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Bitcoin was the first decentralized cryptocurrency with no need
for a trusted central authority.

— Previous work (partial): Pricing functions of Dwork and Naor
[1992], MicroMint of Rivest and Shamir [1996], Szabo’s bit gold
[1998], Karma by Vishnumurthy, Chandrakumar, Sirer [2003]. See
also references in Nakamoto’s Bitcoin whitepaper (Hashcash by
Back and work on time-stamping by Haber and Stornetta).

Introduced in the 2008 paper “Bitcoin: A Peer-to-Peer Electronic
Cash System” by Satoshi Nakamoto (a pseudonym).

Released as open-source code in 2009; first block: 9, Jan 2009.

— Nowadays there are more than than 800,000 blocks and the
blockchain requires more than 500GB.

The total number of bitcoins will not exceed 21 million and this
limit is expected to be reached around 2140.

— Nowadays there are more than 19 million bitcoins in circulation.
— The smallest denomination is the satoshi, equal to 108 bitcoins.
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Bitcoin was the first decentralized cryptocurrency, with no need
for a trusted central authority.

Bitcoin was a fresh solution at an old, fundamental, and well-
studied problem in distributed computing: consensus.
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Bitcoin was the first decentralized cryptocurrency, with no need
for a trusted central authority.

Bitcoin was a fresh solution at an old, fundamental, and well-
studied problem in distributed computing: consensus.

A formal description of the model in which the problem and its
solution can be described.

The properties that a suggested solution should satisfy.
A formal description of the protocol.

Proof that Bitcoin backbone indeed has the desired properties.
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Synchronous model.

— Time is discrete and divided in rounds.

— Global clock: round number is common knowledge.
— All messages get delivered in the next round.

A number of honest parties n and an adversary that controls t
parties.

— Honest parties act independently.
— Parties controlled by the adversary collaborate.

Parties communicate by broadcasting a message.

The adversary can:
— inject messages into a party’s incoming messages.
— reorder a party’s incoming messages.

Anonymous setting: parties cannot associate a message to a
sender; they don’t even know if two messages come from the
same sender,
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Honest parties losing messages or becoming eclipsed or be-
coming unable to know the current time.

— Parties experiencing such issues are factored into the adversary.

The honest parties’ incentives.

— On the other hand, adversarial parties wish to inflict the worst pos-
sible damage independently of utility.

An adversary with computational power that even on occasion,
exceeds that of honest parties.

Attacks that exploit specific weaknesses of the underlying cryp-
tographic primitives.

[ We will use idealized versions of hash functions and digital sig-
natures].
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A cryptographic hash functionis a algorithm
H:{0,1}* —- {0, 1}*
with the following properties.

Given y € {0, 1}* it should be computa-
tionally infeasible to compute x such that H(x) = y.

Given x and y = H(x) it should
be computationally infeasible to compute a x* # x such that
H(x')=y.

It should be computationally infeasible to
compute x # x’ such that H(x) = H(x’).

For a meaningful formal definition one considers cryptographic
hash families.
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We'll work in the “random oracle” model. That is, we assume the
existence of a hash-function H(:) that operates as follows.

On a query x, the returned value H(x) is a random number from

the range of H(:), unless x has been queried before in which
case H(-) is consistent (equal to the previous returned value).
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existence of a hash-function H(:) that operates as follows.

On a query x, the returned value H(x) is a random number from
the range of H(:), unless x has been queried before in which
case H(-) is consistent (equal to the previous returned value).

Given a hash-function H(-)

with range {0,1}* and a y, find x such that H(x, y) begins with a
lot of zeroes. More generaly, given a target T,

find x such that H(x, y) < T.
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We'll work in the “random oracle” model. That is, we assume the
existence of a hash-function H(:) that operates as follows.

On a query x, the returned value H(x) is a random number from
the range of H(:), unless x has been queried before in which
case H(-) is consistent (equal to the previous returned value).

Given a hash-function H(-)

with range {0,1}* and a y, find x such that H(x, y) begins with a
lot of zeroes. More generaly, given a target T,

find x such that H(x, y) < T.

A query is successful with probablllty >c» and one needs in ex-
pectatlon = calls to the oracle H(:) for a proof-of-work.

Among poly(k) queries, the probability of a collision (two dis-
tinct x and x” with H(x) = H(x’)) is exponentially small in k.
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— [ Si Xi Wi ® Fiv1 | Si+1 | Xi+1 | Wiy1 —

[ T T
] Hash hash-value of
Timestamp Proof-of-work previous block

(creation time)  rgngqctions,

mBUL oF gata Si+1 = H(ri, si, X, Wy)

A block (r, s, x, w) is valid if it has a small hash-value, providing
a proof-of-work:
H(r,s,x, w) <T.

A chain is valid if all its blocks provide a proof-of-work and each
block extends the previous one:

foreach i, si 1 =H(r; s, %, w;) and ri1 > ri.
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— T Si | Xi | Wi °

Fiv1 | Si+1 | Xi+1 | Wi+1

[ T T
] Hash hash-value of
Timestamp Proof-of-work previous block
(creation time) Transactions —
input, or data Sirr = HUri, s, Xi wi)

To alter the contents of a block and preserve the length of the

chain the adversary either has to discover a collision in H(:) or
compute all the subsequent blocks.

— Thus the adversary cannot delete, copy, inject, or predict blocks.

By adjusting the target T we control how hard is computing a
block: the lower the target the higher the difficulty, wlog 1/T.
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— [ Si Xi Wi ® Fiv1 | Si+1 | Xi+1 | Wiy1 —

! T !
] Hash hash-value of
Timestamp Proof-of-work previous block
(creation time) :
asactons: Siv1 = H(ry, si, xi, wi)

input, or data
A transaction has the following form:
“From the output (say 10BTC) of transaction i in block j (which
was sent to public pkg), send 2BTC to pk; and 7BTC to pky"”---
signed with sky.

Fees, coinbase transaction.

Parties need to agree on which is the j-th block.
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In each round r, each party with a chain Cy performs the following:
Receive from the network (block)chains C4, C5, ...

Choose the first longest chain C among the valid ones in
{Cp,C1,C>,...}. (Order matters*.)

Try to extend the longest chain C.

This is modeled by a Bernoulli trial with a probability of success
that depends on the target T.

— Suppose its last block is the i-th one and equal to (r;, si, xi, w;)
with s = H(r;, si, xi, w;). Find we {1, 2,...,qg} such that

H(r,s,x, w) <T.

If successful, let C— C|| (r, s, x, w).

If C # Co (i.e., you computed or switched-to another (longer)
chain), diffuse the new chain C.
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An execution example
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— White blocks have been computed by an honest party.
— Red blocks have been computed by the adversary.

— A star (*) on a block means that an honest party has the chain
ending with that block at the given round.

Bitcoin Backbone, Consensus, Variable Difficulty 11/60



— White blocks have been computed by an honest party.
— Red blocks have been computed by the adversary.

— A star (*) on a block means that an honest party has the chain
ending with that block at the given round.

Bitcoin Backbone, Consensus, Variable Difficulty 11/60



— White blocks have been computed by an honest party.
— Red blocks have been computed by the adversary.

— A star (*) on a block means that an honest party has the chain
ending with that block at the given round.

Bitcoin Backbone, Consensus, Variable Difficulty 11/60



— White blocks have been computed by an honest party.
— Red blocks have been computed by the adversary.

— A star (*) on a block means that an honest party has the chain
ending with that block at the given round.

Bitcoin Backbone, Consensus, Variable Difficulty 11/60



— White blocks have been computed by an honest party.
— Red blocks have been computed by the adversary.

— A star (*) on a block means that an honest party has the chain
ending with that block at the given round.

Bitcoin Backbone, Consensus, Variable Difficulty 11/60



— White blocks have been computed by an honest party.
— Red blocks have been computed by the adversary.

— A star (*) on a block means that an honest party has the chain
ending with that block at the given round.

Bitcoin Backbone, Consensus, Variable Difficulty 11/60



— White blocks have been computed by an honest party.
— Red blocks have been computed by the adversary.

— A star (*) on a block means that an honest party has the chain
ending with that block at the given round.

Bitcoin Backbone, Consensus, Variable Difficulty 11/60



*

*

k
/r —
— White blocks have been computed by an honest party.

— Red blocks have been computed by the adversary.

— A star (*) on a block means that an honest party has the chain
ending with that block at the given round.

Bitcoin Backbone, Consensus, Variable Difficulty 11/60



*

—il—

e,
-

— White blocks have been computed by an honest party.
— Red blocks have been computed by the adversary.

— A star (*) on a block means that an honest party has the chain
ending with that block at the given round.

Bitcoin Backbone, Consensus, Variable Difficulty 11/60



— White blocks have been computed by an honest party.
— Red blocks have been computed by the adversary.

— A star (*) on a block means that an honest party has the chain
ending with that block at the given round.

Bitcoin Backbone, Consensus, Variable Difficulty 11/60



Persistence. If a transaction is confirmed by an honest party, no
honest party will ever disagree about the position of that transac-
tion in the ledger.
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Persistence. If a transaction is confirmed by an honest party, no
honest party will ever disagree about the position of that transac-

tion in the ledger.

Liveness. If a transaction is diffused, it will eventually become
confirmed by all honest parties.
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Persistence. If a transaction is confirmed by an honest party, no
honest party will ever disagree about the position of that transac-
tion in the ledger.

Liveness. If a transaction is diffused, it will eventually become
confirmed by all honest parties.

Common-Prefix Property. Any two honest parties’ chains have
a large common prefix.

For any pair of honest parties adopting chains C;
and C, at rounds r; < rp respectively, it holds C{k < Cs.
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Common-Prefix Property. Any two honest parties’ chains have
a large common prefix.

For any pair of honest parties adopting chains C;
and C, at rounds r; < rp respectively, it holds C{k < Cs.
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honest party’s chain, will contain some blocks computed from hon-
est parties.
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Persistence. If a transaction is confirmed by an honest party, no
honest party will ever disagree about the position of that transac-
tion in the ledger.

Liveness. If a transaction is diffused, it will eventually become
confirmed by all honest parties.

Common-Prefix Property. Any two honest parties’ chains have
a large common prefix.

For any pair of honest parties adopting chains C;
and C, at rounds 1 £ rp respectively, it holds C{k < C,.

Chain-Quality Property. Any sufficiently large segment of an
honest party’s chain, will contain some blocks computed from hon-
est parties.

Chain-Growth Property. The chain of any honest party grows at
least at a steady rate.
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Successful Round. A round r in which at least one honest party
computes a block.

— Recall that a single query is successful with probability p := T/2.

Xr=1 < ris asuccessful round
f=E[X/]=1—-(1-p)"=pn
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Successful Round. A round r in which at least one honest party
computes a block.

— Recall that a single query is successful with probability p := T/2.

Xr=1 < ris asuccessful round
f=E[X/]=1—-(1-p)"=pn

Uniqguely Successful Round. A round r in which exactly one hon-
est party computes a block.

Yr=1 < ris auniquly successful round
E[Y,]=np(1—p)"' >np(l—pn)=f(l-f)
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Successful Round. A round r in which at least one honest party
computes a block.

— Recall that a single query is successful with probability p := T/2.

X,=1 < ris asuccessful round
f=E[X/]=1-(1—p)'=pn

Uniquely Successful Round. A round rin which exactly one hon-
est party computes a block.

Y=1 < ris auniquly successful round
E[Y,]=np(1—p)"' >np(l—pn)=f(l—f)

Adversary. For each query J,

Zi=1 < the adversary computed a block with his j-th query
E[Z,]=E[Z1+:--+ 2] =E[Z ] =E[Z1] +---+ E[Z:] = pt
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Chain-Growth Lemma. Suppose that at round r an honest party
has a chain of length [. Then, by round s > r, every honest party has
adopted a chain of length at least

£+Xr+"‘+X5_]_.
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Chain-Growth Lemma. Suppose that at round r an honest party
has a chain of length [. Then, by round s > r, every honest party has
adopted a chain of length at least

£+Xr+ ”‘+X5_]_.
Chernoff Bound. Suppose {X;:i€[n]} are mutually independent

Boolean random variables, with Pr[X; = 1] = p, for all i € [n]. Let
X=3) " X and u=pn. Then, for any é € (0, 1],

Pr[X<(1—8)u]<e ¥ H2 and Pr[X > (1+8)u] <e ¥H3,
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Chain-Growth Lemma. Suppose that at round r an honest party
has a chain of length [. Then, by round s > r, every honest party has
adopted a chain of length at least

£+Xr+ ”‘+X5_]_.
Chernoff Bound. Suppose {X;:i€[n]} are mutually independent

Boolean random variables, with Pr[X; = 1] = p, for all i € [n]. Let
X=3) " X and u=pn. Then, for any é € (0, 1],

Pr[X<(1—8)u]<e ¥ H2 and Pr[X > (1+8)u] <e ¥H3,

Chain-growth property. With probability at least 1—e~%€’fs), the
chain of any honest party increases by at least

(l—€e)fs~(1—€)pns

blocks after s consecutive rounds. (E[ X1+ -+ Xs] =fs =~ pns.)
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Common-Prefix Lemma

Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ Q) (The party with the shortest chain should be honest.)
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Common-Prefix Lemma

Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ Q) (The party with the shortest chain should be honest.)

r

Observation. Suppose the [-the block of a chain was computed by
an honest party in a uniquely successful round. Then any other [-th
block has been computed by the adversary.
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Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ Q) (The party with the shortest chain should be honest.)

-
Sy sl el el e
..

Observation. Suppose the [-the block of a chain was computed by
an honest party in a uniquely successful round. Then any other [-th
block has been computed by the adversary.

r
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Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ Q) (The party with the shortest chain should be honest.)

-
Sy sl el el e
..

Observation. Suppose the [-the block of a chain was computed by
an honest party in a uniquely successful round. Then any other [-th
block has been computed by the adversary.

r

Proof. Suppose a block of height £ was computed by an honest
party at a round u with Y, = 1. If any honest party computed a
block of height £ at any round r < u, then any honest party is trying
to extend a chain of length at least £ at round u. Similarly for r > u.
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Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ Q). (The party with the shortest chain should be honest.)

The R e

r* r

Proof. Let r* be the last round in which a block before the fork was
computed by an honest party. SetS={r*+1,...,r—1}.
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Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ Q). (The party with the shortest chain should be honest.)

[ EE .

r* r

Proof. Let r* be the last round in which a block before the fork was
computed by an honest party. SetS={r*+1,...,r—1}. By the

Observation, to every uniquely successful round in S corresponds
an adversarial block computed in S.
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Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~k (The party with the shortest chain should be honest.)

=
[

r* r

Proof. Let r* be the last round in which a block before the fork was
computed by an honest party. SetS={r*+1,...,r—1}. By the

Observation, to every uniquely successful round in S corresponds
an adversarial block computed in S. It follows that

Uniqgely successful
rounds in S < Adversarial successes in S.
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Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ Q). (The party with the shortest chain should be honest.)

g .
TEE | e

r* r

Proof. Let r* be the last round in which a block before the fork was
computed by an honest party. SetS={r*+1,...,r—1}. By the

Observation, to every uniquely successful round in S corresponds
an adversarial block computed in S. It follows that

Unigely successful
rounds in S < Adversarial successes in S.

E[2_Yid=~pn(1-f)IS| E[2_Zi] = pt|SI.
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Recall that E[Y;] > f(1—f). Let Y(S) = ) _,..Y-. Then, since
E[Y(S)]=) ... f(1—f)=f(1—1)IS|, by the Chernoff bound,

PrlY(S) < (1—€e)f(1—1)IS|] = e 2D,

Similarly
Pr{Z(S) > (1 + €)pt|S|] = e 205D,

Bitcoin Backbone, Consensus, Variable Difficulty 16/60



Recall that E[Y;] > f(1—f). Let Y(S) = ) _,..Y-. Then, since
E[Y(S)]=) ... f(1—f)=f(1—1)IS|, by the Chernoff bound,
PriY(S) < (1—€)f(1—f)IS|] = e 25D,
Similarly
Pr{Z(S) > (1 + €)pt|S|] = e 205D,

. t<(1—46)nforéd > 3e+ 3f.
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Recall that E[Y;] > f(1—f). Let Y(S) = ) ,..Y-. Then, since
E[Y(S5)] = Zresf(l —f)=f(1—-f)|S|, by the Chernoff bound,

PrlY(S) < (1—€e)f(1—1)IS|] = e 2D,
Similarly
PrZ(S) = (1 + €)pt|S|] = e 5D,

. t<(1—46)n foréd > 3€e+ 3f.

Assuming these bad events don’t occur (union bound) and the
Honest Majority Assumption

Z(S) < (1+ e)pt|S|
<(1+€)(1-—96)pn]|S]| {t<(1—-6)n}

<(1+€)(1—5)°1L°|5| 1 (1=flpn<f}

< (1—e)f|S| {6>3e+3f}
<Y(S) O
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Chain Quality. For any I (sufficiently many) blocks in the chain of
an honest party, the ratio of adversarial blocks is at most

t
(1+€)-—.
n
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Chain Quality. For any I (sufficiently many) blocks in the chain of
an honest party, the ratio of adversarial blocks is at most

t Compare to
(L+€)-—. the ideal ratio
n t/(n+ t).
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Chain Quality. For any I (sufficiently many) blocks in the chain of
an honest party, the ratio of adversarial blocks is at most

t
(1+€)-—.
n

Corollary. Ift < (1—€)n, there is at least one honest block among
any [ consecutive blocks in the chain of an honest party.

Proof. The ratio of adversarial blocks is lessthan (1+€)(1—€) < 1.
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Chain Quality. For any I (sufficiently many) blocks in the chain of
an honest party, the ratio of adversarial blocks is at most

t
(1+¢€)-—.
n

Proof. L

I - N

u’ is greatest such that B, was computed by an honest party.

v’ is least such that there exists a round at which an honest
party was trying to extend the chain ending at block B-.

r1 is the round that B, was created.

r» first round that an honest party attempts to extend B, .

S={r:rn<r<nr}.
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Proof Cont’d.
L

I - N

We may assume that all the L blocks have been computed during
the rounds in the set S.

The number of successful rounds is at least X > (1 — %)pnlSl.

The number of adversarial blocks is at most Z < (1 + %)ptlSl.
Chain growth implies that L > X.

The fraction of adversarial blocks is at most

Z Z 1+35 t t
—< =< =-—<(1+¢€) —.
L X 1—5 n n ]
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Theorem. There exists an adversary such that, with probability at
least 1 — e~ €D (§ = Q(1/€)), there will be I consecutive blocks in
the chain of every honest party in which the fraction of adversarial
blocks is at least ;

— — 2E€.
n
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Theorem. There exists an adversary such that, with probability at
least 1 — e~ €D (§ = Q(1/€)), there will be I consecutive blocks in

the chain of every honest party in which the fraction of adversarial
blocks is at least ;

— — 2E€.
n

A selfish mining attack.
The adversary keeps on extending a private chain.

Whenever an honest party finds a solution, the (rushing) adver-
sary releases one block from the private chain.

If the private chain is depleted the adversary returns to the pub-
lic chain.
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Theorem. There exists an adversary such that, with probability at
least 1 — e~ €D (§ = Q(1/€)), there will be I consecutive blocks in
the chain of every honest party in which the fraction of adversarial
blocks is at least ;

— — 2E€.
n

A selfish mining attack.
The adversary keeps on extending a private chain.

Whenever an honest party finds a solution, the (rushing) adver-
sary releases one block from the private chain.

If the private chain is depleted the adversary returns to the pub-
lic chain.

Assumption. Ties between chains of equal length always favor
the adversary.

Bitcoin Backbone, Consensus, Variable Difficulty 19/60



Consider a set S of at least //(1 — €)pn consecutive rounds.
— This implies X(S) </ (recall Chain-Growth Property).

The number Z of adversarial blocks is at least % - L.

The number Z’ of orphaned adversarial blocks computed in S is
at most €/ with high probability.

— k adversarial blocks may be orphaned, only if an honest party com-
putes k + 1 sequential blocks.

The number Z” of adversarial blocks not released in S is at most
€?{ with high probability.

— k adversarial blocks are not released, only if no honest party com-
puted a block in the meantime.

The ratio of adversarial blocks is at least

Z-2'-2" *.4—el—€’ t
> > — —2€ -
X /4 n
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A set of parties {1,...,n}, t of which are controlled and coordi-
nated by an adversary. Parties have inputs x1,...,x, € {0,1} and
want to decide on outputs v4,..., v, so that the following condi-
tions are satisfied.

Agreement: All honest parties decide on the same value (i.e.,
if { and j are honest, then v; = v;).

Validity: If all honest parties have the same input value x, then
all honest parties decide x (i.e., if i is honest, then v; = x).

Termination: All honest processes should terminate.
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A set of parties {1,...,n}, t of which are controlled and coordi-
nated by an adversary. Parties have inputs x1,...,x, € {0,1} and
want to decide on outputs v4,..., v, so that the following condi-
tions are satisfied.

Agreement: All honest parties decide on the same value (i.e.,
if { and j are honest, then v; = v;).

Validity: If all honest parties have the same input value x, then
all honest parties decide x (i.e., if i is honest, then v; = x).

Termination: All honest processes should terminate.

Remark. Note that n here is the total number of parties.
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One of the classical problems in distributed computing, a vari-
ant of which was first introduced in “Reaching Agreement in the
Presence of Faults” [ Pease-Shostak-Lamport 1980].

Requires n > 3t, unless cryptography is used [ PSL].

Even with cryptographic tools, at least t + 1 rounds are needed
[ Fischer-Lynch and Dolev-Strong 1982].

In an asynchronous or anonymous network no deterministic
protocol exists [Fischer-Lynch-Paterson 1985]. But possible
with probability 1 [Ben-Or 1983].

Bit complexity is Q(nt) [ Dolev-Reischuk 1985].

Fully Polynomial: There exists a protocol forall t < g that termi-
nates in t+ 1 rounds, and both computation and communication
are polynomial in n. [Garay, Moses, “Fully polynomial Byzan-
tine agreement for n > 3t processors in t+ 1 rounds.” 1998]
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When 1 party out of n might be Byzantine, at least 2 rounds are
needed.

Upon receiving 00...001, an honest party should output O.
— Because of validity, since party p, could be Byzantine.

Upon receiving 00...011, an honest party should output O.

— Because party p,—1 could be Byzantine, and some parties might
have received 00...001 and going to answer 0.

Upon receiving 00...0111, an honest party should output O.

— Because party ph,—» could be Byzantine, and some parties might
have received 00...011 and going to answer 0.

Upon receiving 01...111, an honest party should output O.

Contradiction! Because the first party could be Byzantine.
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t<n/2

Proof. Oninput0...0,1...,1, where there are n/2 zeroes and n/2
ones and all parties are honest, the protocol terminates in one of
the following three states.

All honest parties output 0.

All honest parties output 1.

Honest parties have mixed outputs.
The adversary chooses a strategy as follows.

In case A, he corrupts the first half of parties and behaves hon-
estly. Validity fails.

In case B, he corrupts the second half of parties and behaves
honestly. Validity fails.

In case C, he does not corrupt any party. Agreement fails.
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t<n/3

A(mute) Since B and C have 0 and A might have crashed,
at some time ty parties B and C
B(0) C(0) should terminate with O.
A(1) Since A and C have 1 and B might have crashed,
at some time tg parties A and C
B(mute) C(1) should terminate with 1.
A(1) Adversary C talksto Aasif he has a1l and to
B as if he has a 0. Meanwhile, he holds messages
B(0) C(x*) A «— B for tc > t, + tg rounds.
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t<n/3

— | A(1)—C(1) Adversary A tries to confuse B by acting as if

% | C is Byzantine and talks to A as if its inputis 1

=| B(0) (C(0) and to B as if it is 0.

_f; B(0)—A(1) Adversary B tries to confuse A by acting as if

E ‘ C is Byzantine and talks to 5 as if its input is O

=| C(0) C(1) and to A as if it is 1.

g A(1)—C(1) Adversary . talks to A as if he has a 1 and

= toB asif he has a 0, in a way that:

@) - .

2| B(0)—C(0) e A cannot d!st!ngu!sh between worlds 2 and 3
e B cannot distinguish between worlds 1 and 3

Contradiction! If Validity holds in worlds 1 and 2,

then Agreement fails in world 3.
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A(ll)—C(l)

B(0)  C(0)
B(0)—A(1)
C(0) C(1)
A(1)—C(1)
B(0)—C(0)

A(1)

PN

B(0) C(1)

C(0) B(1)

~

A(0)
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Re: Bitcoin P2P e-cash paper

Satoshi Nakamoftc Thu, 13 Nov 2008 19:34:25 -0800

James A. Donald wrote:

> It is not sufficient that everyone knows X. We also

> need everyone to know that everyone knows X, and that
everyone knows that everyone knows that everyone knows X
- which, as in the Byzantine Generals problem, is the
classic hard problem of distributed data processing.

The proof-of-work chain is a solution to the Byzantine Generals' Problem. I'll
try to rephrase it in that context.

A number of Byzantine Generals each have a computer and want to attack the
King's wi-fi by brute forcing the password, which they've learned is a certain
number of characters in length. Once they stimulate the network to generate a
packet, they must crack the password within a limited time to break in and
erase the logs, otherwise they will be discovered and get in trouble. They
only have enough CPU power to crack it fast enough if a majority of them attack
at the same time.

They don't particularly care when the attack will be, just that they all agree.
It has been decided that anyone who feels like it will announce a time, and

whatawrar #1ima 1 haard Firvred will ha +ha AFFimrial atdbranlr +ima Tha wvrahlam 1

https://www.mail-archive.com/cryptography@metzdowd.com/msg09997.html
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Theorem [GKL2015]. Assuming t < n/3, the following protocol
terminates after ©(k) rounds in expectation and solves consensus
with probability at least 1 — e=9(k),
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Theorem [GKL2015]. Assuming t < n/3, the following protocol
terminates after ©(k) rounds in expectation and solves consensus
with probability at least 1 — e=9(k),

1) Parties run the Bitcoin protocol, putting their own input-bit in ev-
ery block they compute.

2) When they obtain a chain with length > 2k they halt (after they
diffuse it).

3) Each party decides on the output equal to the majority of the in-
puts recorded in the first k blocks.
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Theorem [GKL2015]. Assuming t < n/3, the following protocol
terminates after ©(k) rounds in expectation and solves consensus
with probability at least 1 — e=9(k),

1) Parties run the Bitcoin protocol, putting their own input-bit in ev-
ery block they compute.

2) When they obtain a chain with length > 2k they halt (after they
diffuse it).

3) Each party decides on the output equal to the majority of the in-
puts recorded in the first k blocks.

T
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Theorem [GKL2015]. Assuming t < n/3, the following protocol
terminates after ©(k) rounds in expectation and solves consensus
with probability at least 1 — e=9(k),

1) Parties run the Bitcoin protocol, putting their own input-bit in ev-
ery block they compute.

2) When they obtain a chain with length > 2k they halt (after they
diffuse it).

3) Each party decides on the output equal to the majority of the in-
puts recorded in the first k blocks.

K > 2k
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By the common-prefix property, if the adversary has less than
half of the total computational power, Agreement is satisfied
with high probability.

This is because every honest party will output the majority of
the input-bits included in the common prefix of their (possibly
different) chains. (Consider the first time an honest party has a
chain of length at least 2k.)
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By the common-prefix property, if the adversary has less than
half of the total computational power, Agreement is satisfied
with high probability.

This is because every honest party will output the majority of
the input-bits included in the common prefix of their (possibly
different) chains. (Consider the first time an honest party has a
chain of length at least 2k.)

By the chain-quality property, if the adversary has less than
one third of the total computational power, Validity is satisfied
with high probability.

This is because out of the k bits of the common prefix, the ad-
versary has computed less than half of them. Therefore, if all
the honest parties have the same input x, the majority of the
bits in the common prefix will be x.
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Idea. Two kinds of blocks with a single query. Recall H: {0,1}* —
{0, 1}X.

Normal blocks: H(x) < T = 29.
Input blocks: [H(x)]? < T’ = 2°b.

Here, [y]® is the number with binary expansion the reverse of y.
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Idea. Two kinds of blocks with a single query. Recall H: {0,1}* —
{0, 1}X.

Normal blocks: H(x) < T = 29.

Input blocks: [H(x)]? < T’ = 2°b.
Here, [y]® is the number with binary expansion the reverse of y.
Observation. As long as a + b > k, the probabilities of obtaining a
block of each kind are independent.

Proof. Let U random over {0, 1}*. Conditioningon U < T leaves the
a least significant bits of U random, while fixing the remaining k—a
bits. Thus, the a > kK — b most significant bits of UR are random. It
follows that

20—(K—b) 2b T’

PrfUR<TIU<T] = =—=—=Pr[UR < T'].
2a 2K 2K
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Theorem [GKL2015]. Assuming t < n/2, the following protocol
terminates after ©(k) rounds in expectation and solves consensus
with probability at least 1 — e=2(K),
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Theorem [GKL2015]. Assuming t < n/2, the following protocol
terminates after ©(k) rounds in expectation and solves consensus
with probability at least 1 — e=2(K),

1) Parties run the Bitcoin protocol, putting their own input-bit in ev-

ery block they compute and referencing all input blocks from
the blocks they compute.
2) When they obtain a chain with at least 37’( + 2k blocks they

halt (after they diffuse it).

3) Each party decides on the output equal to the majority of the
recorded in the first 3¢ + k
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Theorem [GKL2015]. Assuming t < n/2, the following protocol
terminates after ©(k) rounds in expectation and solves consensus
with probability at least 1 — e=2(K),

1) Parties run the Bitcoin protocol, putting their own input-bit in ev-

ery block they compute and referencing all input blocks from
the blocks they compute.
2) When they obtain a chain with at least 37’( + 2k blocks they

halt (after they diffuse it).

3) Each party decides on the output equal to the majority of the
recorded in the first 3¢ + k

Agreement follows from Common-Prefix Property because at least
k blocks are pruned.
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Let C denote the prefix of the ﬁrst X + 2k normal blocks.

By Chain-Quality Property, the last k of C contain an honest nor-
mal block B, computed at some round r.

Note that B contains all honest input blocks computed in S =
{1,2,...,r}. Let X(S) denote their number and Z(5’) the adver-
sarial input blocks referenced.

Thus,

Z(S") - (1+ €)pt|S’| (1 + €)(1—98)pn|S’| <.
X(S) (1—e)f|S| (1—6)(1 fpn|S|

— V4

as long as 6 and S are big enough.
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The adversary may delay the delivery of a message for at most A
rounds. That is, a message diffuse at round r may be delivered at
round r + A (but not later).
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The adversary may delay the delivery of a message for at most A

rounds. That is, a message diffuse at round r may be delivered at
round r + A (but not later).

A-isolated uniquely-successful round.

Y/=1ifYi=1and X; =0 forj# iwith |[j—i <A
E[Y/]1>f(1—-f)*""'=f[1—-(2A—1)f]
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The adversary may delay the delivery of a message for at most A

rounds. That is, a message diffuse at round r may be delivered at
round r + A (but not later).

A-isolated uniquely-successful round.

Y/=1ifYi=1and X; =0 forj# iwith |[j—i <A
E[Y/] >f(1—f)**"1 > f[1—(2A—1)f]
A-isolated successful round.

X =1lifXi=1land X;=0fori—A<j<i
E[X/1>f(1—f)"" 2 f[1—(A—1)f]
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The adversary may delay the delivery of a message for at most A
rounds. That is, a message diffuse at round r may be delivered at
round r + A (but not later).

A-isolated uniquely-successful round.

Y/=1ifYi=1and X; =0 forj# iwith |[j—i <A
E[Y/]1>f(1—-f)*""'=f[1—-(2A—1)f]

A-isolated successful round.
X =1lifXi=1land X;=0fori—A<j<i

E[X12f(1-1)""2f[1— (A~ 1)f]

Remark. These definitions are not tight. In particular, we could
do with a set of uniquely successful rounds such that any two are
A-far away from each other.
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Chain-Growth Lemma. Suppose that at round u an honest party
has a chain of length L. Then, by round v > u+ A— 1, every honest

party has adopted a chain of length at least I’ =1 + X:l e+ XD
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Chain-Growth Lemma. Suppose that at round u an honest party
has a chain of length L. Then, by round v = u+ A— 1, every honest
party has adopted a chain of length at least I’ =1 + X:l e+ XD
Proof. By induction on v.

Basis (v=u+ A—1). If at round u an honest party has a chain C
of length £, then that party diffuses C at a round earlier than u. It
follows that every honest party will receive C by round u—1+A = v.

Case X! _, = 0. By hypothesis, every honest party has received a
chain of length at least/+ X/ +---+ X!, ={"byround v—1.
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Chain-Growth Lemma. Suppose that at round u an honest party
has a chain of length L. Then, by round v = u+ A— 1, every honest
party has adopted a chain of length at least I’ =1 + X:l e+ XD
Proof. By induction on v.

Basis (v=u+ A—1). If at round u an honest party has a chain C
of length £, then that party diffuses C at a round earlier than u. It
follows that every honest party will receive C by round u—1+A = v.

Case X! _, = 0. By hypothesis, every honest party has received a
chain of length at least/+ X/ +---+ X!, ={"byround v—1.

Case X! _, = 1. By hypothesis, by round v—A, every honest party

has adopted a chain of length at least

/ / _ / / — 0/
L+ X 4t X =+ X et X, =1 —1.

Hence, all honest parties successful at round v — A broadcast a

chain of length at least #. This chain will be received by every
honest party by round v.
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Note that Y/ and Yj’ are not independent anymore when |[i—j| <

2A and the standard Chernoff bound does not apply. (Similarly
for X7 and Xjf.)
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Note that Y/ and Yj’ are not independent anymore when |[i—j| <

2A and the standard Chernoff bound does not apply. (Similarly
for X7 and Xjf.)

A function f(x1,...,Xn) is k-Lipschitz if |[f(x) — f(X’)| £ k, whenever
x and x’ differ in at most one coordinate.

Theorem. Iff is k-Lipschitz and X., ..., X, are independent random
variables, then

22 2t°
Prif > Ef +t] < exp(—ﬁ) and Pr[f <Ef—t]< exp(—ﬁ).
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A function f(x1,...,Xn) is k-Lipschitz if [f(x) — f(x’)| £ k, whenever
x and x’ differ in at most one coordinate.

Theorem. Iff is k-Lipschitz and X., ..., X, are independent random
variables, then

22 2t°
Prif > Ef +t] < exp(—ﬁ) and Pr[f <Ef—t]< exp(—%).

Each le IS a function of X, ..., X;.

Thus, the sum ZLAX{ Is a function of the independent ran-
dom variables X1, X5, ..., X,.

Moreover, ) ' X/ is 2-Lipschitz. This is because X; affects X/

only if j < i <j+ A and there can be at most two X! equal to 1 in
an interval of length A.

Bitcoin Backbone, Consensus, Variable Difficulty 36/60



Chain Quality. For any [ blocks in the chain of an honest party, the
ratio of adversarial blocks is at most

t
(1+€)-—.
n
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Chain Quality. For any [ blocks in the chain of an honest party, the
ratio of adversarial blocks is at most

t
(1+¢€)-—.
n

Proof. L

I - N

u’ is greatest such that B, was computed by an honest party.

v’ is least such that there exists a round at which an honest
party was trying to extend the chain ending at block B-.

r1 is the round that B, was created.

r» first round that an honest party attempts to extend B, .

S={r:rn<r<nr}.
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Proof Cont’d.

L
/4

ém*éumeh*éum

We may assume that all the L blocks have been computed during
the rounds in the set S.

The number of successful rounds is at least X > (1—§)pn(|S|—A).

The number of adversarial blocks is at most Z < (1 + %)ptlSl.
Chain growth implies that L > X.
The fraction of adversarial blocks is at most

Z Z 1+t A
— < =< (1__)5...
3 |51

L~ X" 1—% n
Choose f large enough so that A/|S]| is small enough.
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Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ Q). (The party with the shortest chain should be honest.)

Observation. Suppose the I-the block of a chain was computed by
an honest party in an isolated uniquely successful round. Then any
other [-th block has been computed by the adversary.

Proof. Suppose a block of height / was computed by an honest
party at a round u with Y"J = 1. This implies X, = 0 for and r # u

with |[r—u| < A.

Thus, no honest party could compute another block at a round
r with |r—u| < A.

If any honest party computed a block of height £ at any round
r < u—A, then any honest party is trying to extend a chain of
length at least / at round u.

Similarly forr > u+ A.
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Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ Q). (The party with the shortest chain should be honest.)

=
TEm R e

r* r

Proof. Let r* be the last round before the fork that was computed
by an honest party. Set

S={r*+1,...,r—=1} and S'={r*+1+A,...,r—1—A}.
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Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ Q). (The party with the shortest chain should be honest.)

The R e

r* r

Proof. Let r* be the last round before the fork that was computed
by an honest party. Set

S={r*+1,...,r—=1} and S'={r*+1+A,...,r—1—A}.

By the Observation, to every A-isolated uniquely successful round
in S’ corresponds an adversarial block computed in S.
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Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ Q). (The party with the shortest chain should be honest.)

e e
T R e

r* r

Proof. Let r* be the last round before the fork that was computed
by an honest party. Set

S={r*+1,...,r—=1} and S'={r*+1+A,...,r—1—A}.

By the Observation, to every A-isolated uniquely successful round
in S’ corresponds an adversarial block computed in S. Thus,

Isolated uniqgely

ful d<in S’ < Adversarial successes in S.
successful rounds in
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Recall E[Y/] > f(1—f)**~'. We can argue that Y'(§') =) . Y/is

reS’ " r
2-Lipschitz. By the Concentration bound for Lipschitz functions,

PriY’(S") < (1—€)f(1—f)*A71s"|] = e %D,
Similarly
Pr{Z(S) > (1 + €)pt|S|] = e 205D,
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Recall E[Y/] > f(1—f)**~'. We can argue that Y'(§') =) . Y/is

reS’ " r
2-Lipschitz. By the Concentration bound for Lipschitz functions,

PriY’(S") < (1—€)f(1—f)*A71s"|] = e %D,
Similarly
Pr{Z(S) > (1 + €)pt|S|] = e 205D,

. t<(1—6)n ford > 3€e + 3Af.
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Recall E[Y/] > f(1—f)**~!. We can argue that Y'(§') =) ., Y’ is
2-Lipschitz. By the Concentration bound for Lipschitz functions,

PrIY’(S") < (1—€)f(1—f)*"1S|] = 72D,
Similarly
Pr{Z(S) > (1 + €)pt|S|] = e~ D,

. t<(1—96)n for 6 > 3€ + 3Af.

Assuming these bad events don’t occur (union bound) and the
Honest Majority Assumption

Z(S) < (1+ e)pt]|S|
<(1+€)(1-96)pn|S’| (t<(1—-46)n)

cd+e)1—8) -|5'|(1+ ZA) (1—Fpn < f)
1-f 1571
...(Making 2A/|S’| sufficiently small). ..

<Y'(S)
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The proof in the static case (fixed number of parties) breaks.
— As block-production rate goes to 1, persistence breaks.
— As block-production rate goes to 0, liveness is hurt.
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The proof in the static case (fixed number of parties) breaks.
— As block-production rate goes to 1, persistence breaks.
— As block-production rate goes to 0, liveness is hurt.

Actually, Bitcoin strives to maintain constant block-production
rate of about 1 block per 10 mins.

Bitcoin Backbone, Consensus, Variable Difficulty 42/60



The proof in the static case (fixed number of parties) breaks.
— As block-production rate goes to 1, persistence breaks.
— As block-production rate goes to 0, liveness is hurt.

Actually, Bitcoin strives to maintain constant block-production
rate of about 1 block per 10 mins.

The difficulty of producing a block can be calibrated by chang-
Ing the target T.

Note that we want to use this in a distributed manner.

Bitcoin achieves (approximately) constant rate by having the
target of the to-be-computed block determined (locally) by a
fixed number of previous blocks.
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The proof in the static case (fixed number of parties) breaks.
— As block-production rate goes to 1, persistence breaks.
— As block-production rate goes to 0, liveness is hurt.

Actually, Bitcoin strives to maintain constant block-production
rate of about 1 block per 10 mins.

The difficulty of producing a block can be calibrated by chang-
Ing the target T.

Note that we want to use this in a distributed manner.

Bitcoin achieves (approximately) constant rate by having the
target of the to-be-computed block determined (locally) by a
fixed number of previous blocks.

Each block now is associated with a target T and difficulty %

Parties now follow the heaviest chain.
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The target is recalculated every m blocks.

Bitcoin uses m = 2016 and calls the period between two recalcu-
lation points an epoch.

If one wants to extend a chain of length Am, first determines T by
the last m blocks.
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The target is recalculated every m blocks.

Bitcoin uses m = 2016 and calls the period between two recalcu-
lation points an epoch.

If one wants to extend a chain of length Am, first determines T by
the last m blocks.

Informally, if the last m blocks were calculated quickly, then in-
crease difficulty (decrease T), otherwise decrease difficulty (in-
crease T).
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The target is recalculated every m blocks.

Bitcoin uses m = 2016 and calls the period between two recalcu-
lation points an epoch.

If one wants to extend a chain of length Am, first determines T by
the last m blocks.

Informally, if the last m blocks were calculated quickly, then in-
crease difficulty (decrease T), otherwise decrease difficulty (in-
crease T).

Suppose the last m blocks were computed in A rounds for target T.
If we want to have m blocks in every ? rounds, set

A\
= 7

This is justified because for small f the relation betweenf and T is
approximately linear.

T’ - T, (f = block-production rate).
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Suppose that at some round r the honest parties have a chain of
length Am.

The adversary builds the next epoch all by himself with fake times-
tamps, resulting in huge difficulty for the next epoch.

His strategy is to set T/ so small, so that if he computes the 1st

block (a superblock of difficulty %) of the next epoch fast (say half
the expected time), he obtains a chain heavier than the chain the
honest parties are expected to have by that time.

This works with constant probability!
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Suppose that at some round r the honest parties have a chain of
length Am.

The adversary builds the next epoch all by himself with fake times-
tamps, resulting in huge difficulty for the next epoch.

His strategy is to set T/ so small, so that if he computes the 1st

block (a superblock of difficulty %) of the next epoch fast (say half
the expected time), he obtains a chain heavier than the chain the

honest parties are expected to have by that time.

This works with constant probability!

But, Nakamoto knew this!!!

Bitcoin Backbone, Consensus, Variable Difficulty 44/60



To see why this works, let us fix a target T for the honest parties
and suppose the honest parties advance with success probability

f and the adversary with = - f (for some 6 < 1/2).

If the adversary sets T/ = -, then with constant probability he
finishes his attack (i.e., (m+ 1) blocks) in
T 1

1+6 " 1+6
(1+ )‘?4‘( + )FB_f

rounds and has collected difficulty

m 1 m 26m m
— 4+ —=—4+ —=(14+26)- —.
T T T T T
The honest parties have collected (in expectation)

m 1 m 26m m
(1+5)(?+ 37_/) =(1+5)(?+?) <(1+26)-?.

The adversary wins with constant probability!
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Suppose the last m blocks were computed in A rounds for target
T. If we want to have m blocks in every % rounds, set

A\

T=—".
m/f

V4
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Suppose the last m blocks were computed in A rounds for target
T. If we want to have m blocks in every % rounds, set

A\
= pr

unless T/ < T/4 or T’ > 4T, in which caseset T'"=T/4 or T’ =4T
accordingly.

T/

V4
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Suppose the last m blocks were computed in A rounds for target
T. If we want to have m blocks in every % rounds, set

N
— p—r
unless T/ < T/4 or T’ > 4T, in which caseset T'"=T/4 or T’ =4T
accordingly.

T/

V4

If the number of parties keeps increasing by a large factor per
epoch, then target recalculation won’t catch up.
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Suppose the last m blocks were computed in A rounds for target
T. If we want to have m blocks in every % rounds, set

AN
m/f

unless T/ < T/4 or T’ > 4T, in which caseset T'"=T/4 or T’ =4T
accordingly.

If the number of parties keeps increasing by a large factor per
epoch, then target recalculation won’t catch up.

Can we prove security under the assumption that the number
of parties does not fluctuate wildly?
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Suppose the last m blocks were computed in A rounds for target
T. If we want to have m blocks in every % rounds, set

N
T'=—-T,
m/f
unless T/ < T/4 or T’ > 4T, in which caseset T'"=T/4 or T’ =4T
accordingly.

If the number of parties keeps increasing by a large factor per
epoch, then target recalculation won’t catch up.

Can we prove security under the assumption that the number
of parties does not fluctuate wildly?

Theorem. If, for appropriate parameters s and v,

/ nr
Ir—r|<s = TSanS)\nr,

4

Nr,r

then common prefix and chain quality hold (assuming adversarial
minority and appropriate initialization).




The common-prefix lemma in the dynamic case

Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ Q) (The party with the shortest chain should be honest.)

X
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Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e—QK), (The party with the shortest chain should be honest.)

difficulty from uniquely successful block
\_/—+7 %

|adversarial difficulty

Observation. Suppose difficulty d of a chain belongs to a block
that was computed by an honest party in a uniquely successful
round. Then any other block that contains difficulty d has been com-

puted by the adversary.
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Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ Q). (The party with the shortest chain should be honest.)

difficulty from uniquely successful block
\_/—+7 %

|c1dversc1ri<1| difficulty

Observation. Suppose difficulty d of a chain belongs to a block
that was computed by an honest party in a uniquely successful
round. Then any other block that contains difficulty d has been com-
puted by the adversary.

Difficulty accumulated Difficulty accumulated
in unigely successful < by the adversary
rounds in a set S during rounds in S 0
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In the dynamic case we still have Bernoulli trials. However,
the success probabilities are random variables depending on the
strateqgy of the adversary.
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In the dynamic case we still have Bernoulli trials. However,
the success probabilities are random variables depending on the
strateqgy of the adversary.

Consider the following two-player game.
— In the beginning of round (, player A chooses a bias p; € R.
— Player B flips a coin with bias p;.

— If heads, B earns X; = % bitcoins; otherwise X; = 0.
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In the dynamic case we still have Bernoulli trials. However,
the success probabilities are random variables depending on the
strateqgy of the adversary.

Consider the following two-player game.

— In the beginning of round (, player A chooses a bias p; € R.
— Player B flips a coin with bias p;.

— If heads, B earns X; = %{ bitcoins; otherwise X; = 0.

B is expected to earn E[X;] = 1B in round i. Thus, B is expected
to earn kB in k rounds.

How concentrated around their expectation are B’'s earnings?
Does it hold K

Pr[Z Xi<(1- e)k] = e~k 7

(=1

Bitcoin Backbone, Consensus, Variable Difficulty 48/60



Theorem. Let f be a function of the n random variables X4, ..., Xn.
Let

Di=E[f|X1,..., Xi{]—E[fIX1,..., Xie1],

V = ZVar(D |X1,.., Xic1) and b =maxsup(DXi,.., Yi-1)

1<i<n
1<i<n

(sup is taken over all possible assignments to X1, ...,Xi—1). Then, for
anyt,v=0,

t—2
Prl f>Ef+tAV <v |<ex {— }
[f f ] P 2V + 2bt/3
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Theorem. Let f be a function of the n random variables X4, ..., Xn.

Let
Di=E[f|X1,.... Xi]—E[fIX1,..., Xi=1],

V = ZVar(Dile,..,Xi_l) and b=maxsup(DiXi,.., Yi_1)
1<i<n
1<i<n
(sup is taken over all possible assignments to X1, ...,Xi—1). Then, for

any t,v=0,

t—2
Prl f>Ef+tAV <v |<ex {— }
[f f ] P 2V + 2bt/3

Proof application: Show that if an execution begins with good ini-
tial parameters (in particular, V < v) and at some point deviates
from the desired block-production rate, then concentration was vi-

olated while V < v.

Bitcoin Backbone, Consensus, Variable Difficulty 49/60



Assuming the execution begins with good initial parameters—i.e.,
in the beginning the block-production rate is very close to the (de-
sired) f—we show that with high probability the following hold.
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If a chain C is adopted by an honest party, then C:

was never abandoned by honest parties for em/f rounds,
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Assuming the execution begins with good initial parameters—i.e.,
in the beginning the block-production rate is very close to the (de-
sired) f—we show that with high probability the following hold.

If a chain C is adopted by an honest party, then C:

was never abandoned by honest parties for em/f rounds,

Is em/f-accurate—each of its blocks has a timestamp that is
em/f) rounds away from its real creation time,

has “very good” recalculation points: Y—Cf <E[X{] < %f;

has blocks with “good” targets:

Ol

< E[X:] £ Cf.
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Assuming the execution begins with good initial parameters—i.e.,
in the beginning the block-production rate is very close to the (de-
sired) f—we show that with high probability the following hold.

If a chain C is adopted by an honest party, then C:

was never abandoned by honest parties for em/f rounds,

Is em/f-accurate—each of its blocks has a timestamp that is
em/f) rounds away from its real creation time,

has “very good” recalculation points: v_g <E[X{] < %f;

has blocks with “good” targets: é < E[X{] < Cf.

Theorem. Every block in a chain that is ever adopted by an honest
party, has “accurate” timestamp and “good” target.
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In the analysis we assume the clocks of the miners are synchro-
nized, which is not realistic.

— We may assume that any two clocks are within ¢ rounds.
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In the analysis we assume the clocks of the miners are synchro-
nized, which is not realistic.

— We may assume that any two clocks are within ¢ rounds.

We now should accept blocks with a timestamp in the future!

But not too far into the future, because target recalculation may
lead to targets artificially large.

— Bitcoin considers a block to be valid if its timestamp is at most
A’ = 2 hours ahead. (We should set A’ > &.)
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In the analysis we assume the clocks of the miners are synchro-
nized, which is not realistic.

— We may assume that any two clocks are within ¢ rounds.

We now should accept blocks with a timestamp in the future!

But not too far into the future, because target recalculation may
lead to targets artificially large.

— Bitcoin considers a block to be valid if its timestamp is at most
A’ = 2 hours ahead. (We should set A’ > &.)

Similarly, we shouldn’t accept blocks with timestamps too far in
the past, because target recalculation may lead to a small target.

— Bitcoin considers a block to be valid if its timestamp is at least
the median of the last 11 timestamps.
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Any two clocks are within ¢ rounds.

Bitcoin considers a block to be valid if its timestamp is at most
A’ = 2 hours ahead. (We should set A’ > ¢.)

Bitcoin considers a block to be valid if its timestamp is at least the
median of the last kmeq = 11 timestamps.

Bitcoin Backbone, Consensus, Variable Difficulty 52/60



Any two clocks are within ¢ rounds.

Bitcoin considers a block to be valid if its timestamp is at most
A’ = 2 hours ahead. (We should set A’ > ¢.)

Bitcoin considers a block to be valid if its timestamp is at least the
median of the last kmeq = 11 timestamps.

If kmeq is large, then majority is not enough for honest median (re-
call selfish mining).

We need kmeg to be small enough to argue that honest medians
appear sufficiently often.
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Consider a streak of 6 strongly isolated honest successes (without
adversarial successes among them).

Under what assumptions will it form an honest median?
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Consider a streak of 6 strongly isolated honest successes (without
adversarial successes among them).

Under what assumptions will it form an honest median?

We can argue that if no block in the streak belongs in a set of
rounds in which the adversary obtained at least as many blocks as
the honest parties, then the streak will become an honest median.
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Consider the oracle outputs as votes for the two candidates: hon-
est and adversary.
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Consider a streak of 6 strongly isolated honest successes (without
adversarial successes among them).

Under what assumptions will it form an honest median?

We can argue that if no block in the streak belongs in a set of
rounds in which the adversary obtained at least as many blocks as
the honest parties, then the streak will become an honest median.

Consider the oracle outputs as votes for the two candidates: hon-
est and adversary.

The assumption can be reworded as follows.

We want a permutation of the votes so that during the counting of
the votes the honest candidate is always ahead of the adversary.
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Ballot theorem. Suppose candidates A and B received a and b
votes respectively. The probability candidate A was always ahead
during the counting of the votes is

Proof by reflection.

Four Proofs of the Ballot Theorem,
Marc Renault, Mathematics Magazine,
Vol 80, No 5 (Dec 2007).
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Theorem. Let X1, X5, ... be an infinite sequence of iid integer ran-
dom variables with mean u > 0 and maximum value 1 and for any
(=>1lletS;=X1+---+ X;. Then

Pr[S;>0 forn=1,2,...] =u.

Addario-Berry and Reed. Ballot Theorems, 0ld and New. 2008.
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Warnke 2016. Let X = (X41,...,Xy) be a family of independent
random variables with X; taking values in a set A; and let I' =
|_|/e[N] [ where I'; € A;. Assume there are numbers (¢j)jeny SO that
f: |_|IE[N] . — R satisfies the following. Whenever x, x’ € H/e[/v]

differ only in the j-th coordinate and x, x” € ' we have |f(x)—f(x’)| <
¢iand |[f(x)—f(x’)| < d forall x,x’ |_|j€[N] A; that differ in at least
one coordinate. Then, forall t > 0,

212
} + Pr[ X € I].

Prlf(x) < E[f(X)] —t—dPrIX ¢ | < exp{—
[ ] { D_jern €
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Joint works with Aggelos Kiayias and Juan Garay.

The Bitcoin Backbone Protocol: Analysis and Applications.
https://eprint.iacr.org/2014/765

The Bitcoin Backbone Protocol with Chains of Variable Difficulty.
https://eprint.iacr.org/2016/1048

Full Analysis of Nakamoto Consensus in Bounded-Delay Net-
works.

https://eprint.iacr.org/2020/277

Thank you for listening
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