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Why Complexity?

Computational Complexity: Quantifying the amount of
computational resources required to solve a given task.
Classify computational problems according to their inherent
difficulty in complexity classes, and prove relations among them.

Structural Complexity: “The study of the relations between
various complexity classes and the global properties of individual
classes. [...] The goal of structural complexity is a thorough
understanding of the relations between the various complexity
classes and the internal structure of these complexity classes.” [J.
Hartmanis]
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Problems....

Decision Problems
Have answers of the form “yes” or “no”.

Encoding: each instance x of the problem is represented as a string
of an alphabet Σ (|Σ| ≥ 2).

Decision problems have the form “Is x in L?”, where L is a
language, L ⊆ Σ∗.

So, for an encoding of the input, using the alphabet Σ, we
associate the following language with the decision problem Π:

L(Π) = {x ∈ Σ∗ | x is a representation of a “yes” instance of the problem Π}

Example

Given a number x, is this number prime? (x
?
∈ PRIMES)

Given graph G and a number k, is there a clique with k (or more) nodes
in G?
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Problems....

Search Problems
Have answers of the form of an object.

Relation R(x, y) connecting instances x with answers (objects) y
we wish to find for x.

Given instance x, find a y such that (x, y) ∈ R.

Example
FACTORING: Given integer N, find its prime decomposition:

N = pk11 pk22 · · · pkmm
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Problems....

Optimization Problems

For each instance x there is a set of Feasible Solutions F(x).

To each s ∈ F(x) we map a positive integer c(x), using the
objective function c(s).

We search for the solution s ∈ F(x) which minimizes (or
maximizes) the objective function c(s).

Example
The Traveling Salesperson Problem (TSP):
Given a finite set C = {c1, . . . , cn} of cities and a distance
d(ci, cj) ∈ Z+, ∀(ci, cj) ∈ C2, we ask for a permutation π of C, that
minimizes this quantity:

n−1∑
i=1

d(cπ(i), cπ(i+1)) + d(cπ(n), cπ(1))
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Problems....

A Model Discussion

There are many computational models (RAM, Turing Machines
etc).

The Church-Turing Thesis states that all computation models
are equivalent. That is, every computation model can be simulated
by a Turing Machine.

In Complexity Theory, we consider efficiently computable the
problems which are solved (aka the languages that are decided) in
polynomial number of steps (Edmonds-Cobham Thesis).�� ��Efficiently Computable ≡ Polynomial-Time Computable
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Problems....

Computational Complexity classifies problems into classes,
and studies the relations and the structure of these classes.

We have decision problems with boolean answer, or
function/optimization problems which output an object as an
answer.

Given some nice properties of polynomials, we identify
polynomial-time algorithms as efficient algorithms.

Summary
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Definitions

Definition
A Turing Machine M is a quintuple M = (Q,Σ, δ, q0,F):

Q = {q0, q1, q2, q3, . . . , qn, qyes, qno} is a finite set of states.
Σ is the alphabet. The tape alphabet is Γ = Σ ∪ {t}.
q0 ∈ Q is the initial state.

F ⊆ Q is the set of final states.

δ : (Q \ F)× Γ → Q× Γ× {S,L,R} is the transition function.

A TM is a “programming language” with a single data structure (a
tape), and a cursor, which moves left and right on the tape.

Function δ is the program of the machine.
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Definitions

Turing Machines and Languages

Definition
Let L ⊆ Σ∗ be a language and M a TM such that, for every string
x ∈ Σ∗:

If x ∈ L, then M(x) = “yes”

If x /∈ L, then M(x) = “no”

Then we say that M decides L.

Alternatively, we say thatM(x) = L(x), where L(x) = χL(x) is the
characteristic function of L (if we consider 1 as “yes” and 0 as
“no”).

If L is decided by some TM M, then L is called a recursive
language.
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Definitions

Definition
If for a language L there is a TM M, which if x ∈ L then M(x) = “yes”,
and if x /∈ L then M(x) ↑, we call L recursively enumerable.

*By M(x) ↑ we mean that M does not halt on input x (it runs forever).

Theorem
If L is recursive, then it is recursively enumerable.

Proof: Exercise

Definition
If f is a function, f : Σ∗ → Σ∗, we say that a TM M computes f if, for
any string x ∈ Σ∗, M(x) = f(x). If such M exists, f is called a
recursive function.

Turing Machines can be thought as algorithms for solving string
related problems.
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Definitions

Multitape Turing Machines

We can extend the previous Turing Machine definition to obtain a
Turing Machine with multiple tapes:

Definition
A k-tape Turing Machine M is a quintuple M = (Q,Σ, δ, q0,F):

Q = {q0, q1, q2, q3, . . . , qn, qhalt, qyes, qno} is a finite set of states.
Σ is the alphabet. The tape alphabet is Γ = Σ ∪ {t}.
q0 ∈ Q is the initial state.

F ⊆ Q is the set of final states.

δ : (Q \ F)×Γk → Q× (Γ×{S,L,R})k is the transition function.
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Properties of Turing Machines

Bounds on Turing Machines

We will characterize the “performance” of a Turing Machine by
the amount of time and space required on instances of size n, when
these amounts are expressed as a function of n.

Definition
Let T : N → N. We say that machine M operates within time T(n) if,
for any input string x, the time required by M to reach a final state is at
most T(|x|). Function T is a time bound for M.

Definition
Let S : N → N. We say that machine M operates within space S(n) if,
for any input string x, M visits at most S(|x|) locations on its work tapes
(excluding the input tape) during its computation. Function S is a space
bound for M.
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Properties of Turing Machines

Multitape Turing Machines

Theorem
Given any k-tape Turing Machine M operating within time T(n), we can
construct a TM M′ operating within time O

(
T2(n)

)
such that, for any

input x ∈ Σ∗, M(x) = M′(x).

Proof: See Th.2.1 (p.30) in [1].

�
�

�
�

This is a strong evidence of the robustness of our model:
Adding a bounded number of strings does not increase their
computational capabilities, and affects their efficiency only polynomially.
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Properties of Turing Machines

Linear Speedup

Theorem
Let M be a TM that decides L ⊆ Σ∗, that operates within time T(n).
Then, for every ε > 0, there is a TM M′ which decides the same
language and operates within time T′(n) = εT(n) + n+ 2.

Proof: See Th.2.2 (p.32) in [1].

If, for example, T is linear, i.e. something like cn, then this theorem
states that the constant c can be made arbitrarily close to 1. So, it is fair
to start using the O (·) notation in our time bounds.
A similar theorem holds for space:

Theorem
Let M be a TM that decides L ⊆ Σ∗, that operates within space S(n).
Then, for every ε > 0, there is a TM M′ which decides the same
language and operates within space S′(n) = εS(n) + 2.
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NTMs

Nondeterministic Turing Machines

We will now introduce an unrealistic model of computation:

Definition
A Turing Machine M is a quintuple M = (Q,Σ, δ, q0,F):

Q = {q0, q1, q2, q3, . . . , qn, qhalt, qyes, qno} is a finite set of states.
Σ is the alphabet. The tape alphabet is Γ = Σ ∪ {t}.
q0 ∈ Q is the initial state.

F ⊆ Q is the set of final states.

δ : (Q \ F)× Γ → Pow(Q× Γ× {S,L,R}) is the transition
relation.
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NTMs

Nondeterministic Turing Machines

In this model, an input is accepted if there is some sequence of
nondeterministic choices that results in “yes”.

An input is rejected if there is no sequence of choices that lead to
acceptance.

Observe the similarity with recursively enumerable languages.

Definition
We say that M operates within bound T(n), if for every input x ∈ Σ∗

and every sequence of nondeterministic choices, M reaches a final state
within T(|x|) steps.

The above definition requires that M does not have computation
paths longer than T(n), where n = |x| the length of the input.
The amount of time charged is the depth of the computation tree.
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NTMs

Examples of Nondeterministic Computations

Example

✓ ✓
Accepting computation Rejecting Computation

Without loss of generality, the computation trees are binary, full
and complete. (why?)
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NTMs

A recursive language is decided by a TM.

A recursive enumerable language is accepted by a TM that
halts only if x ∈ L.

Multiple tape TMs can be simulated by a one-tape TM with
quadratic overhead.

Linear speedup justifies the O (·) notation.
Nondeterministic TMs move in “parallel universes”, making
different choices simultaneously.

A Deterministic TM computation is a path.

A Nondeterministic TM computation is a tree, i.e.
exponentially many paths ran simultaneously.

Summary
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Diagonalization

Diagonalization

Suppose there is a town with just one
barber, who is male. In this town,
the barber shaves all those, and only
those, men in town who do not shave
themselves. Who shaves the barber?

Diagonalization is a technique that was used in many different cases:

http://www.coopertoons.com/education/diagonal/diagonalargument.html
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Diagonalization

Diagonalization

Theorem
The functions from N to N are uncountable.

Proof: Let, for the sake of contradiction that are countable: ϕ1, ϕ2, . . . .
Consider the following function: f(x) = ϕx(x) + 1. This function must
appear somewhere in this enumeration, so let ϕy = f(x). Then
ϕy(x) = ϕx(x) + 1, and if we choose y as an argument, then
ϕy(y) = ϕy(y) + 1. □

Using the same argument:

Theorem
The functions from {0, 1}∗ to {0, 1} are uncountable.
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Simulation

Machines as strings

It is obvious that we can represent a Turing Machine as a string:
just write down the description and encode it using an alphabet, e.g.
{0, 1}.
We denote by ⌞M⌟ the TM M’s representation as a string.

Also, if x ∈ Σ∗, we denote by Mx the TM that x represents.

Keep in mind that:
Every string represents some TM.

Every TM is represented by infinitely many strings.

There exists (at least) an uncomputable function from {0, 1}∗ to
{0, 1}, since the set of all TMs is countable.
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Simulation

The Universal Turing Machine

So far, our computational models are specified to solve a single
problem.

Turing observed that there is a TM that can simulate any other
TM M, given M’s description as input.

Theorem
There exists a TM U such that for every x,w ∈ Σ∗, U(x,w) = Mw(x).
Also, if Mw halts within T steps on input x, then U(x,w) halts within
CT logT steps, where C is a constant independent of x, and depending
only on Mw’s alphabet size number of tapes and number of states.

Proof: See section 3.1 in [1], and Th. 1.9 and section 1.7 in [2].
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Undecidability

The Halting Problem

Consider the following problem: “Given the description of a TM M,
and a string x, will M halt on input x? ” This is called the
HALTING PROBLEM.

We want to compute this problem ! ! ! (Given a computer
program and an input, will this program enter an infinite loop?)

In language form: H = {⌞M⌟; x | M(x) ↓}, where “ ↓ ” means that
the machine halts, and “ ↑ ” that it runs forever.

Theorem
H is recursively enumerable.

Proof: See Th.3.1 (p.59) in [1]
In fact, H is not just a recursively enumerable language:
If we had an algorithm for deciding H, then we would be able to derive
an algorithm for deciding any r.e. language (RE-complete).
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Undecidability

The Halting Problem

But....

Theorem
H is not recursive.

Proof: See Th.3.1 (p.60) in [1]

Suppose, for the sake of contradiction, that there is a TM MH that
decides H.

Consider the TM D:
D(⌞M⌟) : if MH(⌞M⌟; ⌞M⌟) = “yes” then ↑ else “yes”

What is D(⌞D⌟)?

If D(⌞D⌟) ↑, then MH accepts the input, so ⌞D⌟; ⌞D⌟ ∈ H, so
D(D) ↓.
If D(⌞D⌟) ↓, then MH rejects ⌞D⌟; ⌞D⌟, so ⌞D⌟; ⌞D⌟ /∈ H, so
D(D) ↑. □
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Undecidability

Recursive languages are a proper subset of recursive enumerable
ones.

Recall that the complement of a language L is defined as:

L = {x ∈ Σ∗ | x /∈ L} = Σ∗ \ L

Theorem
1 If L is recursive, so is L.
2 L is recursive if and only if L and L are recursively enumerable.

Proof: Exercise

Let E(M) = {x | (q0, ▷, ε)
M∗→ (q, y t xt, ε}

E(M) is the language enumerated by M.

Theorem
L is recursively enumerable iff there is a TM M such that L = E(M).
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Undecidability

More Undecidability

The HALTING PROBLEM, our first undecidable problem, was
the first, but not the only undecidable problem. Its spawns a wide
range of such problems, via reductions.

To show that a problem A is undecidable we establish that, if there
is an algorithm for A, then there would be an algorithm for H,
which is absurd.

Theorem
The following languages are not recursive:

1 {⌞M⌟ | M halts on all inputs}
2 {⌞M⌟; x | There is a y such that M(x) = y}
3 {⌞M⌟; x | The computation of M uses all states of M}
4 {⌞M⌟; x; y | M(x) = y}
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To show that a problem A is undecidable we establish that, if there
is an algorithm for A, then there would be an algorithm for H,
which is absurd.

Theorem
The following languages are not recursive:

1 {⌞M⌟ | M halts on all inputs}
2 {⌞M⌟; x | There is a y such that M(x) = y}
3 {⌞M⌟; x | The computation of M uses all states of M}
4 {⌞M⌟; x; y | M(x) = y}
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Undecidability

Rice’s Theorem

The previous problems lead us to a more general conclusion:�
�

�
�

Any non-trivial property of languages of
Turing Machines is undecidable

If a TM M accepts a language L, we write L = L(M).

Theorem (Rice’s Theorem)
Suppose that C is a proper, non-empty subset of the set of all recursively
enumerable languages. Then, the following problem is undecidable:

Given a Turing Machine M, is L(M) ∈ C?
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Undecidability

Rice’s Theorem

Proof: See Th.3.2 (p.62) in [1]

We can assume that ∅ /∈ C (why?).

Since C is nonempty, ∃ L ∈ C, accepted by the TM ML.

Let MH the TM accepting the HALTING PROBLEM for an
arbitrary input x. For each x ∈ Σ∗, we construct a TM M as
follows:
M(y) : if MH(x) = “yes” then ML(y) else ↑

We claim that: L(M) ∈ C if and only if x ∈ H.

Proof of the claim:
If x ∈ H, thenMH(x) = “yes”, and soM will accept y or never halt,
depending on whether y ∈ L. Then the language accepted by M is
exactly L, which is in C.
If MH(x) ↑, M never halts, and thus M accepts the language ∅,
which is not in C. □
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Undecidability

TMs are encoded by strings.

The Universal TM U(x, ⌞M⌟) can simulate any other TM M
along with an input x.

The Halting Problem is recursively enumerable, but not
recursive.

Many other problems can be proved undecidable, by a
reduction from the Halting Problem.

Rice’s theorem states that any non-trivial property of TMs is an
undecidable problem.

Summary
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Introduction

Parameters used to define complexity classes:

Model of Computation (Turing Machine, RAM, Circuits)

Mode of Computation (Deterministic, Nondeterministic,
Probabilistic)

Complexity Measures (Time, Space, Circuit Size-Depth)

Other Parameters (Randomization, Interaction)
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Introduction

Our first complexity classes

Definition
Let L ⊆ Σ∗, and T, S : N → N:

We say that L ∈ DTIME[T(n)] if there exists a TMM deciding L,
which operates within the time bound O (T(n)), where n = |x|.
We say that L ∈ DSPACE[S(n)] if there exists a TM M deciding
L, which operates within space bound O (S(n)), that is, for any
input x, requires space at most S(|x|).
We say that L ∈ NTIME[T(n)] if there exists a nondeterministic
TM M deciding L, which operates within the time bound
O (T(n)).

We say that L ∈ NSPACE[S(n)] if there exists a nondeterministic
TM M deciding L, which operates within space bound O (S(n)).
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Introduction

Our first complexity classes

The above are Complexity Classes, in the sense that they are sets
of languages.

All these classes are parameterized by a function T or S, so they
are families of classes (for each function we obtain a complexity
class).

Definition (Complementary complexity class)

For any complexity class C, coC denotes the class: {L | L ∈ C}, where
L = Σ∗ \ L = {x ∈ Σ∗ | x /∈ L}.

We want to define “reasonable” complexity classes, in the sense
that we want to “compute more problems”, given more
computational resources.
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Constructible Functions

Constructible Functions

Can we use all computable functions to define Complexity
Classes?

Theorem (Gap Theorem)
For any computable functions r and a, there exists a computable function
f such that f(n) ≥ a(n), and

DTIME[f(n)] = DTIME[r(f(n))]

That means, for r(n) = 22
n
, the incementation from f(n) to 22

f(n)

does not allow the computation of any new function!

So, we must use some restricted families of functions:
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Constructible Functions

Constructible Functions

Definition (Time-Constructible Function)
A nondecreasing function T : N → N is time constructible if
T(n) ≥ n and there is a TM M that computes the function
x 7→ ⌞T(|x|)⌟ in time T(n).

Definition (Space-Constructible Function)
A nondecreasing function S : N → N is space-constructible if
S(n) > log n and there is a TM M that computes S(|x|) using S(|x|)
space, given x as input.

The restriction T(n) ≥ n is to allow the machine to read its input.

The restriction S(n) > log n is to allow the machine to “remember”
the index of the cell of the input tape that it is currently reading.
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Complexity Classes

Constructible Functions

Also, if f1(n), f2(n) are time/space-constructible functions, so are
f1 + f2, f1 · f2 and f

f2
1 .

If we use only constructible functions, we can prove Hierarchy
Theorems, stating that with more resources we can compute more
languages:

Theorem (Hierarchy Theorems)
Let t1, t2 be time-constructible functions, and s1, s2 be
space-constructible functions. Then:

1 If t1(n) log t1(n) = o(t2(n)), then DTIME(t1) ⊊ DTIME(t2).
2 If t1(n+ 1) = o(t2(n)), then NTIME(t1) ⊊ NTIME(t2).
3 If s1(n) = o(s2(n)), then DSPACE(s1) ⊊ DSPACE(s2).
4 If s1(n) = o(s2(n)), then NSPACE(s1) ⊊ NSPACE(s2).
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Complexity Classes
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Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

Theorem

DTIME[n] ⊊ DTIME[n1.5]

Proof (Diagonalization): See Th.3.1 (p.69) in [2]

Let D be the following machine:

On input x, run for |x|1.4 steps U(Mx, x);
If U(Mx, x) = b, then return 1− b;
Else return 0;

Clearly, L = L(D) ∈ DTIME[n1.5]

We claim that L /∈ DTIME[n]:
Let L ∈ DTIME[n] ⇒ ∃ M : M(x) = D(x) ∀x ∈ Σ∗, and M
works for O (|x|) steps.
The time to simulate M using U is c|x| log |x|, for some c.
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Complexity Classes
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Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

Proof (cont’d):
∃n0 : n1.4 > cn log n ∀n ≥ n0
There exists a xM, s.t. xM = ⌞M⌟ and |xM| > n0 (why?) Then,
D(xM) = 1−M(xM) (while we have also that D(x) = M(x), ∀x)

Contradiction!! □

So, we have the hierachy:

DTIME[n] ⊊ DTIME[n2] ⊊ DTIME[n3] ⊊ · · ·

We will later see that the class containing the problems we can
efficiently solve (recall the Edmonds-Cobham Thesis) is the class
P =

⋃
c∈NDTIME[nc].
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Relations among Complexity Classes

Hierarchy Theorems tell us how classes of the same kind relate to
each other, when we vary the complexity bound.
The most interesting results concern relationships between classes
of different kinds:

Theorem
Suppose that T(n), S(n) are time-constructible and space-constructible
functions, respectively.Then:

1 DTIME[T(n)] ⊆ NTIME[T(n)]
2 DSPACE[S(n)] ⊆ NSPACE[S(n)]
3 NTIME[T(n)] ⊆ DSPACE[T(n)]
4 NSPACE[S(n)] ⊆ DTIME[2O(S(n))]

Corollary

NTIME[T(n)] ⊆
⋃
c>1

DTIME[c
T(n)

]
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Relations among Complexity Classes

Proof: See Th.7.4 (p.147) in [1]

1 Trivial
2 Trivial
3 We can simulate the machine for each nondeterministic choice,

using at most T(n) steps in each simulation.
There are exponentially many simulations, but we can simulate
them one-by-one, reusing the same space.

4 Recall the notion of a configuration of a TM: For a k-tape
machine, is a 2k− 2 tuple: (q, i,w2, u2, . . . ,wk−1, uk−1)
How many configurations are there?

|Q| choices for the state
n+ 1 choices for i, and
Fewer than |Σ|(2k−2)S(n) for the remaining strings

So, the total number of configurations on input size n is at most
nc

S(n)
1 = 2O(S(n)).
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Relations among Complexity Classes

Proof (cont’d):

Definition (Configuration Graph of a TM)

The configuration graph of M on input x, denoted G(M, x), has as
vertices all the possible configurations, and there is an edge between
two vertices C and C′ if and only if C′ can be reached from C in one
step, according to M’s transition function.

So, we have reduced this simulation to REACHABILITY*
problem (also known as S-T CONN), for which we know there is
a poly-time (O

(
n2
)
) algorithm.

So, the simulation takes
(
2O(S(n))

)2 ∼ 2O(S(n)) steps. □

*REACHABILITY: Given a graph G and two nodes v1, vn ∈ V, is there a
path from v1 to vn?
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Relations among Complexity Classes

The essential Complexity Hierarchy

Definition

L = DSPACE[log n]

NL = NSPACE[log n]

P =
⋃
c∈N

DTIME[nc]

NP =
⋃
c∈N

NTIME[nc]

PSPACE =
⋃
c∈N

DSPACE[nc]

NPSPACE =
⋃
c∈N

NSPACE[nc]
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Relations among Complexity Classes

The essential Complexity Hierarchy

Definition

EXP =
⋃
c∈N

DTIME[2n
c
]

NEXP =
⋃
c∈N

NTIME[2n
c
]

EXPSPACE =
⋃
c∈N

DSPACE[2n
c
]

NEXPSPACE =
⋃
c∈N

NSPACE[2n
c
]

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXP ⊆ NEXP
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Relations among Complexity Classes
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Certificates & Quantifiers

Certificate Characterization of NP

Definition
Let R ⊆ Σ∗ × Σ∗ a binary relation on strings.

R is called polynomially decidable if there is a DTM deciding the
language {x; y | (x, y) ∈ R} in polynomial time.
R is called polynomially balanced if (x, y) ∈ R implies
|y| ≤ |x|k, for some k ≥ 1.

Theorem
Let L ⊆ Σ∗ be a language. L ∈ NP if and only if there is a polynomially
decidable and polynomially balanced relation R, such that:

L = {x | ∃y R(x, y)}

This y is called succinct certificate, or witness.
So, an NP Search Problem is the problem of computing witnesses.
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Certificates & Quantifiers

Proof: See Pr.9.1 (p.181) in [1]

(⇐) If such an R exists, we can construct the following NTM deciding
L:
“On input x, guess a y, such that |y| ≤ |x|k, and then test (in poly-time)
if (x, y) ∈ R. If so, accept, else reject.” Observe that an accepting
computation exists if and only if x ∈ L.

(⇒) If L ∈ NP, then ∃ an NTM N that decides L in time |x|k, for some
k. Define the following R:
“(x, y) ∈ R if and only if y is an encoding of an accepting computation
of N(x).”
R is polynomially balanced and decidable (why?), so, given by
assumption that N decides L, we have our conclusion. □
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Certificates & Quantifiers

Certificate Characterization of NP

Example (Encoding of a computation path)

0 1

0

✓

0 1

1

0

0 1

0

0

✓

1

1

1

010 and 111 encode accepting paths.
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Certificates & Quantifiers

Can creativity be automated?

As we saw:

Class P: Efficient Computation

Class NP: Efficient Verification

So, if we can efficiently verify a mathematical proof, can we create
it efficiently?

If P = NP...
For every mathematical statement, and given a page limit, we would
(quickly) generate a proof, if one exists.

Given detailed constraints on an engineering task, we would (quickly)
generate a design which meets the given criteria, if one exists.

Given data on some phenomenon and modeling restrictions, we would
(quickly) generate a theory to explain the data, if one exists.

See “A. Wigderson: Knowledge, Creativity and P versus NP”

http://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/AW09/AW09.pdf
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Certificates & Quantifiers

Complementary complexity classes

Deterministic complexity classes are in general closed under
complement (coL = L, coP = P, coPSPACE = PSPACE).

Complementaries of non-deterministic complexity classes are
very interesting:

The class coNP contains all the languages that have succinct
disqualifications (the analogue of succinct certificate for the class
NP). The “no” instance of a problem in coNP has a short proof of
its being a “no” instance.

So:
P ⊆ NP ∩ coNP

Note the similarity and the difference with R = RE ∩ coRE.
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Certificates & Quantifiers

Quantifier Characterization of Complexity Classes

Definition
We denote as C = (Q1/Q2), where Q1,Q2 ∈ {∃, ∀}, the class C of
languages L satisfying:

x ∈ L ⇒ Q1y R(x, y)

x /∈ L ⇒ Q2y ¬R(x, y)

P = (∀/∀)
NP = (∃/∀)
coNP = (∀/∃)
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Space Computation

Savitch’s Theorem

REACHABILITY ∈ NL. See Ex.2.10 (p.48) in [1]

Theorem (Savitch’s Theorem)

REACHABILITY ∈ DSPACE[log2 n]

Proof: See Th.7.4 (p.149) in [1]

REACH(x, y, i) : “There is a path from x to y, of length ≤ i”.

We can solve REACHABILITY if we can compute
REACH(x, y, n), for any nodes x, y ∈ V, since any path in G can
be at most n long.

If i = 1, we can check whether REACH(x, y, i).

If i > 1, we use recursion:
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Proof (cont’d):

def REACH( s , t , k )
i f k==1:

i f ( s == t or ( s , t ) in edge s ) : re turn t r u e
i f k >1 :

for u in v e r t i c e s :
i f (REACH( s , u , f l o o r ( k / 2 ) ) and
(REACH( u , t , c e i l ( k / 2 ) ) ) : re turn t r u e

re turn f a l s e

We generate all nodes u one after the other, reusing space.

The algorithm has recursion depth of dlog ne.
For each recursion level, we have to store s, t, k and u, that is,
O (log n) space.

Thus, the total space used is O
(
log2 n

)
. □
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Space Computation

Savitch’s Theorem

Corollary

NSPACE[S(n)] ⊆ DSPACE[S2(n)], for any space-constructible
function S(n) ≥ log n.

Proof:

Let M be the nondeterministic TM to be simulated.

We run the algorithm of Savitch’s Theorem proof on the
configuration graph of M on input x.

Since the configuration graph has c
S(n)

nodes, O
(
S2(n)

)
space

suffices. □

Corollary

PSPACE = NPSPACE
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Space Computation

NL-Completeness

In Complexity Theory, we “connect” problems in a complexity
class with partial ordering relations, called reductions, which
formalize the notion of “a problem that is at least as hard as
another”.
A reduction must be computationally weaker than the class in
which we use it.

Definition
A language L1 is logspace reducible to a language L2, denoted
L1 ≤ℓ

m L2, if there is a function f : Σ∗ → Σ∗, computable by a DTM in
O (log n) space, such that for all x ∈ Σ∗:

x ∈ L1 ⇔ f(x) ∈ L2

We say that a language A is NL-complete if it is in NL and for every
B ∈ NL, B ≤ℓ

m A.
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Space Computation

NL-Completeness

Theorem
REACHABILITY is NL-complete.

Proof: See Th.4.18 (p.89) in [2]

We ’ve argued why REACHABILITY ∈ NL.

Let L ∈ NL, that is, it is decided by a O (log n) NTM N.

Given input x, we can construct the configuration graph of N(x).

We can assume that this graph has a single accepting node.

We can construct this in logspace: Given configurations C,C′ we
can in space O

(
|C|+ |C′|

)
= O (log |x|) check the graph’s

adjacency matrix if they are connected by an edge.

It is clear that x ∈ L if and only if the produced instance of
REACHABILITY has a “yes” answer. □
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Space Computation

Certificate Definition of NL

We want to give a characterization of NL, similar to the one we
gave for NP.

A certificate may be polynomially long, so a logspace machine
may not have the space to store it.

So, we will assume that the certificate is provided to the machine
on a separate tape that is read once.
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Space Computation

Certificate Definition of NL

Definition
A language L is in NL if there exists a deterministic TM M with an
additional special read-once input tape, such that for every x ∈ Σ∗:

x ∈ L ⇔ ∃y, |y| ∈ poly(|x|),M(x, y) = 1

where by M(x, y) we denote the output of M where x is placed on its
input tape, and y is placed on its special read-once tape, and M uses at
most O (log |x|) space on its read-write tapes for every input x.

What if remove the read-once restriction and allow the TM’s head to
move back and forth on the certificate, and read each bit multiple times?
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Space Computation

Immerman-Szelepscényi

Theorem (The Immerman-Szelepscényi Theorem)

REACHABILITY ∈ NL

Proof: See Th.4.20 (p.91) in [2]

It suffices to show a O (log n) verification algorithm A such that:
∀ (G, s, t), ∃ a polynomial certificate u such that:
A((G, s, t), u) = “yes” iff t is not reachable from s.

A has read-once access to u.

G’s vertices are identified by numbers in {1, . . . , n} = [n]

Ci: “The set of vertices reachable from s in ≤ i steps.”

Membership in Ci is easily certified:

∀i ∈ [n]: v0, . . . , vk along the path from s to v, k ≤ i.

The certificate is at most polynomial in n.
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REACHABILITY ∈ NL

Proof: See Th.4.20 (p.91) in [2]

It suffices to show a O (log n) verification algorithm A such that:
∀ (G, s, t), ∃ a polynomial certificate u such that:
A((G, s, t), u) = “yes” iff t is not reachable from s.

A has read-once access to u.

G’s vertices are identified by numbers in {1, . . . , n} = [n]

Ci: “The set of vertices reachable from s in ≤ i steps.”

Membership in Ci is easily certified:

∀i ∈ [n]: v0, . . . , vk along the path from s to v, k ≤ i.

The certificate is at most polynomial in n.



Complexity Classes Oracles & The Polynomial Hierarchy

Space Computation

The Immerman-Szelepscényi Theorem

Proof (cont’d):
We can check the certificate using read-once access:

1 v0 = s
2 for j > 0, (vj−1, vj) ∈ E(G)
3 vk = v
4 Path ends within at most i steps

We now construct two types of certificates:
1 A certificate that a vertex v /∈ Ci, given |Ci|.
2 A certificate that |Ci| = c, for some c, given |Ci−1|.

Since C0 = {s}, we can provide the 2nd certificate to convince the
verifier for the sizes of C1, . . . ,Cn

Cn is the set of vertices reachable from s.
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Space Computation

The Immerman-Szelepscényi Theorem

Proof (cont’d):

Since the verifier has been convinced of |Cn|, we can use the 1st
type of certificate to convince the verifier that t /∈ Cn.

Certifying that v /∈ Ci, given |Ci|
The certificate is the list of certificates that u ∈ Ci, for every
u ∈ Ci.
The verifier will check:

1 Each certificate is valid
2 Vertex u, given a certificate for u, is larger than the previous.
3 No certificate is provided for v.
4 The total number of certificates is exactly |Ci|.
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Space Computation

The Immerman-Szelepscényi Theorem

Proof (cont’d):
Certifying that v /∈ Ci, given |Ci−1|
The certificate is the list of certificates that u ∈ Ci−1, for every u ∈ Ci−1

The verifier will check:
1 Each certificate is valid
2 Vertex u, given a certificate for u, is larger than the previous.
3 No certificate is provided for v or for a neighbour of v.
4 The total number of certificates is exactly |Ci−1|.

Certifying that |Ci| = c, given |Ci−1|
The certificate will consist of n certificates, for vertices 1 to n, in
ascending order.
The verifier will check all certificates, and count the vertices that have
been certified to be in Ci. If |Ci| = c, it accepts. □
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Space Computation

The Immerman-Szelepscényi Theorem

Corollary

For every space constructible S(n) > log n:

NSPACE[S(n)] = coNSPACE[S(n)]

Proof:

Let L ∈ NSPACE[S(n)]. We will show that ∃ S(n) space-bounded
NTM M deciding L:

M on input x uses the above certification procedure on the
configuration graph of M. □

Corollary

NL = coNL
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Space Computation

What about Undirected Reachability?

UNDIRECTED REACHABILITY captures the phenomenon of
configuration graphs with both directions.
H. Lewis and C. Papadimitriou defined the class SL (Symmetric
Logspace) as the class of languages decided by a Symmetric
Turing Machine using logarithmic space.
Obviously,

L ⊆ SL ⊆ NL
As in the case of NL, UNDIRECTED REACHABILITY is
SL-complete.
But in 2004, Omer Reingold showed, using expander graphs, a
deterministic logspace algorithm for UNDIRECTED
REACHABILITY, so:

Theorem (Reingold, 2004)

L = SL
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Our Complexity Hierarchy Landscape

L

NL
= coNL

P NP

NPC

co
NP

PSPACE
= NPSPACE

EXP

NEXP
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Reductions & Completeness

Karp Reductions

Definition
A language L1 is Karp reducible to a language L2, denoted by
L1 ≤p

m L2, if there is a function f : Σ∗ → Σ∗, computable by a
polynomial-time DTM, such that for all x ∈ Σ∗:

x ∈ L1 ⇔ f(x) ∈ L2

Definition
Let C be a complexity class.

We say that a language A is C-hard (or ≤p
m-hard for C) if for every

B ∈ C, B ≤p
m A.

We say that a language A is C-complete, if it is C-hard, and also
A ∈ C.
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Reductions & Completeness

Karp reductions vs logspace redutions

Theorem
A logspace reduction is a polynomial-time reduction.

Proof: See Th.8.1 (p.160) in [1]

Let M the logspace reduction TM.

M has 2O(log n) possible configurations.

The machine is deterministic, so no configuration can be repeated
in the computation.

So, the computation takes O
(
nk
)
time, for some k. □
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Reductions & Completeness

Circuits and CVP

Definition (Boolean circuits)
For every n ∈ N an n-input, single output Boolean Circuit C is a
directed acyclic graph with n sources and one sink.

All nonsource vertices are called gates and are labeled with one of ∧
(and), ∨ (or) or ¬ (not).
The vertices labeled with ∧ and ∨ have fan-in (i.e. number or incoming
edges) 2.
The vertices labeled with ¬ have fan-in 1.
For every vertex v of C, we assign a value as follows: for some input
x ∈ {0, 1}n, if v is the i-th input vertex then val(v) = xi, and otherwise
val(v) is defined recursively by applying v’s logical operation on the
values of the vertices connected to v.
The output C(x) is the value of the output vertex.
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Reductions & Completeness

Circuits and CVP

Definition (CVP)
Circuit Value Problem (CVP): Given a circuit C and an assignment x to
its variables, determine whether C(x) = 1.

CVP ∈ P.

Example

REACHABILITY ≤ℓ
m CVP: Graph G→ circuit R(G):

The gates are of the form:
gi,j,k, 1 ≤ i, j ≤ n, 0 ≤ k ≤ n.
hi,j,k, 1 ≤ i, j, k ≤ n

gi,j,k is true iff there is a path from i to j without intermediate
nodes bigger than k.

hi,j,k is true iff there is a path from i to j without intermediate
nodes bigger than k, and k is used.
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Reductions & Completeness

Circuits and CVP

Example

Input gates: gi,j,0 is true iff (i = j or (i, j) ∈ E(G)).

For k = 1, . . . , n: hi,j,k = (gi,k,k−1 ∧ gk,j,k−1)

For k = 1, . . . , n: gi,j,k = (gi,j,k−1 ∨ hi,j,k)

The output gate g1,n,n is true iff there is a path from 1 to n using
no intermediate paths above n (sic).

We also can compute the reduction in logspace: go over all
possible i, j, k’s and output the appropriate edges and sorts for the
variables (1, . . . , 2n3 + n2).
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Reductions & Completeness

Composing Reductions

Theorem

If L1 ≤ℓ
m L2 and L2 ≤ℓ

m L3, then L1 ≤ℓ
m L3.

Proof: See Prop.8.2 (p.164) in [1]

Let R,R′ be the aforementioned reductions.
We have to prove that R′(R(x)) is a logspace reduction.
But R(x) may by longer than log |x|...

We simulate MR′ by remembering the head position i of the input
string of MR′ , i.e. the output string of MR.
If the head moves to the right, we increment i and simulate MR
long enough to take the ith bit of the output.
If the head stays in the same position, we just remember the ith bit.
If the head moves to the left, we decrement i and start MR from
the beginning, until we reach the desired bit. □
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Reductions & Completeness

Closure under reductions

Complete problems are the maximal elements of the reductions
partial ordering.

Complete problems capture the essence and difficulty of a
complexity class.

Definition
A class C is closed under reductions if for all A,B ⊆ Σ∗:
If A ≤ B and B ∈ C, then A ∈ C.

P,NP, coNP,L,NL,PSPACE,EXP are closed under Karp and
logspace reductions.

If an NP-complete language is in P, then P = NP.

If L is NP-complete, then L̄ is coNP-complete.

If a coNP-complete problem is in NP, then NP = coNP.
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Reductions & Completeness

P-Completeness

Theorem
If two classes C and C′ are both closed under reductions and there is an
L ⊆ Σ∗ complete for both C and C′, then C = C′.

Consider the Computation Table T of a poly-time TM M(x):�� ��Tij represents the contents of tape position j at step i.

But how to remember the head position and state?
At the ith step: if the state is q and the head is in position j, then
Tij ∈ Σ× Q.

We say that the table is accepting if T|x|k−1,j ∈ (Σ× {qyes}), for
some j.

Observe that Tij depends only on the contents of the same or
adjacent positions at time i− 1.
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Reductions & Completeness

P-Completeness

Theorem
CVP is P-complete.

Proof: See Th. 8.1 (p.168) in [1]

We have to show that for any L ∈ P there is a reduction R from L
to CVP.

R(x) must be a variable-free circuit such that x ∈ L ⇔ R(x) = 1.

Tij depends only on Ti−1,j−1,Ti−1,j,Ti−1,j+1.

Let Γ = Σ ∪ (Σ× Q).

Encode s ∈ Γ as (s1, . . . , sm), where m = dlog |Γ|e.
Then the computation table can be seen as a table of binary entries
Sijℓ, 1 ≤ ℓ ≤ m.

Sijℓ depends only on the 3m entries Si−1,j−1,ℓ′ , Si−1,j,ℓ′ , Si−1,j+1,ℓ′ ,
where 1 ≤ ℓ′ ≤ m.
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Reductions & Completeness

P-Completeness

Proof (cont’d):

So, there are m Boolean Functions f1, . . . , fm : {0, 1}3m → {0, 1}
s.t.:

Sijℓ = fℓ(
−→
S i−1,j−1,

−→
S i−1,j,

−→
S i−1,j+1)

Thus, there exists a Boolean Circuit C with 3m inputs and m
outputs computing Tij.

C depends only on M, and has constant size.

R(x) will be (|x|k − 1)× (|x|k − 2) copies of C.

The input gates are fixed.

R(x)’s output gate will be the first bit of C|x|k−1,1.

The circuit C is fixed, so we can generate indexed copies of C,
using O (log |x|) space for indexing. □
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Reductions & Completeness

CIRCUIT SAT & SAT

Definition (CIRCUIT SAT)
Given Boolen Circuit C, is there a truth assignment x appropriate to C,
such that C(x) = 1?

Definition (SAT)
Given a Boolean Expression ϕ in CNF, is it satisfiable?

Example

CIRCUIT SAT ≤ℓ
m SAT:

Given C→ Boolean Formula R(C), s.t. C(x) = 1 ⇔ R(C)(x) = T.

Variables of C→ variables of R(C).

Gate g of C→ variable g of R(C).
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Reductions & Completeness

CIRCUIT SAT & SAT

Example

Gate g of C→ clauses in R(C):
g variable gate: add (¬g ∨ x) ∧ (g ∨ ¬x) ≡ g ⇔ x
g TRUE gate: add (g)
g FALSE gate: add (¬g)
g NOT gate & pred(g) = h: add (¬g ∨ ¬h) ∧ (g ∨ h) ≡ g ⇔ ¬h
g OR gate & pred(g) = {h, h′}: add
(¬h ∨ g) ∧ (¬h′ ∨ g) ∧ (h ∨ h′ ∨ ¬g) ≡ g ⇔ (h ∨ h′)
g AND gate & pred(g) = {h, h′}: add
(¬g ∨ h) ∧ (¬g ∨ h′) ∧ (¬h ∨ ¬h′ ∨ g) ≡ g ⇔ (h ∧ h′)
g output gate: add (g)

R(C) is satisfiable if and only if C is.

The construction can be done within log |x| space. □
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Reductions & Completeness

Bounded Halting Problem

We can define the time-bounded analogue of HP:

Definition (Bounded Halting Problem (BHP))

Given the code ⌞M⌟ of an NTM M, and input x and a string 0t, decide
if M accepts x in t steps.

Theorem
BHP is NP-complete.

Proof:

BHP ∈ NP.

Let A ∈ NP. Then, ∃ NTM M deciding A in time p(|x|), for some
p ∈ poly(|x|).
The reduction is the function R(x) = 〈⌞M⌟, x, 0p(|x|)〉. □
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Reductions & Completeness

Cook’s Theorem

Theorem (Cook’s Theorem)
SAT is NP-complete.

Proof: See Th.8.2 (p.171) in [1]

SAT ∈ NP.

Let L ∈ NP. We will show that L ≤ℓ
m CIRCUIT SAT ≤ℓ

m SAT.

Since L ∈ NP, there exists an NPTM M deciding L in nk steps.

Let (c1, . . . , cnk) ∈ {0, 1}n
k
a certificate for M (recall the binary

encoding of the computation tree).
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Reductions & Completeness

Cook’s Theorem

Proof (cont’d):

If we fix a certificate, then the computation is deterministic (the
language’s Verifier V(x, y) is a DPTM).

So, we can define the computation table T(M, x,−→c ).
As before, all non-top row and non-extreme column cells Tij will
depend only on Ti−1,j−1,Ti−1,j,Ti−1,j+1 and the nondeterministic
choice ci−1.

We now fixed a circuit C with 3m+ 1 input gates.

Thus, we can construct in log |x| space a circuit R(x) with variable
gates c1, . . . cnk corresponding to the nondeterministic choices of
the machine.

R(x) is satisfiable if and only if x ∈ L. □
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Reductions & Completeness

NP-completeness: Web of Reductions

Many NP-complete problems stem from Cook’s Theorem via
reductions:

3SAT,MAX2SAT,NAESAT

IS,CLIQUE,VERTEX COVER,MAX CUT

TSP(D), 3COL

SET COVER,PARTITION,KNAPSACK,BIN PACKING

INTEGER PROGRAMMING (IP): Given m inequalities oven n
variables ui ∈ {0, 1}, is there an assignment satisfying all the
inequalities?

Always remember that these are decision versions of the
corresponding optimization problems.

But 2SAT, 2COL ∈ P.
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Reductions & Completeness

NP-completeness: Web of Reductions

Example

SAT ≤ℓ
m IP:

Every clause can be expressed as an inequality, eg:

(x1 ∨ x̄2 ∨ x̄3) −→ x1 + (1− x2) + (1− x3) ≥ 1

This method is generalized by the notion of Constraint Satisfaction
Problems.

A Constraint Satisfaction Problem (CSP) generalizes SAT by
allowing clauses of arbitrary form (instead of ORs of literals).�



�
	3SAT is the subcase of qCSP, where arity q = 3 and the constraints

are ORs of the involved literals.



Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

NP-completeness: Web of Reductions

Example

SAT ≤ℓ
m IP:

Every clause can be expressed as an inequality, eg:

(x1 ∨ x̄2 ∨ x̄3) −→ x1 + (1− x2) + (1− x3) ≥ 1

This method is generalized by the notion of Constraint Satisfaction
Problems.

A Constraint Satisfaction Problem (CSP) generalizes SAT by
allowing clauses of arbitrary form (instead of ORs of literals).�



�
	3SAT is the subcase of qCSP, where arity q = 3 and the constraints

are ORs of the involved literals.



Complexity Classes Oracles & The Polynomial Hierarchy

Reductions & Completeness

Quantified Boolean Formulas

Definition (Quantified Boolean Formula)
A Quantified Boolean Formula F is a formula of the form:

F = ∃x1∀x2∃x3 · · ·Qnxn ϕ(x1, . . . , xn)

where ϕ is plain (quantifier-free) boolean formula.

Let TQBF the language of all true QBFs.

Example

F = ∃x1∀x2∃x3 [(x1 ∨ ¬x2) ∧ (¬x2 ∨ x3) ∧ (¬x1 ∨ x2 ∨ ¬x3)]

The above is a True QBF ((1, 0, 0) and (1, 1, 1) satisfy it).
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Reductions & Completeness

Quantified Boolean Formulas

Theorem
TQBF is PSPACE-complete.

Proof: See Th. 19.1 (p.456) in [1] – Th.4.13 (p.84) in [2]

TQBF ∈ PSPACE:
Let ϕ be a QBF, with n variables and length m.
Recursive algorithm A(ϕ):
If n = 0, then there are only constants, hence O (m) time/space.
If n > 0:
A(ϕ) = A (ϕ|x1=0) ∨ A (ϕ|x1=1), if Q1 = ∃, and
A(ϕ) = A (ϕ|x1=0) ∧ A (ϕ|x1=1), if Q1 = ∀.
Both recursive computations can be run on the same space.
So spacen,m = spacen−1,m +O (m) ⇒ spacen,m = O (n · m).
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Reductions & Completeness

Quantified Boolean Formulas

Proof (cont’d):

Now, let M a TM with space bound p(n).

We can create the configuration graph of M(x), having size
2O(p(n)).

M accepts x iff there is a path of length at most 2O(p(n)) from the
initial to the accepting configuration.

Using Savitch’s Theorem idea, for two configurations C and C′ we
have:
REACH(C,C′, 2i) ⇔
⇔ ∃C′′ [REACH(C,C′′, 2i−1) ∧ REACH(C′′,C′, 2i−1)

]

But, this is a bad idea: Doubles the size each time.

Instead, we use additional variables:
∃C′′∀D1∀D2

[
(D1 = C ∧ D2 = C′′) ∨ (D1 = C′′ ∧ D2 = C′)

]
⇒

REACH(D1,D2, 2
i−1)
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Reductions & Completeness

Quantified Boolean Formulas

Proof (cont’d):

The base case of the recursion is C1 → C2, and can be encoded as
a quantifier-free formula.

The size of the formula in the ith step is
spacei ≤ spacei−1 +O (p(n)) ⇒ O

(
p2(n)

)
. □
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Descriptive Complexity

*Logical Characterizations

Descriptive complexity is a branch of computational complexity
theory and of finite model theory that characterizes complexity
classes by the type of logic needed to express the languages in
them.

Theorem (Fagin’s Theorem)
The set of all properties expressible in Existential Second-Order Logic is
precisely NP.

Theorem
The class of all properties expressible in Horn Existential Second-Order
Logic with Successor is precisely P.

HORNSAT is P-complete.
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Descriptive Complexity

We define complexity classes using a computation
model/mode and complexity measures.

Time/Space constructible functions are used as complexity
measures.

Classes of the same kind form proper hierarchies.

NP is the class of easily verifiable problems: given a certificate,
one can efficiently verify that it is correct.

Savitch’s Theorem implies that PSPACE = NPSPACE.

Summary 1/2
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Descriptive Complexity

Reductions relate problems with respect to hardness.

Complete problems reflect the difficulty of the class.

REACHABILITY is NL-complete.

Immerman-Szelepscényi’s Theorem implies that NL = coNL.

Circuit Value Problem (CVP) is P-complete under logspace
reductions.

CIRCUIT SAT and SAT are NP-complete.

True Quantified Boolean Formula (TQBF) is
PSPACE-complete.

Summary 2/2
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Oracle Classes

Oracle TMs and Oracle Classes

Definition

A Turing Machine M? with oracle is a multi-string deterministic TM
that has a special string, called query string, and three special states:
q? (query state), and qYES, qNO (answer states). Let A ⊆ Σ∗ be an
arbitrary language. The computation of oracle machine MA proceeds
like an ordinary TM except for transitions from the query state: From
the q? moves to either qYES, qNO, depending on whether the current query
string is in A or not.

The answer states allow the machine to use this answer to its
further computation.

The computation of M? with oracle A on iput x is denoted as
MA(x).
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Oracle Classes

Oracle TMs and Oracle Classes

Definition
Let C be a time complexity class (deterministic or nondeterministic).
Define CA to be the class of all languages decided by machines of the
same sort and time bound as in C, only that the machines have now
oracle access to A. Also, we define: CC2

1 =
⋃

L∈C2 C
L
1 .

For example, PNP =
⋃

L∈NP P
L. Note that PSAT = PNP.

Theorem

There exists an oracle A for which PA = NPA.

Proof: Th.14.4 (p.340) in [1]

Take A to be a PSPACE-complete language.Then:

PSPACE ⊆ PA ⊆ NPA ⊆ PSPACEA = PSPACEPSPACE ⊆ PSPACE. □
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Oracle Classes

Oracle TMs and Oracle Classes

Theorem

There exists an oracle B for which PB 6= NPB.

Proof: Th.14.5 (p.340-342) in [1]

We will find a language L ∈ NPB \ PB.
Let L = {1n | ∃x ∈ B with |x| = n}.
L ∈ NPB (why?)
We will define the oracle B ⊆ {0, 1}∗ such that L /∈ PB:
Let M?

1,M
?
2, . . . an enumeration of all PDTMs with oracle, such

that every machine appears infinitely many times in the
enumeration.
We will define B iteratively: B0 = ∅, and B =

⋃
i≥0 Bi.

In ith stage, we have defined Bi−1, the set of all strings in B with
length < i.
Let also X the set of exceptions.
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Oracle Classes

Proof (cont’d):

We simulate MB
i (1

i) for ilog i steps.

How do we answer the oracle questions “Is x ∈ B”?

If |x| < i, we look for x in Bi−1.

→ If x ∈ Bi−1, MB
i goes to qYES

→ Else MB
i goes to qNO

If |x| ≥ i, MB
i goes to qNO ,and x → X.

Suppose that after at most ilog i steps the machine rejects.
Then we define Bi = Bi−1 ∪ {x ∈ {0, 1}∗ : |x| = i, x /∈ X}
so 1i ∈ L, and L(MB

i ) 6= L.
Why {x ∈ {0, 1}∗ : |x| = i, x /∈ X} 6= ∅ ? ?

If the machine accepts, we define Bi = Bi−1, so that 1i /∈ L.

If the machine fails to halt in the allotted time, we set Bi = Bi−1,
but we know that the same machine will appear in the
enumeration with an index sufficiently large. □
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A First Barrier: The Limits of Diagonalization

As we saw, an oracle can transfer us to an alternative
computational “universe”.
(We saw a universe where P = NP, and another where P 6= NP)

Diagonalization is a technique that relies in the facts that:�
�

�
�

TMs are (effectively) represented by strings.

A TM can simulate another without much overhead in
time/space.

So, diagonalization or any other proof technique relies only on
these two facts, holds also for every oracle.

Such results are called relativizing results.
E.g., PA ⊆ NPA, for every A ∈ {0, 1}∗.
The above two theorems indicate that P vs. NP is a
nonrelativizing result, so diagonalization and any other
relativizing method doesn’t suffice to prove it.
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Oracle Classes

Cook Reductions

A problem A is Cook-Reducible to a problem B, denoted by
A ≤p

T B, if there is an oracle DTM MB which in polynomial time
decides A (making at most polynomial many queries to B).

That is: A ∈ PB.

A ≤p
m B⇒ A ≤p

T B

A ≤p
T A

Theorem

P,PSPACE are closed under ≤p
T.

Is NP closed under ≤p
T? (cf. Problem Sets!)
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*Random Oracles

We proved that:
∃A ⊆ Σ∗ : PA = NPA

∃B ⊆ Σ∗ : PB 6= NPB

What if we chose the oracle language at random?

Now, consider the set U = Pow(Σ∗), and the sets:

{A ∈ U : PA = NPA}

{B ∈ U : PB 6= NPB}

Can we compare these two sets, and find which is larger?

Theorem (Bennet, Gill)

PrB⊆Σ∗
[
PB 6= NPB] = 1

See H. Vollmer & K.W. Wagner, “Measure one Results in Computational Complexity Theory”

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.57.5215&rep=rep1&type=pdf
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Polynomial Hierarchy Definition

∆p
0 = Σp

0 = Πp
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∆p
i+1 = PΣp
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Σp
i+1 = NPΣp

i

Πp
i+1 = coNPΣp

i

PH ≡
⋃
i⩾0

Σp
i

Σp
0 = P

∆p
1 = P, Σp

1 = NP, Πp
1 = coNP

∆p
2 = PNP, Σp

2 = NPNP, Πp
2 = coNPNP
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Theorem

Let L be a language , and i ≥ 1. L ∈ Σp
i iff there is a polynomially

balanced relation R such that the language {x; y : (x, y) ∈ R} is in Πp
i−1

and
L = {x : ∃y, s.t. : (x, y) ∈ R}

Proof (by Induction): Th.17.8 (p.425) in [1]�� ��For i = 1:
{x; y : (x, y) ∈ R} ∈ P,so L = {x|∃y : (x, y) ∈ R} ∈ NP ✓

�� ��For i > 1:
If ∃R ∈ Πp

i−1, we must show that L ∈ Σp
i ⇒

∃ NTM with Σp
i−1 oracle: NTM(x) guesses a y and asks Σp

i−1

oracle whether (x, y) /∈ R.
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Proof (cont’d):
If L ∈ Σp

i , we must show the existence of R:

L ∈ Σp
i ⇒ ∃ NTM MK, K ∈ Σp

i−1, which decides L.

K ∈ Σp
i−1 ⇒ ∃S ∈ Πp

i−2 : (z ∈ K ⇔ ∃w : (z,w) ∈ S).

We must describe a relation R (we know: x ∈ L ⇔ accepting
computation of MK(x))

Query Steps: “yes”→ zi has a certificate wi st (zi,wi) ∈ S.

So, R(x, y) =“(x, y) ∈ R iff y records an accepting computation
ofM?on x , together with a certificate wi for each yes query zi in the
computation.”

We must show {x; y : (x, y) ∈ R} ∈ Πp
i−1:

Check that all steps of M? are legal (poly time).
Check that (zi,wi) ∈ S (in Πp

i−2, and thus in Π
p
i−1).

For all “no” queries z′i , check z
′
i /∈ K (another Πp

i−1). □
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Corollary

Let L be a language , and i ≥ 1. L ∈ Πp
i iff there is a polynomially

balanced relation R such that the language {x; y : (x, y) ∈ R} is in Σp
i−1

and
L = {x : ∀y, |y| ≤ |x|k, s.t. : (x, y) ∈ R}

Corollary

Let L be a language , and i ≥ 1. L ∈ Σp
i iff there is a polynomially

balanced, polynomially-time decicable (i+ 1)-ary relation R such that:

L = {x : ∃y1∀y2∃y3...Qyi, s.t. : (x, y1, ..., yi) ∈ R}

where the ith quantifier Q is ∀, if i is even, and ∃, if i is odd.
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Remark

Σp
i = (∃∀∃ · · ·Qi︸ ︷︷ ︸

i quantifiers

/ ∀∃∀ · · ·Q′
i︸ ︷︷ ︸

i quantifiers

) Πp
i = (∀∃∀ · · ·Qi︸ ︷︷ ︸

i quantifiers

/ ∃∀∃ · · ·Q′
i︸ ︷︷ ︸

i quantifiers

)

Theorem

If for some i ≥ 1, Σp
i = Πp

i , then for all j > i:

Σp
j = Πp

j = ∆p
j = Σp

i

Or, the polynomial hierarchy collapses to the ith level.

Proof: Th.17.9 (p.427) in [1]

It suffices to show that: Σp
i = Πp

i ⇒ Σp
i+1 = Σp

i .
Let L ∈ Σp

i+1 ⇒ ∃R ∈ Πp
i : L = {x|∃y : (x, y) ∈ R}

Πp
i = Σp

i ⇒ R ∈ Σp
i

(x, y) ∈ R ⇔ ∃z : (x, y, z) ∈ S, S ∈ Πp
i−1.

So, x ∈ L ⇔ ∃y; z : (x, y, z) ∈ S, S ∈ Πp
i−1, hence L ∈ Σp

i . □
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Corollary
If P=NP, or even NP=coNP, the Polynomial Hierarchy collapses to the
first level.

QSATi Definition

Given expression ϕ, with Boolean variables partitioned into i sets Xi,is
ϕ satisfied by the overall truth assignment of the expression:

∃X1∀X2∃X3.....QXiϕ

where Q is ∃ if i is odd, and ∀ if i is even.

Theorem

For all i ≥ 1 QSATi is Σ
p
i -complete.
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Theorem
If there is a PH-complete problem, then the polynomial hierarchy
collapses to some finite level.

Proof: Th.17.11 (p.429) in [1]

Let L is PH-complete.

Since L ∈ PH, ∃i ≥ 0 : L ∈ Σp
i .

But any L′ ∈ Σp
i+1 reduces to L.

Since PH is closed under reductions, we imply that L′ ∈ Σp
i , so

Σp
i = Σp

i+1. □

Theorem
PH ⊆ PSPACE

PH ?
= PSPACE (Open). If it was, then PH has complete

problems, so it collapses to some finite level.
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Relativized Results

Let’s see how the inclusion of the Polynomial Hierarchy to Polynomial
Space, and the inclusions of each level of PH to the next relativizes:

PHA 6= PSPACEA relative to some oracle A ⊆ Σ∗.
(Yao 1985, Håstad 1986)

PrA[PHA 6= PSPACEA] = 1
(Cai 1986, Babai 1987)

(∀i ∈ N) Σp,A
i ⊊ Σp,A

i+1 relative to some oracle A ⊆ Σ∗.
(Yao 1985, Håstad 1986)

PrA[(∀i ∈ N) Σp,A
i ⊊ Σp,A

i+1] = 1
(Rossman-Servedio-Tan, 2015)
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The Complexity of Optimization Problems

Self-Reducibility of SAT

For a Boolean formula ϕ with n variables and m clauses.
It is easy to see that:�� ��ϕ ∈ SAT ⇔ (ϕ|x1=0 ∈ SAT) ∨ (ϕ|x1=1 ∈ SAT)
Thus, we can self-reduce SAT to instances of smaller size.
Self-Reducibility Tree of depth n:

Example

ϕ(x1, x2)

ϕ|x1=0

ϕ|x1=0,x2=0 ϕ|x1=0,x2=1

ϕ|x1=1

ϕ|x1=1,x2=0 ϕ|x1=1,x2=1
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Self-Reducibility of SAT

Definition (FSAT)
FSAT: Given a Boolean expression ϕ, if ϕ is satisfiable then return a
satisfying truth assignment for ϕ. Otherwise return “no”.

FP is the function analogue of P: it contains functions computable
by a DTM in poly-time.

FSAT ∈ FP ⇒ SAT ∈ P.

What about the opposite?

If SAT ∈ P, we can use the self-reducibility property to fix
variables one-by-one, and retrieve a solution.

We only need 2n calls to the alleged poly-time algorithm for SAT.
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The Complexity of Optimization Problems

What about TSP?

We can solve TSP using a hypothetical algorithm for the
NP-complete decision version of TSP:

We can find the cost of the optimum tour by binary search (in
the interval [0, 2n]).

When we find the optimum cost C, we fix it, and start changing
intercity distances one-by one, by setting each distance to C+ 1.

We then ask the NP-oracle if there still is a tour of optimum cost
at most C:

If there is, then this edge is not in the optimum tour.
If there is not, we know that this edge is in the optimum tour.

After at most n2 (polynomial) oracle queries, we can extract the
optimum tour, and thus have the solution to TSP.
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The Complexity of Optimization Problems

The Classes PNP and FPNP

PSAT is the class of languages decided in pol time with a SAT
oracle (Polynomial number of adaptive queries).
SAT is NP-complete⇒ PSAT=PNP.
FPNP is the class of functions that can be computed by a
poly-time DTM with a SAT oracle.
FSAT,TSP ∈ FPNP.

Definition (Reductions for Function Problems)

A function problem A reduces to B if there exists R, S ∈ FL such that:

x ∈ A ⇒ R(x) ∈ B.

If z is a correct output of R(x), then S(z) is a correct output of x.

Theorem

TSP is FPNP-complete.
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Theorem
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Oracle TMs have one-step oracle access to some language.

There exist oracles A,B ⊆ Σ∗ such that PA = NPA and
PB 6= NPB.

Relativizing results hold for every oracle.

A Cook reduction A ≤p
T B is a poly-time TM deciding A, by

using B as an oracle.
The Polynomial Hierarchy can be viewed as:

Oracle hierarchy of consecutive NP oracles.
Quantifier hierarchy of alternating quantifiers.

If for some i ≥ 1 Σp
i = Πp

i , or there is a PH-complete
problem, then PH collapses to some finite level.

Optimization problems with decision version in NP (such as
TSP) are in FPNP.

Summary
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The Complexity Universe
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The Structure of NP

Existence of NP-“Intermediate” Problems

Problems...

After years of efforts, there are problems in NP without a
polynomial-time algorithm or a completeness proof.

Famous examples: FACTORINGD, GI (Graph Isomorphism).
(where FACTORINGD is the problem of deciding if a given
number has a factor ≤ k).

So, are there NP problems that are neither in P nor NP-complete?
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Existence of NP-“Intermediate” Problems

Degrees

The ≤p
T-degree of a language A consists of all languages L such

that L ≡p
T A (that is, L ≤p

T A ∧ A ≤p
T L).

There are three possibilities:
P = NP, thus all languages in NP are ≤p

T-complete for NP, so NP
contains exactly one ≤p

T-degree.

P 6= NP, and NP contains two different degrees: P and
NP-complete languages.

P 6= NP, and NP contains more degrees, so there exists a language
in NP \ P that is not NP-complete.

We will show that the second case cannot happen.
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Existence of NP-“Intermediate” Problems

Enumerations

Recall that any string can potentially encode a TM.
(We map all the invalid encodings to the “empty” TM M0, which
reject all strings.)

A TM M is encoded by infinitely many strings.

So, there exists a function e(x) such that:
1 For every x ∈ Σ∗, e(x) represents a TM.
2 Every TM is represented by at least one e(x).
3 The code of the TM e(x) can be easily decoded.

Such a function is called an enumeration of TMs (Deterministic
or Nondeterministic).
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Existence of NP-“Intermediate” Problems

Enumerations

When we consider classes like P or NP, we can easily enumerate
only these machines, a subclass of all DTMs (NTMs):

Recall that if a function is time-constructible, there exists a DTM
halting after exactly t(n) moves. Such a machine is called a
t(n)-clock machine.

For any DTM M1, we can attach a t(n)-clock machine M2 and
obtain a “product” machine M3 = 〈M1,M2〉, which halts if either
M1 or M2 halts, and accepts only if M1 accepts.
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Existence of NP-“Intermediate” Problems

Enumerations

Consider the functions pi(n) = ni, i ≥ 1.

If {Mx} is an enumeration of DTMs, let M⟨x,i⟩ be the machine Mx
attached with a pi(n)-clock machine.

Then, {M⟨x,i⟩} is an enumeration of all polynomial-time
clocked machines, and it is an enumeration of languages in P,
such that:

Every machine M⟨x,i⟩ accepts a language in P.
Every language in P is accepted by at least a machine in the
enumeration (in fact, by infinite number of machines).
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Existence of NP-“Intermediate” Problems

Enumerations

The same holds for NP.
(enumerate all poly-time alarm clocked NTMs)

We can do the same trick with space, using a yardstick, a DTM
that halts after visiting exactly s(n) memory cells.

We can also enumerate all the functions in FP, and all
polynomial-time oracle DTMs or NTMs.

This list will not contain all the poly-time bounded machines!
(Reminder: It is undecidable to determine whether a given TM halts in
polynomial time for all inputs.)
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Existence of NP-“Intermediate” Problems

Ladner’s Theorem

Theorem (Ladner)
If P 6= NP, there exists a language in NP, which is neither in P nor
NP-complete.

Proof (Blowing holes in SAT): Th. 14.1 (p.330) in [1]

Idea: We will construct a language A by taking an NP-complete
language, and “blow holes” to it, so that it is no longer
NP-complete, neither in P.

Let {Mi} an enumeration of all polynomial-time clocked TMs.

Let {Fi} an enumeration of all polynomial-time clocked functions.
Define A as follows:

A = {x | x ∈ SAT ∧ f(|x|) is even}
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Existence of NP-“Intermediate” Problems

Ladner’s Theorem

Proof (cont’d):

If f ∈ FP, then A ∈ NP: Guess a truth assignment, compute
f(|x|) and verify.
We define f by a polynomial-time TM Mf computing it.

Let also MSAT be the machine that decides SAT, and
f(0) = f(1) = 2.

On input 1n, Mf operates in two stages, each lasting for exactly n
steps:�� ��First Stage
Mf computes f(0), f(1), . . . until it runs out of time.

Let f(x) = k the last value of f it was able to compute.
Then Mf outputs either k or k+ 1, to be determined in the next
stage:
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Existence of NP-“Intermediate” Problems

Ladner’s Theorem

Proof (cont’d):�� ��Second Stage
If k = 2i:

Mf tries to find a z ∈ {0, 1}∗ such that Mi(z) outputs the wrong
answer to “z ∈ A” question (Mi(z) 6= A(z)):

Simulate Mi(z),MSAT(z), f(|z|) for all z in lexicographic order.
If such a string is found in the allotted time, output k+ 1, else
output k.

If k = 2i− 1:
Mf tries to find a string z such that Fi(z) is an incorrect Karp
reduction from SAT to A (MSAT(z) 6= A(Fi(z))):

Simulate Fi(z),MSAT(z),MSAT(Fi(z)), f(|Fi(z)|) for all z in
lexicographic order.
If such a string is found in the allotted time, output k+ 1, else
output k.

Mf runs in polynomial time.
f(n+ 1) ≥ f(n).
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Existence of NP-“Intermediate” Problems

Ladner’s Theorem

Proof (cont’d):

We claim that A /∈ P:

Suppose that A ∈ P. Then, there is an i s.t. L(Mi) = A.

Then, the second stage of Mf with k = 2i will never find a z
satisfying the desired property.

f(n) = 2i for all n ≥ n0, for some n0.

So, f(n) is even for all but finitely many n.

A coincides with SAT on all but finitely many input sizes.

Then SAT ∈ P, contradiction!
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Existence of NP-“Intermediate” Problems

Ladner’s Theorem

Proof (cont’d):

We claim that A is not NP-complete:

Suppose that A is NP-complete, then there is a reduction Fi from
SAT to A.

Then, the second stage of Mf with k = 2i− 1 will never find a z
satisfying the desired property.

So, f(n) is odd on all but finitely many input sizes.

Then A is a finite language, hence in P, contradiction! □
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Using the same technique, we can prove an analog of Post’s
problem in Recursion Theory:

Theorem

If P 6= NP, there exist A,B ∈ NP such that A ≰p
T B and B ≰p

T A.

Ladner’s Theorem (generalized by Schöning) implies also that:

Corollary

If P 6= NP, then for every language B ∈ NP \ P, there exists a set
A ∈ NP \ P such that A ≤p

T B and B ≰p
T A.�

�
�



So, if P 6= NP, then NP contains
infinitely many distinct ≤p

T-degrees.
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Padding

Polynomial-Time Isomorphism

All NP-complete problems are related through reductions.

Many reductions can be converted to stronger relations:

Definition
Two languages A,B ⊆ Σ∗ are polynomial-time isomorphic if there
exists a function h : Σ∗ → Σ∗ such that:

1 h is a bijection.
2 For all x ∈ Σ∗: x ∈ A ⇔ h(x) ∈ B.
3 Both h and h−1 are polynomial-time computable.

Functions h and h−1 are then called polynomial-time isomorphisms.

Which reductions are polynomial-time isomorphisms?
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Padding

Padding Functions

Definition
Let L ⊆ Σ∗ be a language. We say that function pad : Σ∗ × Σ∗ → Σ∗

is a padding function for L if it has the following properties:
1 It is computable in logarithmic space.
2 Forall x, y ∈ Σ∗, pad(x, y) ∈ L ⇔ x ∈ L.
3 Forall x, y ∈ Σ∗, |pad(x, y)| > |x|+ |y|
4 There is a logarithmic-space algorithm, which, given pad(x, y)

recovers y.

Such languages are called paddable.

Function pad is essentially a length-increasing reduction from L to
itself that “encodes” another string y into the instance of L.
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Padding

Padding Functions Examples

Example (SAT)

Let x an instance with n variables and m clauses. Let y ∈ Σ∗:
pad(x, y) is an instance of SAT containing all clauses of x, plus m+ |y|
more clauses, and |y|+ 1 more variables.

The first m clauses are copies of xn+1 clause.

The last m+ ith (i = 1, · · · , |y|) are either ¬xn+i+1 (if y(i) = 0 )
or xn+i+1 (if y(i) = 1).

Is that a padding function?
1 It is log-space computable.
2 It doesn’t affect x’s satisfiability.
3 It is length increasing.
4 Given pad(x, y) we can find where the “added” part begins.
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Polynomial-Time Isomorphism

Padding Functions

We would like to have this kind of implication:
(A ≤p

m B) ∧ (B ≤p
m A) ?⇒(A isomorphic to B).

But, unfortunately, this is not sufficient.

We finally want to have a polynomial-time version of
Schröder-Bernstein Theorem:

Theorem (Schröder-Bernstein)
If there exists a 1-1 mapping from a set A to a set B, and a 1-1 mapping
from B to A, then there is a bijection between A and B.

To achieve this analogy, we need to “enhance” our reductions with
the previous features (1-1, length increasing, and polynomial time
computable and invertible).
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Padding Functions

We can use padding function to transform regular reductions to
“desired” ones:

Theorem
Let R be a reduction from A to B, and pad a padding function for B.
Then, the function mapping x ∈ Σ∗ to pad(R(x), x) is a
length-increasing 1-1 reduction. Furthermore, there exists R−1,
computable in logarithmic space, which given pad(R(x), x) recovers x.

Theorem (Polynomial-time version of Schröder-Bernstein Theorem)

Let A and B be paddable languages. If A ≤p
m B and B ≤p

m A, then A
and B are polynomial-time isomorphic.
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Let A and B be paddable languages. If A ≤p
m B and B ≤p

m A, then A
and B are polynomial-time isomorphic.



The Structure of NP

Polynomial-Time Isomorphism

Padding Functions

Corollary
The following NP-complete languages are pol. isomorphic:
SAT, VERTEX COVER, HAMILTON PATH, CLIQUE, MAX CUT,
TRIPARTITE MATCHING, KNAPSACK

We can (almost trivially) find padding functions for every known
NP-complete problem.

Definition (Berman-Hartmanis Conjecture)
All NP-complete languages are polynomial-time isomorphic to each
other!

Berman-Hartmanis Conjecture⇒ P 6= NP (why?)
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Applications of Padding

Translation Results

Theorem
If NEXP 6= EXP, then P 6= NP.

Proof:
We will prove that if P = NP, then NEXP = EXP.
Let L ∈ NTIME[2n

c
] and M a TM deciding it. We define:

Lp = {x$2|x|
c

| x ∈ L}

Lp is in NP: Simulate M(x) for 2|x|
c
steps and output the answer.

The running time of this machine is polynomial in its input size.
By our assumption, Lp ∈ P.
We can use the machine in P to decide L in EXP: on input x, pad
it using 2|x|

c
$’s, and use the machine in P to decide Lp.

The running time is 2|x|
c
, so L ∈ EXP. □
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Applications of Padding

Separation Results

Let E = DTIME[2O(n)].

Theorem

E 6= PSPACE

Proof:

Assume that E = PSPACE.

Let L ∈ DTIME[2n
2

].

We define:
Lp = {x$ℓ | x ∈ L ∧ |x$ℓ| = |x|2}

Lp ∈ DTIME[2n]

From our assumption: Lp ∈ PSPACE⇒ Lp ∈ DSPACE[nk], for
some k ∈ N.
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E 6= PSPACE

Proof (cont’d):

We can convert this nk-space-bounded machine to another,
deciding L:

Given x, add ℓ = |x|2 − |x| $’s, and simulate the nk-space-bounded
machine on the padded input.

We used |x|2k space, so L ∈ PSPACE⇒
DTIME[2n
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] ⊆ PSPACE.

But, E ⊊ DTIME[2n
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The Structure of NP

Density

Density of Languages

Definition
Let L ⊆ Σ∗ be a language. We define as its density the following
function from N → N:

densL(n) = |{x ∈ L : |x| ≤ n}|

densL(n) is the number of strings in L of length up to n.

Theorem
If A,B ⊆ Σ∗ are polynomial-time isomorphic, then densA and densB are
polynomially related.

Proof:
All x ∈ A with |x| ≤ n are mapped to y ∈ B with |y| ≤ p(n),
where p is the polynomial bound of the isomorphism.
The mapping is 1-1, so densA(n) ≤ densB(p(n)). □
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Density

Sparse Languages

Definition
A language L is sparse if there exists a polynomial q such that for every
n ∈ N : densL(n) ≤ q(n).

Theorem
If a language A is paddable, then it is not sparse.

Proof:
Let A ⊆ Σ∗ with padding function p : Σ∗ × Σ∗ → Σ∗.
Suppose that A is sparse: ∃q ∀n ∈ N : densA(n) ≤ q(n).
Since p ∈ FP, ∃ r ∈ poly(n) : |p(x, y)| ≤ r(|x|+ |y|).
Fix a x ∈ A, since p is 1-1 :

2n ≤ |{p(x, y) : |y| ≤ n}| ≤ densA(r(|x|+ n)) ≤ q(r(|x|+ n))

Thus, 2n/q(r(|x|+ n)) ≤ 1. Contradiction! □
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Sparse Languages

Theorem
If the Berman-Hartmanis conjecture is true, then all NP-complete and
all coNP-complete languages are not sparse.

Proof:

Berman-Hartmanis conjecture is true⇒ every NP-complete
language A is polynomial-time isomorphic to SAT.

Let f be this isomorphism, and padSAT a padding function for
SAT.

Define pA(x, y) := f−1
(padSAT(f(x), y))

Then x ∈ A ⇔ f(x) ∈ SAT ⇔ padSAT(f(x), y) ∈ SAT ⇔
f−1

(padSAT(f(x), y)) ∈ A.

padSAT and f are polynomial time computable and invertible.
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Density

Sparse Languages

Proof (cont’d):

So, pA is a padding function for A, hence A is paddable.

By the previous theorem, A is not sparse.

Also, the complements of paddable languages are paddable
(why?), so coNP-complete languages are also not sparse. □

Theorem (Mahaney)

If P 6= NP, all NP-complete languages are not sparse.
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Density

Sparse Languages

Theorem (Mahaney)

For any sparse S 6= ∅, SAT ≤p
m S if and only if P = NP.

Proof: (Ogihara-Watanabe)

(⇐) trivial.

(⇒) Let LSAT the language:

LSAT = {〈ϕ, σ〉 |ϕ boolean formula, and ∃τ, τ � σ : ϕ|τ = T}

Note that 〈ϕ, 1n〉 ∈ LSAT ⇔ ϕ ∈ SAT, so LSAT is
NP-complete.

Also, if σ1 � σ2 and 〈ϕ, σ1〉 ∈ LSAT, then 〈ϕ, σ2〉 ∈ LSAT.

So, LSAT ≤p
m S, and let f be the reduction.
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Sparse Languages

Proof (cont’d):

Consider the self-reducibility tree of ϕ as a partial assignments
tree:

ϕ(x1, x2, x3)

ϕ|x1=0

ϕ|x1x2=00

ϕ|000 ϕ|001

ϕ|x1x2=01

ϕ|010 ϕ|011

ϕ|x1=1

ϕ|x1x2=10

ϕ|100 ϕ|101

ϕ|x1x2=11

ϕ|110 ϕ|111
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Density

Sparse Languages

Proof (cont’d):
We will use the reduction f as a subroutine to an algorithm for
SAT.
If the algorithm is in polynomial time, P = NP.

Since f ∈ FP, |f(x)| ≤ p(|x|), for a polynomial p and every
x ∈ Σ∗.
Also, since S sparse, let the polynomial q(n) = |S ∩ Σ≤p(n)|.
The algorithm will work on the p.a. tree by pruning some nodes at
each level:

Start from root.
If the next level has > q(n) nodes,
prune until the nodes will be ≤ q(n).
Output 1 if there is a satisfying t.a.

At the end, there will be n levels with at most q(n) nodes each, so
the tree is polynomial.
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Proof (cont’d):
Pruning Procedure

Remove Duplicates:
If f(〈ϕ, σ1〉) = f(〈ϕ, σ2〉) and σ1 � σ2, then we throw away σ2.

Remove leftmost nodes:
If there are > q(n) nodes, remove the leftmost partial assignment,
until there are q(n) nodes left.

Correctness: If ϕ satisfiable, at the end of iteration on each level,
there is an ancestor of the lexicographically smallest t.a. of ϕ.
For duplicates removal, since f(〈ϕ, σ2〉) ∈ S ⇒ f(〈ϕ, σ1〉) ∈ S, ϕ
has a satifying t.a. smaller than σ1.
For leftmost nodes removal, if the level contains more than q
nodes, there will be at least one σ s.t. f(〈ϕ, σ〉) /∈ S (S has ≤ q(n)
strings). Then ϕ will not have a satisfying t.a. smaller than σ, so all
partial t.a.’s to the left of σ can be pruned. □
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Density

Classes like NP, PSPACE or FP can be effectively
enumerated.

If P 6= NP, there exist problems in NP which are not
NP-complete neither in P.

We can obtain polynomial-time isomorphisms between
languages, given they are interreducible and paddable.

Berman-Hartmanis Conjecture postulates that all NP-complete
languages are polynomial-time isomorphic to each other.

We can use padding to translate upwards equalities between
complexity classes.

If P 6= NP, then a sparse set cannot be ≤p
m-hard for NP.

Summary
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