circuits in a black-box fashion. But, circuits can have
circuit analysis algorithms (as we discussed before).
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Proof Sketch (cont’d):

Label the wires of C from 0 to t, where 0 is the label of the output
wire.

For every wire i of C we guess an ACC0 circuit Ci computing the
ith wire of C.

For i = 0 we get our original guess C0.

Now, let C′ be the ACC0 circuit computing the AND of all
conditions over all wires i of C.

This circuit has also constant depth, and size polynomial in |C|.
If C′ outputs 1 for every x, then for every i, Ci is equivalent to the
ith wire of C.

Since C′ is an ACC0 circuit, we can check its satisfiability using
the algorith of the above theorem.
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Proof Sketch (cont’d):

Assume, for the sake of contradiction, than NEXP ⊆ ACC0.

Now, we have the existence of an “easy witness” for
SUCCINCT− 3SAT.

Notice that we only have to guess an ACC0 circuit, since
NEXP ⊆ ACC0 ⇒ P ⊆ ACC0.

We verify that this circuit encodes a satisfying assignment by
reducing it to an instance of ACC0 circuit satisfiability and
evaluate it using the improved algorithm.

But that would imply that NTIME[ 2
n

n10
] ⊆ NTIME[2n−nδ ], for

some δ > 0.

Contradiction!!! □
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Lower Bounds for NEXP

Pseudorandom generators (PRGs) stretch small random strings to
large ones that look random to any efficient adversary.
PRGs can be used to derandomize complexity classes, using
hardness of Boolean functions as assumption.
Circuit lower bounds imply derandomization results.
Derandomization imply Circuit Lower Bounds.
If EXP ⊂ P/poly, then EXP = MA.
If NEXP ⊂ P/poly, then NEXP = EXP (Easy Witness Lemma).
If NEXP ⊂ P/poly, then NEXP-complete languages have
“compressible” witnesses (i.e. witnesses that are truth tables of small
circuits).
Using the Easy Witness Lemma and many more ideas, we deduce
that NEXP ⊈ ACC0 (unconditionally).

Summary
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