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Introduction



Facing Untractability via Parameters

When he hit the wall of NP-completeness we try other methods

• Probabilistic Algorithms

• Approximations

Through Parameterized algorithms we avoid some flaws of the
above by searching solutions for only part or the universe of the
instances.

Parameters
We correlate a problem with a parameter (a computable function)
and design algorithms on the notion that our instances have the
given parameter bounded and in general terms small.
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Examples

• In Optimisation problems one of the most common parameters
is the size of the solution ( called natural parameterization )

• On Constraint problems ( such as SAT ) we often
parameterize by the number of constraints

• For properties of graphs we often use structural parameters
such as max degree , colour number and other easy or hard to
compute properties (tree-width, clique-width, branch-width)
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Some guys walk into a bar

In a town the Doorman of a bar must choose who he lets in so that
there will be no feuds between them. We represent the people by
vertices and the feuds by edges between them.

Vertex Cover
Given a graph G=(V,E) find the min number of vertices to delete
so there will be no edges left in the graph.

Official Parameterized Version
Input: A Graph G=(V,E) Parameter: A Positive Integer k Output:
Does G have a VC of size k?

Since this is an optimisation problem as we already mentioned we
usually use as a parameter the size of the solution.
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Solving Vertex Cover

Main Idea
The running time or an algorithms usually explodes when there is
branching affected by the size. Make the branching bound by the
parameter and we will have the requested time bound. .

Lets try an algorithm.

1. Begin with the root node labelled by zero. (Represents the an
empty VC containing none of the V nodes)

2. Pick one edge (u,v) of the current graph and branch two
children one containing u and one containing v (and label
accordingly).

3. update the graph by each time deleting the node’s label
vertices.

4. repeat k times
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Example

We will check a Graph for a VC of size 2

G:
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Cont.

What me manage this way :

• Resulting tree is of depth k.

• Each level i of the resulting tree T has nodes with exactly i
vertices in the label.

• If there is a leaf that by deleting its label’s vertices from G
there is no edge left in G then this set of vertices is a VC of
size k.

Is the above procedure correct? yes! For each edge we have to
delete at least one end at some point. Since we explore both
options if there is a VC of size k this algorithm will find it .
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Formal Definitions



Tractability

Parameterized Problem
A parameterization of Σ∗ is a recursive function k : Σ∗ → N. A
parameterized problem is a tuple (L, k), where L ⊆ Σ∗ and k is a
parameterization of Σ∗.

The Class FPT
The class of parameterized problems that can be solved in time

O(f (k) ∗ nc)

, where f(k) is computable.

As always the classification of problems in classes refers to the best
known algorithm or reduction for a parameterized problem
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Picking your weapon

One can design an algorithm that runs in the above time if he
chooses the parameter cunningly.

• We could try parameterizing a problem by the parameter n-1
where n is input size.

• This is allowed!! Not very useful though. why?

1. The parameter will be considered constant and small - We
have to choose it in a way that is realistic .

2. The instances that have the parameter satisfying the above
should be as many as possible
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Definition
Given (L, k), (L′, k ′) parameterized problems. We say that (L, k)

reduces to (L′, k ′) through an FPT -reduction (note . L ≤FPT L′)
iff there exists algorithm R such that:

1. ∀ x ∈ Σ∗, x ∈ L⇔ R(x) ∈ L′

2. R is computable by and FPT -algorithm.

3. k ′ = g(k), where g : N→ N computable function.

If A ≤FPT B and B ≤FPT A, then we say that are A,B are
FPT -equivalent (note. A ≡FPT B).

Example
Clique to Independent Set ,CNF sat to Waited Integer
Programming are ≤FPT .
Vertex Cover to Clique is not. (why?)
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Techniques based on graph
structure



Other Metrics

There are many ways to parameterize a problem.

• you can parameterize by rank of a Matrix

• by the eccentricity of a vertex

• by the density of a graph

BUT! : As we mentioned you have to be sure that by assuming the
parameter bound and small you are not ignoring important or
common instances of a problem.

What have we came up with? Treewidth! (and many other graph
metrics).
Treewidth is a graph metric we use to define in a way how far a
graph is from a tree.
Why? Because trees are nice.
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Treewidth

Definitions

1. A Tree decomposition of a graph G = (V ,E ) is a tree T
together with a collection of subsets Tx (called bags) of V
labeled with the vertices x of T such that ∪Tx = V and the
following hold

• For every edge (u, v) of G there is a some x such that
(u, v) ∈ Tx

• If y is a vertex of on the unique path in T from x to z then
Tx ∩ Tz ⊆ Ty .

2. The width of a tree decomposition is the maximum value of
|Tx | − 1 over all the vertices of the tree T of the
decomposition.

3. The treewidth of Graph G is the minimum treewidth of all
thee decompositions of G .
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Example
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Independent Set

Given a Graph G find the maximum Set L such that if u, v ∈ L then
(u, v) /∈ E

This Problem is NP-hard
BUT!: Many of the real-world problems that require us to check
this property have bounded treewidth! So:
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Dynamic Programming on Bounded TW

The Algorithm

1. Given a Graph and a tree Decomposition of tw k. (we will use
the one given in the previous example )

2. For each node of T we construct a vector with 2k positions as
follows

We store in each position of the vector the size of the larger
Independent set this far. That is the size of the set corresponding
to the vectors bit plus the size of the previously larger Independent
set for the vectors already filled.
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Cont.

Of course we are careful if the current bit of the vector has
common vertices with the previous max independent set . But we
only have to make this check for adjacent nodes of T . Continuing
by adding up independent sets for empty leaf nodes we get the Max
independent set.
We Can pause here and try it for the above tree decomposition.
The proof of this algorithm can be found in the literature given
later.

17 / 32



Hierarchy



An intractable problem

How do we find an intractable problem? We need a model!

• Classical complexity → Turing machines
• Probabilistic algorithms → Turing Machines that might be

wrong (or not fast)
• Approximation algorithms → Turing machines with error.

So.... parameterized Turing machines?

SHORT TURING MACHINE ACCEPTANCE
Input: A nondeterministic Turing machine M and a string x
Parameter : A positive integer k.
Question: Does M have a computation path accepting x in ≤ k
steps

Can we build a hierarchy on this problem? nope.
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Circuits and Weft

• We need a naturally parameterized problem (the chosen
parameter for Turing machine acceptance could be anything)

• Clasical complexity: Cooks theorem (Turing machine ∼ SAT).

• We will try to do the same.

Weft
Let C be a decision circuit. The weft of C is defined to be the
maximum number of large gates on any path from the input
variables to the output line. (A gate is called large if its fan-in
exceeds some preassigned bound.)
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Intractability

WEIGHTED WEFT t DEPTH h CIRCUIT SATISFIABILITY
(WCS(t, h))
Input:A weft t depth h decision circuit C
Parameter : A positive integer k
Question: Does C have a weight k satisfying assignment?

Remarks

• The i th level of the hierarchy corresponds to problems
reducible to weft i circuits

• Circuit depth is essentially irrelevant (but bounded).

• A large gate is considered one that is fanin is more than f (k)
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Analog of Cook’s Theorem

The following are complete for W [1]:

1. WEIGHTED n-SATISFIABILITY for any fixed n ≥ 2

2. SHORT TURING MACHINE ACCEPTANCE

Proof? NOPE → see chapter 21 of bibliography (1)
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Optimisation , Approximation &
Connections to FPT



Optimisation

So what have we learned?

• We have found more efficient ways to solve decision problems
using parameters.

• The problems we tried this far were all NP-optimisation ones.

What is the correlation? Do the algorithms we described remain
efficient?
We will try to formulate this
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Cont

Thanks to Parameterized Complexity Theory we have the following

Theorem. Cai and Chen
Iff you can check if the decision version of an NP optimisation
problem in FPT time then you can find the optimal in FPT time.

Can you think of a proof?

This is not the actual formulation of the theorem
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FPT and Appoximation

1. Pick your favourite optimisation Problem

2. Make it into a Decision one and then parameterize it by the
size of the solution

3. Is it FTP?

Theorem : Bazgan , Cai and Chen
If a NP-optimisation Problem has a fully Polynomial time
approximation scheme then it is FPT

And we are going to prove this
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Proof

1. W.L.G Say the problem is a maximisation one

2. Since it has a fully PTAS there is an algorithm A that runs in
time O(p((1/e) ∗ |x |)) and approximates it by an error of e .

3. We only need to prove that the decision version is FPT

4. For an instance < x , k > run A for < x , 1/2k >

What is the running time of this? Find e with respect to k

5. • if k < f (x) then k < opt(x) since this is a maximisation
problem

• if k > f (x) then k − 1 ≥ f (x) , but e < 1/k ⇒ k > opt(x)
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Proof Cont.

• Therefore k < f (x) iff k < opt(x)

• A runs in time O(p((2k) ∗ |x |))

• Therefore The Problem is FPT

Unfortunately a converse does not exist.
Given a FPT algorithm we cannot guarantee the existence of a fully
polynomial time approximation Scheme .
However this allows us to establish that many problems are FPT
without effort. For instance:

• Bounded Knapsack

• Planar Independent Set

• Linear Extension Count

Are all FPT.
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Approximation

• Say though that a NP-problem is Fixed parameter Intractable.

• So what do we do?

• Can we approximate? Pause for suspense..

Of course not.
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At least not efficiently

Theorem: Bazgan , Cai and Chen
If a NP-Optimisation Problem is Fixed Parameter Intractable then
it has no fully polynomial time approximation Scheme.

To be more specific under the hypothesis FPT 6= W [1] for
parameterized problems There is not fully PTAS for any W[1]
problems.

A known problem that is W[1] hard but not considered yet NP hard
is the Matrix VC dimension. This means that although this problem
is not proven to be NP-complete doesn’t have a FPTAS
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Questions?
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References & cool links

Fundamentals of Parameterized Complexity
Rodney G. Downey , Michael R. Fellows

Parameterized Complexity Wiki

Frontiers of Parameterized Complexity on Youtube
Seminar on Thursdays, at 17.00 Bergen time (GMT+2)

Elli Anastasiadi

elli19@ru.is
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http://fpt.wikidot.com/welcome
https://www.youtube.com/channel/UCdfML-PShQNSCeqbz9Ol_oA
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