

RSA Decryption Mixnets

- Each mixer *i* has a pair of RSA keys (sk_i, pk_i)
- The voter encrypts their choice using the public RSA keys of the mixers in reverse

•
$$b_i = Enc_1(Enc_2(...Enc_m(v_i)...))$$

• $L_0 = (b_i)_{i=1}^n$

- Each mixer permutes the list of ballots using a random permutation π_i
- and decrypts using their private key (mutation)
- The first mixer will append to the BB:

•
$$L_1 = \left(Dec_1(b_i) \right)_{i=\pi_1^{-1}(1)}^{\pi_1^{-1}(n)}$$

RSA Decryption Mixnets

- This process is repeated for every mixer
- In the end, the BB contains

$$L_m = (v_i)_{i=\pi_m^{-1} \circ \dots \circ \pi_1^{-1}(1)}^{\pi_m^{-1} \circ \dots \circ \pi_1^{-1}(n)}$$

- Remarks:
 - The permutation could simply be to sort the encryptions as binary string
 - The last mixer knows the plaintext but not the voter identity
 - One honest mixer should be enough for security
 - Mixers should be entities with conflicting interests
 - Computationally expensive for the voter: O(m) encryptions
 - Allows counting through the use of complex voting rules

ElGamal Decryption Mixnets

- Each mixer M_j has a key pair: $(sk_j, pk_j) = (x_j, g^{x_j})$
- The combined public key of the mixnet is $Y = \prod_j pk_j = g^{\sum x_j}$
- The voter encrypts their choice using *Y*

•
$$b_{i0} = Enc_Y(v_i) = (g^{r_{i0}}, v_i Y^{r_{i0}})$$

- Each M_i removes an encryption layer using their private key
 - $b_{ij} = Dec_{x_j}(b_{ij-1})$
 - Applies new randomness r_{ij}
 - $L_j = \{b_{ij}\}_{i=1}^n = \{(g^{\sum_{k=0}^j r_{ik}}, v_i g^{\sum_{k=j+1}^m x_k \sum_{k=0}^j r_{ik}})\}_{i=1}^n$
 - Permutes using π_j

ElGamal Reencryption Mixnets

- Each mixer M_j reencrypts and permutes the ballot list using Y
- On input $L_{j-1} = \{Enc_Y(v_i, r_i)\}_{i=1}^n$
- Selects $\left\{ r_{ij} \stackrel{\$}{\leftarrow} \mathbb{Z}_q \right\}_{i=1}^n$
- Computes

•
$$L_j = \left\{ Enc_Y(v_i, r_{ij}) \cdot Enc_Y(1, r_{ij}) \right\}_{i=1}^n = \left\{ (g^{\sum_{k=0}^j r_{ik}}, v_i Y^{\sum_{k=0}^j r_{ik}}) \right\}_{i=1}^n$$

- Permutes using π_j
- All mixers jointly decrypt after L_m has been posted

The tagging attack

- A generic attack applicable to all types of anonymous channels!
- Adversarial goal: reveal the input of V_i with the help of a corrupted user V_j willing to sacrifice their input
- The adversary
 - Retrieves the initial input of V_i : $c_{i0} = (g^r, v_i Y^r)$
 - Selects $\tau \stackrel{\$}{\leftarrow} \mathbb{Z}_q$ and computes $c_{i0}^{\tau} = (g^{r\tau}, v_i^{\tau} Y^{r\tau})$
 - Replaces V_j 's input with c_{i0}^{τ}
- The output of the mixnet contains both v_i , v_i^{τ}
- The adversary computes for all outputs $x \to x^{\tau}$ and checks for duplicates

Verifiable mixnets – Proofs of Shuffles

- Protect against corrupted mixers that aim to omit or alter inputs
- The mixer provides a proof of (correct) shuffle that:
 - No plaintexts were modified
 - No ciphertexts were removed or inserted
 - The output ciphertexts are only a reencryption and permutation of the input ciphertexts.
- Without revealing:
 - The permutation π
 - The reencryption factors r_i
- Many solutions in the literature

A simple 2×2 verifiable shuffle

- Input
 - $c_0 = Enc_Y(m_0, r_0), c_1 = Enc_Y(m_1, r_1)$
- Output
 - $c'_0 = ReEnc(c_b) = Enc_Y(m_b, r_b'), c'_1 = ReEnc(c_{1-b}) = Enc_Y(m_{1-b}, r_{1-b'})$
- Proof that $c'_i = ReEnc(c_i)$
 - Prove that they encrypt the same message
 - If $c_i = (G, mR)$ then $c_i' = (G', mR')$
 - This means that $DL_g(G \cdot G'^{-1}) = DL_Y(R \cdot R'^{-1})$
 - Use the Chaum Pedersen Protocol
- Proof of correct shuffle
 - Prove that $\{c_0', c_1'\}$ is a shuffle of $\{c_0, c_1\}$
 - Prove that $c'_i = ReEnc(c_i) AND c'_{1-i} = ReEnc(c_{1-i}) OR c'_i = ReEnc(c_{1-i}) AND c'_{i-1} = ReEnc(c_i)$
 - Composition of Chaum Pedersen Protocols

- Public Input
 - Two sets of ciphertexts C_1, \ldots, C_n and C'_1, \ldots, C'_n in a group \mathbb{G} of prime order q
 - Encrypted with pk
- Private input π , $\rho = (\rho_1, \dots, \rho_n)$ such that
 - $C'_i = C_{\pi(i)} \cdot Enc_{pk}(1, \rho_i)$
- Proof of Knowledge of Permutation
 - Product Argument: A set of committed values has a particular product
- Proof of Knowledge of Reencryption Factors
 - Mult exponentiation argument: The product of a set of ciphertexts raised to a set of committed exponents yields a particular ciphertext

Shuffle–EUROCRYPT 2012

21/3/2025

61

- State of the art in proof size $O(\sqrt{n})$
- Verification time O(n)
- Prover time $O(log(\sqrt{n})n)$
- Main trick for efficient communication complexity:
 - Arrange the input ciphertexts into a $k \cdot l$ matrix where $k = O(\sqrt{n})$
 - Use Generalised Pedersen Commitment to commit to columns
- First prover message
 - Send $\mathbf{cm}_{\Pi} = GPC(\mathbf{\pi}_k, \mathbf{r})$ were $\mathbf{r} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^k$ and $\bigcup_k \mathbf{\pi}_k = \mathbf{\pi}$
- Second prover message
 - Send $\mathbf{cm}_{\mathbf{X}} = GPC(\mathbf{x}^{\mathbf{\pi}_{\mathbf{k}}}, \mathbf{s})$ were $\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^k$ and $\bigcup_k \mathbf{\pi}_{\mathbf{k}} = \mathbf{\pi}$
 - The permutation was fixed before the prover saw x

- Generalized Pedersen Commitment
- Commitment to a vector $\mathbf{m} = (m_1, \dots, m_n)$
- G is a cyclic group of prime order q generated by g_1, \ldots, g_n, h
 - $GPC(\mathbf{m}, r) = h^r \prod_i g_i^{m_i}$

- Third message: Both prover and verifier compute
 - $\mathbf{cm}_{-\mathbf{z}} = \mathrm{GPC}(-\mathbf{z}, \mathbf{0})$
 - $\mathbf{cm}_{\mathbf{D}} = \mathbf{cm}_{\mathbf{\Pi}}^{c} \otimes \mathbf{cm}_{\mathbf{X}} = \operatorname{GPC}(c \cdot \pi(\mathbf{i}) + \mathbf{x}^{\pi(\mathbf{i})})$ which is a commitment to $c\pi(\mathbf{i}) + x^{\pi(\mathbf{i})}$ with randomness $cr_{\mathbf{i}} + s_{\mathbf{i}}$
 - The verifier does not know $\pi(i)$, r_i , s_i but can compute the values homomorphically
 - $\operatorname{cm}_D \otimes \operatorname{cm}_{-z} = \operatorname{GPC}(\mathbf{d} \mathbf{z})$ where $d_i = c \pi(i) + x^{\pi(i)}$
 - Use the product argument to show knowledge of d_i , r_i , s_i such that:
 - $\prod_i (d_i z) = \prod_i (x^i + ic z)$ a polynomial and its permutation in z identical roots
 - The value $\prod_i (x^i + ic z)$ can be computed by the verifier

- Third message: The prover computes
 - $\rho \leftarrow \rho \odot s$
 - $\mathbf{C}^{\mathbf{x}} = Enc(1, \mathbf{\rho}) \cdot \mathbf{C}^{\prime \mathbf{x}_{\pi}}$ where $\mathbf{x} = (x^1, \dots, x^n)$
 - The verifier can compute $\boldsymbol{C}^{\boldsymbol{x}}$
 - Using the multi exponentiation argument it convinces the verifier that $Enc(1, \rho) \cdot \mathbf{C}'^s$ was computed correctly
- Note that because of the homomorphic properties
 - $\prod_i m_i^{x^i} = \prod_i m_i^{x^i} \Rightarrow \log \sum(m_i) x^i = \log \sum(m_{\pi^{-1}(i)}) x^i$
 - This means that **wvhp** $m_{\pi(i)} = m_i'$
- The shuffle was performed correctly

Voting Paradigms

Helios and extensions JCJ – Coercion Resistance Voting with blind/ring signatures OpenVote

Helios

Helios' Facts

• Elections in the browser

- Open-Audit: Everyone has access to all election data for verifiability
- Trust no one for integrity trust the server for privacy
- Low coercion environments
- 2.000.000 votes cast so far
 - ACM, IACR and university elections
 - Can be used online https://vote.heliosvoting.org/ or deployed locally
- Based on:
 - Verifiable mixnets Helios 1.0 (Sako-Killian, Eurocrypt 95)
 - Homomorphic tallying Helios 2.0 (Cramer-Genaro-Shoenmakers, Eurocrypt 97)
 - Benaloh Challenge
- Many variations
 - Belenios (Helios-C)
- Zeus

Ben Adida. 2008. Helios: web-based open-audit voting. In Proceedings of the 17th conference on Security symposium (SS'08). USENIX Association, USA, 335–348.

Participants

- Election administrator: Create the election, add the questions, combine partial tallies
- **BB Bulletin' Board**: Maintain votes (**Ballot Tracking Center**) and audit data
- **TA Trustees (Talliers)**: Partially decrypt individual (in Helios 1.0) or aggregated (in Helios 2.0) ballots
- RA Registrars (Helios-C): Generate cryptographic credentials for voters
- EA = (RA, TA, BB)
- **Eligible voters** optionally identified by random alias or external authentication service (Google, Facebook, LDAP)
 - Authenticated channel between voter and BB (username, password)

Auditing Process

- Individual Verifiability
 - $\odot\,\text{Cast}$ as intended
 - After ballot creation (encryption) but before authentication, each voter can choose if they will audit or cast the ballot.
 - **On audit:** Helios releases the encryption randomness and the voter can recreate the ballot using software of their choice.
 - An audited ballot cannot be submitted.

 $\odot\,\text{Recorded}$ as cast

- Each encrypted ballot and related data are hashed to a tracking number.
- Every voter can check if the assigned number exists in the Ballot Tracking Center (BTC).

Auditing Process

- Universal Verifiability
 - Tallied as recorded Every interested party may
 - Retrieve ballots from BTC
 - Compare identities with eligible voters (if applicable)
 - Recompute tracking numbers
 - Aggregate the ballots and check equality with official encrypted tally before decryption
 - Verify decryption proofs

Formal Description: Setup

Executed by the Election Administrator
Creates cryptographic groups, defines message space etc.
Reusable for many elections

$$Setup(1^{\lambda}) = \begin{cases} \mathbb{G}, q, g \\ H_q: \{0,1\} \to \mathbb{Z}_q \\ (DLPRV(x, g, Y), DLVF(g, Y, \pi)) \\ (EQPRV(x, g_1, Y_1, g_2, Y_2), EQVF(g_1, Y_1, g_2, Y_2, \pi)) \\ (DJPRV(x_1, x_2, g, Y_1, Y_2), DJVF(g, Y_1, Y_2, \pi)) \\ BB \leftarrow \emptyset \end{cases}$$

Formal Description: SetupElection

- The members of the TA cooperate to create their **joint** public key
 - Compute member key pair: $sk_i \stackrel{\$}{\leftarrow} \mathbb{Z}_q$, $pk_i \leftarrow g^{sk_i}$
 - Publish pk_i , $DLPRV(sk_i, g, pk_i)$
 - Compute election public key: $pk \leftarrow \prod_i pk_i$
- Create list of eligible voters V_l
- Create list of candidates $CS = \{0,1\}$ (for simplicity)
- Publish everything into BB
 - $BB \leftarrow \{pk_i, pk, V_l, CS\}$

Formal Description: Voting

Vote(i,v):

```
\begin{aligned} v \in \{g^0, g^1\} \\ Enc_{pk}(g^v) \to (g^r, g^v \cdot pk^r) &= (R, S) \\ EQPRV(r, g, R, pk, S) \ OR \ EQPRV(r, g, R, pk, Sg^{-1}) \to \pi_V \\ b &= (R, S, \pi_V) \end{aligned}
```

Valid(i,b):

Return 1 if $i \in V_l$ and $EQVF(\pi_V) = 1$

Append(I,b):

 $BB \leftarrow (i, b)$ if Valid(b) = 1

VerifyVote(i,b,BB):

```
Return 1 if b \in BB and Valid(i, b) = 1
```

Publish(BB):

Return $PBB = \{b\}$ i.e. remove id's from ballots and keep one ballot per voter id Occurs after all voters have voted

Formal Description: Tally

Tally(PBB, sk_i): Validate all proofs in *PBB* Compute $(R_{\Sigma}, S_{\Sigma}) \leftarrow \prod b$ for all $b \in PBB$ Distributed Decryption of $(R_{\Sigma}, S_{\Sigma}) \rightarrow g^{t}$ Each TA_i posts $\left(D_i = R_{\Sigma}^{sk_i}, EQPRV(sk_i, g, pk_i, R_{\Sigma}, D_i)\right)$ computes $\frac{S_{\Sigma}}{\prod_i D_i} \rightarrow g^{t}$ solves small DLOG to get tposts $\pi_T = EQPRV(sk_i, g, pk_i, R_{\Sigma}, S_{\Sigma} \cdot g^{-t})$

Formal Description: Verify

Verify(BB,PBB, t, π_T):

Check correct construction of PBB

- Only last ballot kept
- All kept ballots belong to eligible voters
- All kept ballots had valid proofs

Recompute $(R_{\Sigma}, S_{\Sigma}) \leftarrow \prod b$ for all $b \in PBB$ Verify π_T

Attacks by using wFS: Denial of Service

- In the proof $EQPRV(sk_i, g, pk_i, R_{\Sigma}, D_i)$ a malicious TA_i can cheat by first creating the proof and then adaptively selecting D_i
 - Compute $T_1 \leftarrow g^a$, $T_2 \leftarrow g^b$ where $a, b \stackrel{*}{\leftarrow} \mathbb{Z}_q$
 - wFS: $c \leftarrow H(T_1, T_2)$
 - Compute $s \leftarrow a + c \cdot sk_i$
 - Select $D_i \leftarrow (R_{\Sigma}^{-s}T_2)^{-c^{-1}}$
- The proof (*c*, *s*) verifies
 - $g^{s}pk_{i}^{-c} = T_{1}$ and $R_{\Sigma}^{s}D_{i}^{-c} = R_{\Sigma}^{s}R^{-s}T_{2} = T_{2}$ but $\log_{R_{\Sigma}}D_{i} = -s c^{-1}\log_{R_{\Sigma}}T_{2} \neq sk_{i}$
- What does this mean?
 - Tally decryption will yield a random group element instead of g^t
 - Efficient computation of *t* (assumed to be small DLOG) will not be feasible!

Attacks by using wFS: Undetectably alter result

- Goal: Announce election result $t \neq t'$
- Assumptions
 - 1. All TA_i 's are corrupted corrupted TA
 - 2. The TA can eavesdrop on the voter-selected encryption randomness
 - Realistic assumption if the voting device is corrupt
 - 3. Corrupt a single voter to cast the last vote
- The TA creates a 'proof' of correct 'tallying' before tallying
 - 1. Compute $T_1 \leftarrow g^a$, $T_2 \leftarrow g^b$ where $a, b \stackrel{\$}{\leftarrow} \mathbb{Z}_q$
 - 2. wFS: $c \leftarrow H(T_1, T_2)$
 - 3. Compute $s \leftarrow a + c \cdot sk$
- All voters vote except for the corrupt voter
 - 1. The current result is t and encrypted as $(R, S) = (g^{\Sigma r}, g^t p k^{\Sigma r})$
 - 2. By assumption 2: $\sum r$ is know to the TA
 - 3. The TA can compute *t* before the corrupt voter

Attacks by using wFS: Undetectably alter result

• The TA selects
$$r' \leftarrow \frac{b+c(t-t')}{s-c \cdot sk}$$

- Using the corrupt voter the TA casts the ballot $(g^{r'-\Sigma r},g^0pk^{r\prime-\Sigma r})$ which is a valid ballot
- The current encrypted tally is $(R', S') = (g^{r'}, g^t \cdot pk^{r'})$
- The encrypted tally does not change **but the proof** (c, s) **also verifies for** t'
- $g^{s}pk^{-c} = T_1$ (nothing has changed here)

•
$$R'^{s}(S' \cdot g^{-t'})^{-c} = g^{sr'-ct-c \cdot sk \cdot r'+ct'} = g^{r'(s-c \cdot sk)-c(t-t')} = g^{b} = T_{2}$$

• As a result, the corrupt TA can announce t' for the election result and everyone will be convinced by the proof.

NSW Electoral Commission iVote and Swiss Post e-voting

Sarah Jamie Lewis @SarahJamieLewis

Ah f k, I think I broke something and now I need an actual cryptographer.

8:49 PM · Feb 20, 2019 · Twitter Web Client

Swiss e-voting trial offers \$150,000 in bug bounties to hackers

The white hat hacking begins February 24th

Similar attacks to other voting schemes

• S. J. Lewis, O. Pereira, and V. Teague, "How not to prove your election outcome: The use of non-adaptive zero knowledge proofs in the Scytl-SwissPost Internet voting system, and its implications for decryption proof soundness"

• R. Haenni, "Swiss post public intrusion test: Undetectable attack against vote integrity and secrecy" We broke it too Feb 20, 2019, 8:59 PM

Sarah Jamie Lewis @SarahJamieLewis

So, I took a look at swiss online voting system code that someone leaked, and having written, deployed and audited large enterprise java code...that thing triggers every flag.

55 AM · Feb 17, 2019 · Twitter Web Client

3/21/2025

Helios Extensions

Everlasting Privacy Receipt Freeness Eligibility Verifiability

Everlasting privacy

- Ballot secrecy is provided through encryption schemes
- Protection relies on computational hardness assumptions
- What if these assumptions are broken?
- Vote contents might be useful to a future oppressive government
- But such a regime might also use insider information
- This threat might constitute an indirect coercion attempt
- The need for verifiability makes election data publicly available
- Helios does not have everlasting privacy!
- The functionality **Publish(BB)** releases the encrypted ballots
- An unbounded adversary can decrypt them!

Approaches to everlasting privacy

Perfectly Hiding Commitments

- Instead of encryption
- But: Counting requires the openings.
- How do voters send them?
 - Through Private Channels
 - Encrypted
 - Directly sent to the authorities
 - Not available to a future attacker
 - Unless they control part of the authorities
 - Practical Everlasting Privacy

Anonymous casting

- Disassociate identity from ballot
- Use anonymous credentials to signal ballot eligibility or validity
 - Blind signatures
 - Ring signatures
- An important advantage:
 - No trust required for privacy!
- Haines, T., Mueller, J., Mosaheb, R., & Pryvalov, I. (2023). SoK: Secure E-Voting with Everlasting Privacy. In Proceedings on Privacy Enhancing Technologies (PoPETs).
- Grontas, P., Pagourtzis, A. Anonymity and everlasting privacy in electronic voting. Int. J. Inf. Secur. 22, 819– 832 (2023). https://doi.org/10.1007/s10207-023-00666-2

Adding everlasting privacy to Helios

Voters:

- Instead of encryption, use committments
 - $v \in \{0,1\},$
 - $c = Commit(v, s) \rightarrow (g^{v} \cdot h^{s})$
 - $c_1 = Enc_{pk}(v) \rightarrow (g^{r_1}, g^v pk^{r_1})$
 - $c_2 = Enc_{pk}(s) \rightarrow (g^{r_2}, g^s pk^{r_2})$
- Proof of validity of v
- Proof that v, s are the same in c, c₁, c₂
- Post *c* in BB
- Send c₁, c₂ to TA through private channels

Talliers:

- Compute
 - $\prod_{v \in V} c$. Yields $\mathbf{c} = Commit(\sum v, \sum s)$
 - $\prod_{v \in V} c_1$. Yields $\mathbf{c_1} = Enc_{pk}(\sum v)$
 - $\prod_{v \in V} c_2$. Yields $\mathbf{c}_2 = Enc_{pk}(\sum s)$
- Posts decryptions of c_1, c_2
- Everyone can validate the commitment c

Do you see a problem?

21/3/2025

Denise Demirel, J Van De Graaf, and R Araújo. "Improving Helios with Everlasting Privacy Towards the Public". In: EVT/WOTE'12 Proceedings of the 2012 international conference on Electronic Voting Technology/Workshop on Trustworthy Elections (2012).

83

Adding everlasting privacy to Helios

- $Enc_{pk}(\sum s) = (g^{\sum r_2}, g^{\sum s}pk^{\sum r_2})$
- Need to solve DLP to get $\sum s$.
- This is not feasible!
 - Randomness is not in the same range as the result

• Solution:

- Use Paillier cryptosystem
- Encryption in the exponent
- DLP for free!

21/3/2025

Denise Demirel, J Van De Graaf, and R Araújo. "Improving Helios with Everlasting Privacy Towards the Public". In: *EVT/WOTE'12* Proceedings of the 2012 international conference on Electronic Voting Technology/Workshop on Trustworthy Elections (2012).

Receipt-Freeness

Josh Benaloh and Dwight Tuinstra. "Receipt-free secret-ballot elections (extended abstract)". In: *Proceedings of the twenty-sixth annual ACM symposium on Theory of computing - STOC '94*. ACM Press, 1994, pages 544– 553.

- Extensions for privacy against malicious voters
 - Voters that wish to sell their vote
- The attack scenario:
 - A voter agrees to sell their vote before the election
 - Proceeds to vote on their own
 - The buyer does not monitor the voter when casting the ballot
 - The voter presents evidence *after* voting to receive payment

A voting system is receipt free if a malicious voter cannot prove how they voted even if the want to

Helios is not receipt-free

- The malicious voter will offer as evidence:
 - the encryption randomness r
 - the position of the claimed ballot \boldsymbol{b} in the BB
- The buyer will:
 - Encrypt the claimed choice with r
 - Compare with *b*
- Revoting does not help against coercion resistance
 - The published BB contains the final version of b

Adding receipt - freeness

- Main idea: The voter is not the sole contributor of encryption randomness for the ballot
 - They do not know the final randomness used the voter generated randomness as receipt is spoiled!
- A rerandomization authority reencrypts the ballot
 - Trusted for receipt-freeness
 - Not trusted for integrity/verifiability and privacy
- Sends a proof of correct reencryption to the voter
 - Use of designated verifier proofs
 - The voter (DV) cannot use it to convince the voter buyer

21/3/2025

Martin Hirt and Kazue Sako. "Efficient receipt-free voting based on homomorphic encryption". In. EUROCRYPT'00

Adding receipt – freeness

- Each voter has a private-public key pair (sk_V, pk_V) .
- They encrypt their ballot deterministically (i.e. r = 0) and send it to the EA
- The EA is split into EA_1, \dots, EA_n which operate a verifiable mixnet
 - Each vote is shuffled and reencrypted
 - Public proof of correct shuffling
- Each authority privately proves to each voter how the list was shuffled and reencrypted
 - The proof uses pk_V so it is designated-verifier
 - The voter can pinpoint their ballot in their final list to verify it, but they cannot prove to a vote seller its position
 - Non-transferability

21/3/2025

Martin Hirt and Kazue Sako. "Efficient receipt-free voting based on homomorphic encryption". In. EUROCRYPT'00

Eligibility verifiability

- Anyone can verify that:
 - Every ballot was cast by a voter with the right to vote
 - No voter cast more than two counted ballots
 - Prevent ballot stuffing
- A simple solution:
 - Equip voters with credentials (PKI)
 - Sign encrypted ballots
 - Keep only one ballot / public key
 - Verify against eligible voter list

Belenios: Helios with credentials

- Extension to provide eligibility verifiability
- Adds a registration (credential) authority
- The BB generates login information for the voters (username, password)
- The voters receive both credentials ((pk_i, sk_i), (uid, pwd))using a private channel
- The voter logins to the BB using (*uid*, *pwd*)
- The ballot consists of
 - Vote encryption *c*
 - NIZK proof π of vote validity
 - A signature on *c*

21/3/2025

<u>Belenios: A Simple Private and Verifiable Electronic Voting System</u>. Véronique Cortier, Pierrick Gaudry, and Stéphane Glondu. In Foundations of Security, Protocols, and Equational Reasoning, pp. 214-238, 2019.

90

Belenios: Helios with credentials

- The BB keeps one ballot per (id, pk)
 - Last one if multiple exist
- The BB checks signatures and proofs
- The voters check that their ballots appear on the BB (individual verifiability)
- Ballot stuffing can occur only if both the BB and the RA are corrupt
 - Stuffed ballots need to have both a $\boldsymbol{v}\boldsymbol{k}$ and an $\boldsymbol{i}\boldsymbol{d}$
- Eligibility verifiability:
 - Everyone can check that a ballot comes from a valid voter
 - But: This reveals who abstained illegal in some countries

21/3/2025

<u>Belenios: A Simple Private and Verifiable Electronic Voting System</u>. Véronique Cortier, Pierrick Gaudry, and Stéphane Glondu. In Foundations of Security, Protocols, and Equational Reasoning, pp. 214-238, 2019.

Private eligibility verifiability (KTV-Helios)

- Participation privacy + Universal verifiability
- Main idea: Add null votes + vote update capabilities
- Voting proxies:
 - Entities that add null votes for a voter
- Properties of null votes:
 - They do not add to the result
 - They are indistinguishable from regular votes
 - Proofs that each vote is either a null vote or a normal vote
 - Anonymous casting
- Also provide (some degree) of receipt freeness
 - The voter may prove that he cast *c*, but..
 - If there exists another ballot c^\prime cast for them, they cannot prove that
 - $c' \neq c'' \cdot c^{-1}$ (which updates their true ballot to c'')

21/3/2025

Kulyk, O., Teague, V., Volkamer, M. Extending Helios Towards Private Eligibility Verifiability. Vote-ID 2015.

BeleniosRF: Belenios with receipt-freeness

- Use a rerandomizing server
 - Rerandomizes all the ballots before publishing them to the BB
 - This breaks the validity of signatures!
- Solution: Signatures on Randomizable Ciphertexts
 - Given a ciphertext, signature pair (c, σ)
 - Rerandomize the ciphertext to c'
 - Without the decryption key
 - Adapt the signature so that it publicly verifies for c'
 - Without the signing key

21/3/2025

Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David Galindo. BeleniosRF: A non-interactive receipt-free electronic voting scheme. In 23rd ACM Conference on Computer and Communications Security (CCS'16), pages 1614–1625, Vienna, Austria, 2016.

BeleniosRF: Belenios with receipt-freeness

- No need for proofs of correct rerandomization for RF
 - The EA rerandomizes the ciphertexts and adapts the signatures of validity
- Security:
 - Rerandomization appears as fresh encryption
 - One-more unforgeability: The signer can create signatures on *messages* they have never seen
- Is it enough?
 - The voter might sell their keys and passwords!

Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Signatures on randomizable ciphertexts. In *Public Key Cryptography - PKC 2011*