
Mixnets
Bulletin Board Bulletin Board Bulletin Board

Permutation
+

Mutation

RSA Decryption Mixnets

• Each mixer 𝑖 has a pair of RSA keys (𝑠𝑘௜, 𝑝𝑘௜)

• The voter encrypts their choice using the public RSA keys of the
mixers in reverse

• 𝑏௜ = 𝐸𝑛𝑐ଵ(𝐸𝑛𝑐ଶ … 𝐸𝑛𝑐௠ 𝑣௜ …)

• 𝐿଴ = 𝑏௜ ௜ୀଵ
௡

• Each mixer permutes the list of ballots using a random
permutation 𝜋௜

• and decrypts using their private key (mutation)
• The first mixer will append to the BB:

• 𝐿ଵ = 𝐷𝑒𝑐ଵ 𝑏௜ ୧ୀగభ
షభ ଵ

గభ
షభ(௡)

21/3/2025 53

RSA Decryption Mixnets

• This process is repeated for every mixer
• In the end, the BB contains

𝐿௠ = 𝑣௜ ୧ୀగ೘
షభ∘⋯∘గభ

షభ(ଵ)

గ೘
షభ∘⋯∘గభ

షభ(௡)

• Remarks:
• The permutation could simply be to sort the encryptions as binary string
• The last mixer knows the plaintext but not the voter identity
• One honest mixer should be enough for security

• Mixers should be entities with conflicting interests
• Computationally expensive for the voter: 𝑂(𝑚) encryptions
• Allows counting through the use of complex voting rules

21/3/2025 54

ElGamal Decryption Mixnets
• Each mixer 𝑀௝ has a key pair: 𝑠𝑘௝, 𝑝𝑘௝ = (𝑥௝, 𝑔௫ೕ)

• The combined public key of the mixnet is 𝑌 = ∏ 𝑝𝑘௝௝ = 𝑔∑ ௫ೕ

• The voter encrypts their choice using 𝑌
• 𝑏௜଴ = 𝐸𝑛𝑐௒ 𝑣௜ = (𝑔௥೔బ, 𝑣௜𝑌௥೔బ)

• Each 𝑀௝ removes an encryption layer using their private key
• 𝑏௜௝ = 𝐷𝑒𝑐௫ೕ

𝑏௜௝ିଵ

• Applies new randomness 𝑟௜௝

• 𝐿௝ = 𝑏௜௝ ௜ୀଵ

௡
= (𝑔∑ ௥೔ೖ

ೕ
ೖసబ , 𝑣௜𝑔∑ ௫ೖ

೘
ೖసೕశభ ∑ ௥೔ೖ

ೕ
ೖసబ)

௜ୀଵ

௡

• Permutes using 𝜋௝

21/3/2025 55

ElGamal Reencryption Mixnets

• Each mixer 𝑀௝ reencrypts and permutes the ballot list using 𝑌
• On input 𝐿௝ିଵ = 𝐸𝑛𝑐௒ 𝑣௜, 𝑟௜ ௜ୀଵ

௡

• Selects 𝑟௜௝

$
← ℤ௤

௜ୀଵ

௡

• Computes

• 𝐿௝ = 𝐸𝑛𝑐௒ 𝑣௜, 𝑟௜௝ ⋅ 𝐸𝑛𝑐௒ 1, 𝑟௜௝ ௜ୀଵ

௡
= (𝑔∑ ௥೔ೖ

ೕ
ೖసబ , 𝑣௜𝑌∑ ௥೔ೖ

ೕ
ೖసబ)

௜ୀଵ

௡

• Permutes using 𝜋௝

• All mixers jointly decrypt after 𝐿௠ has been posted

21/3/2025 56

The tagging attack
• A generic attack applicable to all types of anonymous channels!
• Adversarial goal: reveal the input of 𝑉௜ with the help of a corrupted

user 𝑉௝ willing to sacrifice their input
• The adversary

• Retrieves the initial input of 𝑉௜: 𝑐௜଴ = (𝑔௥, 𝑣௜𝑌௥)

• Selects τ
$

← ℤ୯ and computes 𝑐௜଴
ఛ = (𝑔௥ఛ, 𝑣௜

ఛ𝑌௥ఛ)

• Replaces 𝑉௝’s input with 𝑐௜଴
ఛ

• The output of the mixnet contains both 𝑣௜, 𝑣௜
ఛ

• The adversary computes for all outputs 𝑥 → 𝑥ఛ and checks for
duplicates

21/3/2025 57
Pfitzmann, B.: Breaking an efficient anonymous channel. In: EUROCRYPT’94. pp. 332–340 (1995)

Verifiable mixnets – Proofs of Shuffles

• Protect against corrupted mixers that aim to omit or
alter inputs

• The mixer provides a proof of (correct) shuffle that:
• No plaintexts were modified
• No ciphertexts were removed or inserted
• The output ciphertexts are only a reencryption and

permutation of the input ciphertexts.

• Without revealing:
• The permutation 𝜋
• The reencryption factors 𝑟௜

• Many solutions in the literature

21/3/2025 58

A simple 2 × 2 verifiable shuffle
• Input

• 𝑐଴ = 𝐸𝑛𝑐௒ 𝑚଴, 𝑟଴ , 𝑐ଵ = 𝐸𝑛𝑐௒(𝑚ଵ, 𝑟ଵ)

• Output
• 𝑐଴

ᇱ = 𝑅𝑒𝐸𝑛𝑐 𝑐௕ = 𝐸𝑛𝑐௒ 𝑚௕, 𝑟௕′ , 𝑐ଵ
ᇱ = 𝑅𝑒𝐸𝑛𝑐 𝑐ଵି௕ = 𝐸𝑛𝑐௒(𝑚ଵି௕, 𝑟ଵି௕′)

• Proof that 𝑐௜
ᇱ = 𝑅𝑒𝐸𝑛𝑐(𝑐௜)

• Prove that they encrypt the same message
• If 𝑐௜ = (𝐺, 𝑚𝑅) then 𝑐௜′ = (𝐺′, 𝑚𝑅′)
• This means that 𝐷𝐿௚ 𝐺 ⋅ 𝐺′ିଵ = 𝐷𝐿௒(𝑅 ⋅ 𝑅ᇱିଵ

)
• Use the Chaum – Pedersen Protocol

• Proof of correct shuffle
• Prove that 𝑐଴

ᇱ , 𝑐ଵ
ᇱ is a shuffle of 𝑐଴, 𝑐ଵ

• Prove that 𝑐௜
ᇱ = 𝑅𝑒𝐸𝑛𝑐(𝑐௜) 𝐴𝑁𝐷 𝑐ଵି௜

ᇱ = 𝑅𝑒𝐸𝑛𝑐(𝑐ଵି௜) 𝑂𝑅 𝑐௜
ᇱ = 𝑅𝑒𝐸𝑛𝑐(𝑐ଵି௜) 𝐴𝑁𝐷 𝑐௜ିଵ

ᇱ =

𝑅𝑒𝐸𝑛𝑐(𝑐௜)

• Composition of Chaum – Pedersen Protocols

21/3/2025 59

Bayer – Groth Proof of Shuffle
• Public Input

• Two sets of ciphertexts 𝐶ଵ, … , 𝐶௡ and 𝐶ଵ
ᇱ, … , 𝐶௡′ in a group 𝔾 of prime order 𝑞

• Encrypted with 𝑝𝑘

• Private input 𝜋, 𝛒 = (𝜌ଵ, … , 𝜌௡) such that
• 𝐶௜

ᇱ = 𝐶గ(௜) ⋅ 𝐸𝑛𝑐௣௞(1, 𝜌௜)

• Proof of Knowledge of Permutation
• Product Argument: A set of committed values has a particular product

• Proof of Knowledge of Reencryption Factors
• Mult exponentiation argument: The product of a set of ciphertexts raised to a set of

committed exponents yields a particular ciphertext

21/3/2025 60
Bayer, S., Groth, J. (2012). Efficient Zero-Knowledge Argument for Correctness of a
Shuffle–EUROCRYPT 2012

Bayer – Groth Proof of Shuffle

21/3/2025 61

𝐶𝑜𝑚𝑚𝑖𝑡(𝜋 1 , … , 𝜋 𝑛)

𝑥
$

← ℤ௤

𝐶𝑜𝑚𝑚𝑖𝑡(𝑥గ ଵ , … , 𝑥గ ௡)

The prover must convince
the verifier that the same
permutation has been
used for 1, … , 𝑛 and
𝑥ଵ, … , 𝑥௡

𝑐, 𝑧
$

← ℤ௤

Prove that ∏ 𝑑௜ − 𝑧௜ = ∏ (𝑥௜ + 𝑖𝑐 − 𝑧)௜

using the product argument

Prove that 𝐸𝑛𝑐௣௞(1, 𝑟) ∏ 𝐶′௜
௫ഏ(೔)

௜ = ∏ 𝐶௜
௫೔

௜ using the
multiexponentiation argument

Prove that the 𝑃 𝑘 =
∏ 𝑑௜ − 𝑘௜ − ∏ (𝑥௜ + 𝑖𝑐 − 𝑘)௜
is the zero polynomial

Schwartz-Zippel lemma: This
can be cheated with
negligible probability if the
permutation is not known

Bayer, S., Groth, J. (2012). Efficient Zero-Knowledge Argument for Correctness of a
Shuffle–EUROCRYPT 2012

9 round HVZK
argument

Bayer – Groth Proof of Shuffle
• State of the art in proof size 𝑂(𝑛)

• Verification time 𝑂(𝑛)

• Prover time 𝑂 𝑙𝑜𝑔 𝑛 𝑛

• Main trick for efficient communication complexity:
• Arrange the input ciphertexts into a 𝑘 ⋅ 𝑙 matrix where 𝑘 = 𝑂(√𝑛)
• Use Generalised Pedersen Commitment to commit to columns

• First prover message
• Send 𝐜𝐦𝚷 = 𝐺𝑃𝐶 𝛑𝐤, 𝐫 were 𝐫

$
← ℤ௤

௞ and ⋃ 𝛑𝐤 = 𝛑௞

• Second prover message
• Send 𝐜𝐦𝐗 = 𝐺𝑃𝐶 𝐱𝛑𝐤, 𝐬 were 𝐬

$
← ℤ௤

௞ and ⋃ 𝛑𝐤 = 𝛑௞

• The permutation was fixed before the prover saw 𝑥

21/3/2025 62
Bayer, S., Groth, J. (2012). Efficient Zero-Knowledge Argument for Correctness of a
Shuffle–EUROCRYPT 2012

• Generalized Pedersen
Commitment

• Commitment to a vector
𝐦 = (𝑚ଵ, … , 𝑚௡)

• 𝔾 is a cyclic group of
prime order 𝑞 generated
by 𝑔ଵ, … , 𝑔௡, ℎ

• 𝐺𝑃𝐶 𝐦, 𝑟 = ℎ௥ ∏ 𝑔௜
௠೔

௜

Bayer – Groth Proof of Shuffle

• Third message: Both prover and verifier compute
• 𝐜𝐦ି𝒛 = GPC(−𝐳, 𝟎)

• 𝐜𝐦𝐃 = 𝐜𝐦𝚷
𝒄 ⨂𝐜𝐦𝐗 = GPC(𝑐 ⋅ 𝛑 𝐢 + 𝐱𝛑 𝐢) which is a commitment to 𝑐𝜋 𝑖 +

𝑥గ ௜ with randomness 𝑐𝑟௜ + 𝑠୧

• The verifier does not know 𝜋 𝑖 , 𝑟௜, 𝑠୧ but can compute the values
homomorphically

• 𝐜𝐦𝑫 ⨂𝐜𝐦ି𝒛 = GPC(𝐝 − 𝐳) where 𝑑௜ = 𝑐 𝜋 𝑖 + 𝑥గ ௜

• Use the product argument to show knowledge of 𝑑௜, 𝑟௜, 𝑠௜ such that:
• ∏ 𝑑௜ − 𝑧௜ = ∏ (𝑥௜ + 𝑖𝑐 − 𝑧)௜ a polynomial and its permutation in 𝑧 - identical roots
• The value ∏ (𝑥௜ + 𝑖𝑐 − 𝑧)௜ can be computed by the verifier

21/3/2025 63
Bayer, S., Groth, J. (2012). Efficient Zero-Knowledge Argument for Correctness of a
Shuffle–EUROCRYPT 2012

Bayer – Groth Proof of Shuffle
• Third message: The prover computes

• 𝜌 ← 𝛒⨀𝐬

• 𝐂𝐱 = 𝐸𝑛𝑐 1, 𝜌 ⋅ 𝐂ᇱ𝐱𝝅 where 𝐱 = (𝑥ଵ, … , 𝑥௡)

• The verifier can compute 𝐂𝐱

• Using the multi exponentiation argument it convinces the verifier that
𝐸𝑛𝑐 1, 𝜌 ⋅ 𝐂ᇱ𝒔 was computed correctly

• Note that because of the homomorphic properties
• ∏ 𝑚௜

௫೔

௜ = ∏ 𝑚௜
ᇱ௫೔

⇒ log ∑ 𝑚௜ 𝑥௜
௜ = log ∑ 𝑚గషభ(௜)′ 𝑥௜

• This means that wvhp 𝑚గ(௜) = 𝑚௜′

• The shuffle was performed correctly

21/3/2025 64
Bayer, S., Groth, J. (2012). Efficient Zero-Knowledge Argument for Correctness of a
Shuffle–EUROCRYPT 2012

Voting Paradigms
Helios and extensions
JCJ – Coercion Resistance
Voting with blind/ring signatures
OpenVote

21/3/2025 65

Helios

21/3/2025 66

Helios’ Facts
• Elections in the browser

• Open-Audit: Everyone has access to all election data for verifiability
• Trust no one for integrity – trust the server for privacy
• Low coercion environments

• 2.000.000 votes cast so far
• ACM, IACR and university elections
• Can be used online https://vote.heliosvoting.org/ or deployed locally

• Based on:
• Verifiable mixnets – Helios 1.0 (Sako-Killian, Eurocrypt 95)
• Homomorphic tallying – Helios 2.0 (Cramer-Genaro-Shoenmakers, Eurocrypt 97)
• Benaloh Challenge

• Many variations
• Belenios (Helios-C)
• Zeus

21/3/2025 67

Ben Adida. 2008. Helios: web-based open-audit voting. In Proceedings of the 17th
conference on Security symposium (SS'08). USENIX Association, USA, 335–348.

Participants

• Election administrator: Create the election, add the questions,
combine partial tallies

• BB - Bulletin’ Board: Maintain votes (Ballot Tracking Center) and audit
data

• TA - Trustees (Talliers): Partially decrypt individual (in Helios 1.0) or
aggregated (in Helios 2.0) ballots

• RA - Registrars (Helios-C): Generate cryptographic credentials for
voters

• 𝐸𝐴 = (𝑅𝐴, 𝑇𝐴, 𝐵𝐵)

• Eligible voters optionally identified by random alias or external
authentication service (Google, Facebook, LDAP)

• Authenticated channel between voter and BB (username, password)

21/3/2025 68

Auditing Process
• Individual Verifiability

oCast as intended
• After ballot creation (encryption) but before authentication, each voter can choose if

they will audit or cast the ballot.
• On audit: Helios releases the encryption randomness and the voter can recreate the

ballot using software of their choice.
• An audited ballot cannot be submitted.

oRecorded as cast
• Each encrypted ballot and related data are hashed to a tracking number.
• Every voter can check if the assigned number exists in the Ballot Tracking Center

(BTC).

21/3/2025 69

Auditing Process

• Universal Verifiability
• Tallied as recorded - Every interested party may

 Retrieve ballots from BTC
 Compare identities with eligible voters (if applicable)
 Recompute tracking numbers
 Aggregate the ballots and check equality with official encrypted tally before

decryption
• Verify decryption proofs

21/3/2025 70

Formal Description: Setup

oExecuted by the Election Administrator
oCreates cryptographic groups, defines message space etc.
oReusable for many elections

𝑆𝑒𝑡𝑢𝑝 1ఒ =

𝔾, 𝑞, 𝑔

𝐻௤: 0,1 → ℤ௤

𝑫𝑳𝑷𝑹𝑽(𝑥, 𝑔, 𝑌) , 𝑫𝑳𝑽𝑭(𝑔, 𝑌, 𝜋)
(𝑬𝑸𝑷𝑹𝑽(𝑥, 𝑔ଵ, 𝑌ଵ, 𝑔ଶ, 𝑌ଶ), 𝑬𝑸𝑽𝑭(𝑔ଵ, 𝑌ଵ, 𝑔ଶ, 𝑌ଶ, 𝜋))

(𝑫𝑱𝑷𝑹𝑽(𝑥ଵ, 𝑥ଶ, 𝑔, 𝑌ଵ, 𝑌ଶ), 𝑫𝑱𝑽𝑭(𝑔, 𝑌ଵ, 𝑌ଶ, 𝜋))
𝐵𝐵 ← ∅

21/3/2025 71

Formal Description: SetupElection

• The members of the TA cooperate to create their joint public key

• Compute member key pair: 𝑠𝑘௜
$

← ℤ௤, 𝑝𝑘௜ ← 𝑔ୱ୩೔

• Publish 𝑝𝑘௜, 𝐷𝐿𝑃𝑅𝑉(𝑠𝑘௜, 𝑔, 𝑝𝑘௜)

• Compute election public key: 𝑝𝑘 ← ∏ 𝑝𝑘௜௜

• Create list of eligible voters 𝑉௟

• Create list of candidates 𝐶𝑆 = {0,1} (for simplicity)
• Publish everything into 𝐵𝐵

• 𝐵𝐵 ⇐ {𝑝𝑘௜, 𝑝𝑘, 𝑉௟, 𝐶𝑆}

21/3/2025 72

Formal Description: Voting
Vote(i,v):

𝑣 ∈ {𝑔଴, 𝑔ଵ}

𝐸𝑛𝑐୮୩ 𝑔௩ → 𝑔௥, 𝑔௩ ⋅ pk௥ = 𝑅, 𝑆

𝐸𝑄𝑃𝑅𝑉 𝑟, 𝑔, 𝑅, 𝑝𝑘, 𝑆 𝑂𝑅 𝐸𝑄𝑃𝑅𝑉 𝑟, 𝑔, 𝑅, 𝑝𝑘, 𝑆𝑔ିଵ → 𝜋௏

b = (𝑅, 𝑆, 𝜋௏)

Valid(i,b):
Return 1 if 𝑖 ∈ 𝑉௟ and 𝐸𝑄𝑉𝐹 𝜋௏ = 1

Append(I,b):
𝐵𝐵 ← (𝑖, 𝑏) if 𝑉𝑎𝑙𝑖𝑑 𝑏 = 1

VerifyVote(i,b,BB):
Return 1 if 𝑏 ∈ 𝐵𝐵 and 𝑉𝑎𝑙𝑖𝑑 𝑖, 𝑏 = 1

Publish(BB):
Return PBB = {𝑏} i.e. remove id’s from ballots and keep one ballot per voter id
Occurs after all voters have voted

21/3/2025 73

Formal Description: Tally

Tally(PBB, 𝑠𝑘௜):
Validate all proofs in 𝑃𝐵𝐵

Compute 𝑅ஊ, Sஊ ← ∏ 𝑏 for all 𝑏 ∈ 𝑃𝐵𝐵

Distributed Decryption of 𝑅ஊ, Sஊ → 𝑔௧

Each 𝑇𝐴௜

posts 𝐷௜ = 𝑅ஊ
௦௞೔, 𝐸𝑄𝑃𝑅𝑉 𝑠𝑘௜, 𝑔, 𝑝𝑘௜, 𝑅ஊ, 𝐷௜

computes ୗಂ

∏ ஽೔೔
→ 𝑔௧

solves small DLOG to get 𝑡
posts 𝜋் = 𝐸𝑄𝑃𝑅𝑉 𝑠𝑘௜, 𝑔, 𝑝𝑘௜, 𝑅ஊ, Sஊ ⋅ 𝑔ି௧

21/3/2025 74

Formal Description: Verify

Verify(BB,PBB, 𝑡, 𝜋்):
Check correct construction of PBB

• Only last ballot kept
• All kept ballots belong to eligible voters
• All kept ballots had valid proofs

Recompute 𝑅ஊ, Sஊ ← ∏ 𝑏 for all 𝑏 ∈ 𝑃𝐵𝐵

Verify 𝜋்

21/3/2025 75

Attacks by using wFS: Denial of Service
• In the proof 𝐸𝑄𝑃𝑅𝑉 𝑠𝑘௜, 𝑔, 𝑝𝑘௜, 𝑅ஊ, 𝐷௜ a malicious 𝑇𝐴௜ can cheat by

first creating the proof and then adaptively selecting 𝑫𝒊

• Compute 𝑇ଵ ← 𝑔௔, 𝑇ଶ ← 𝑔௕ where 𝑎, 𝑏
$

← ℤ௤

• wFS: 𝑐 ← 𝐻(𝑇ଵ, 𝑇ଶ)

• Compute 𝑠 ← 𝑎 + 𝑐 ⋅ 𝑠𝑘௜

• Select 𝐷௜ ← 𝑅ஊ
ି௦𝑇ଶ

ି௖షభ

• The proof (𝑐, 𝑠) verifies
• 𝑔௦𝑝𝑘௜

ି௖ = 𝑇ଵ and 𝑅ஊ
௦𝐷௜

ି௖ = 𝑅ஊ
௦𝑅ି௦𝑇ଶ = 𝑇ଶ but logோಂ

𝐷௜ = −𝑠 − 𝑐ିଵlogோಂ
𝑇ଶ ≠ 𝑠𝑘௜

• What does this mean?
• Tally decryption will yield a random group element instead of 𝑔௧

• Efficient computation of 𝑡 (assumed to be small DLOG) will not be feasible!
21/3/2025 76

Attacks by using wFS: Undetectably alter result
• Goal: Announce election result 𝑡 ≠ 𝑡ᇱ

• Assumptions
1. All 𝑇𝐴௜’s are corrupted – corrupted TA
2. The TA can eavesdrop on the voter-selected encryption randomness

• Realistic assumption if the voting device is corrupt
3. Corrupt a single voter to cast the last vote

• The TA creates a ‘proof’ of correct ‘tallying’ before tallying
1. Compute 𝑇ଵ ← 𝑔௔, 𝑇ଶ ← 𝑔௕ where 𝑎, 𝑏

$
← ℤ௤

2. wFS: 𝑐 ← 𝐻(𝑇ଵ, 𝑇ଶ)
3. Compute 𝑠 ← 𝑎 + 𝑐 ⋅ 𝑠𝑘

• All voters vote except for the corrupt voter
1. The current result is 𝑡 and encrypted as 𝑅, 𝑆 = (𝑔∑௥, 𝑔௧𝑝𝑘∑௥)
2. By assumption 2: ∑𝑟 is know to the TA
3. The TA can compute 𝑡 before the corrupt voter

21/3/2025 77

Attacks by using wFS: Undetectably alter result
• The TA selects 𝑟ᇱ ←

௕ା௖ ௧ି௧ᇲ

௦ି௖⋅௦௞

• Using the corrupt voter the TA casts the ballot (𝑔௥ᇲି∑௥, 𝑔଴𝑝𝑘௥ᇱି∑௥) which is a
valid ballot

• The current encrypted tally is 𝑅ᇱ, 𝑆ᇱ = (𝑔௥ᇲ
, 𝑔௧ ⋅ 𝑝𝑘௥ᇲ

)

• The encrypted tally does not change but the proof (𝒄, 𝒔) also verifies for 𝒕′

• 𝑔௦𝑝𝑘ି௖ = 𝑇ଵ (nothing has changed here)

• 𝑅ᇱ௦
Sᇱ ⋅ 𝑔ି௧ᇲ ି௖

= 𝑔௦௥ᇲି௖௧ି௖⋅௦௞⋅௥ᇲା௖௧ᇲ
= 𝑔௥ᇲ ௦ି௖⋅௦௞ ି௖(௧ି௧ᇲ) = 𝑔௕ = 𝑇ଶ

• As a result, the corrupt TA can announce 𝑡′ for the election result and everyone
will be convinced by the proof.

21/3/2025 78

Similar attacks to other voting
schemes
• S. J. Lewis, O. Pereira, and V. Teague, “How not to
prove your election outcome: The use of non-adaptive
zero knowledge proofs in the Scytl-SwissPost Internet
voting system, and its implications for decryption proof
soundness”
• R. Haenni, “Swiss post public intrusion test:
Undetectable attack against vote integrity and secrecy”

3/21/2025 79

Helios Extensions
Everlasting Privacy
Receipt Freeness
Eligibility Verifiability

21/3/2025 80

Everlasting privacy
• Ballot secrecy is provided through encryption schemes
• Protection relies on computational hardness assumptions
• What if these assumptions are broken?

• Vote contents might be useful to a future oppressive government
• But such a regime might also use insider information
• This threat might constitute an indirect coercion attempt
• The need for verifiability makes election data publicly available

• Helios does not have everlasting privacy!
• The functionality Publish(BB) releases the encrypted ballots
• An unbounded adversary can decrypt them!

21/3/2025 81

Approaches to everlasting privacy
• Perfectly Hiding

Commitments
• Instead of encryption
• But: Counting requires the

openings.
• How do voters send them?

• Through Private Channels
• Encrypted
• Directly sent to the authorities

• Not available to a future attacker
• Unless they control part of the

authorities
• Practical Everlasting Privacy

• Anonymous casting
• Disassociate identity from ballot
• Use anonymous credentials to

signal ballot eligibility or validity
• Blind signatures
• Ring signatures

• An important advantage:
• No trust required for privacy!

21/3/2025 82

• Haines, T., Mueller, J., Mosaheb, R., & Pryvalov, I.
(2023). SoK: Secure E-Voting with Everlasting Privacy.
In Proceedings on Privacy Enhancing Technologies
(PoPETs).

• Grontas, P., Pagourtzis, A. Anonymity and everlasting
privacy in electronic voting. Int. J. Inf. Secur. 22, 819–
832 (2023). https://doi.org/10.1007/s10207-023-
00666-2

Adding everlasting privacy to Helios
Voters:
• Instead of encryption, use

committments
• 𝑣 ∈ {0,1},
• 𝑐 = 𝐶𝑜𝑚𝑚𝑖𝑡 𝑣, 𝑠 → 𝑔௩ ⋅ ℎ௦

• 𝑐ଵ = 𝐸𝑛𝑐௣௞ 𝑣 → (𝑔௥భ, 𝑔௩𝑝𝑘௥భ)

• cଶ = 𝐸𝑛𝑐௣௞ 𝑠 → (𝑔௥మ, 𝑔௦𝑝𝑘௥మ)

• Proof of validity of 𝑣
• Proof that 𝑣, 𝑠 are the same in 𝑐, 𝑐ଵ, 𝑐ଶ

• Post 𝑐 in BB
• Send 𝑐ଵ, 𝑐ଶ to 𝑇𝐴 through private

channels

Talliers:
• Compute

• ∏ 𝑐௩∈୚ . Yields 𝐜 = 𝐶𝑜𝑚𝑚𝑖𝑡 ∑𝑣, ∑𝑠
• ∏ 𝑐௩∈୚ ଵ

. Yields 𝐜𝟏 = 𝐸𝑛𝑐௣௞(∑𝑣)

• ∏ 𝑐௩∈୚ ଶ
. Yields 𝐜𝟐 = 𝐸𝑛𝑐௣௞(∑𝑠)

• Posts decryptions of 𝒄𝟏, 𝒄𝟐

• Everyone can validate the
commitment 𝐜

21/3/2025 83

Denise Demirel, J Van De Graaf, and R Araújo. “Improving Helios with
Everlasting Privacy Towards the Public”. In: EVT/WOTE’12 Proceedings of the 2012 international
conference on Electronic Voting Technology/Workshop on Trustworthy Elections (2012).

Do you see a problem?

Adding everlasting privacy to Helios
• 𝐸𝑛𝑐௣௞(∑𝑠) = (𝑔∑௥మ, 𝑔∑௦𝑝𝑘∑௥మ)

• Need to solve DLP to get ∑𝑠.
• This is not feasible!

• Randomness is not in the same range as the result

• Solution:
• Use Paillier cryptosystem
• Encryption in the exponent
• DLP for free!

21/3/2025 84

Denise Demirel, J Van De Graaf, and R Araújo. “Improving Helios with
Everlasting Privacy Towards the Public”. In: EVT/WOTE’12 Proceedings of the 2012 international
conference on Electronic Voting Technology/Workshop on Trustworthy Elections (2012).

Receipt-Freeness

• Extensions for privacy against malicious voters
• Voters that wish to sell their vote

• The attack scenario:
• A voter agrees to sell their vote before the election
• Proceeds to vote on their own
• The buyer does not monitor the voter when casting the ballot
• The voter presents evidence after voting to receive payment

21/3/2025 85

A voting system is receipt free if a malicious voter cannot
prove how they voted even if the want to

Josh Benaloh and Dwight Tuinstra. “Receipt-free secret-ballot elections (extended abstract)”. In:
Proceedings of the twenty-sixth annual ACM symposium on Theory of computing - STOC ’94. ACM
Press, 1994, pages 544– 553.

Helios is not receipt-free

• The malicious voter will offer as evidence:
• the encryption randomness 𝑟
• the position of the claimed ballot 𝑏 in the BB

• The buyer will:
• Encrypt the claimed choice with 𝑟
• Compare with 𝑏

• Revoting does not help against coercion resistance
• The published BB contains the final version of 𝑏

21/3/2025 86

Adding receipt - freeness

• Main idea: The voter is not the sole contributor of encryption
randomness for the ballot

• They do not know the final randomness used - the voter – generated
randomness as receipt is spoiled!

• A rerandomization authority reencrypts the ballot
• Trusted for receipt-freeness
• Not trusted for integrity/verifiability and privacy

• Sends a proof of correct reencryption to the voter
• Use of designated verifier proofs
• The voter (DV) cannot use it to convince the voter buyer

21/3/2025 87

Martin Hirt and Kazue Sako. “Efficient receipt-free voting based on homomorphic
encryption”. In. EUROCRYPT’00

Adding receipt – freeness

• Each voter has a private-public key pair (𝑠𝑘௏, 𝑝𝑘௏).
• They encrypt their ballot deterministically (i.e. 𝑟 = 0) and send it

to the 𝐸𝐴

• The 𝐸𝐴 is split into 𝐸𝐴ଵ, ⋯ , 𝐸𝐴௡ which operate a verifiable mixnet
• Each vote is shuffled and reencrypted
• Public proof of correct shuffling

• Each authority privately proves to each voter how the list was
shuffled and reencrypted

• The proof uses 𝑝𝑘௏ so it is designated-verifier
• The voter can pinpoint their ballot in their final list to verify it, but they

cannot prove to a vote seller its position
• Non-transferability

21/3/2025 88
Martin Hirt and Kazue Sako. “Efficient receipt-free voting based on homomorphic
encryption”. In. EUROCRYPT’00

Eligibility verifiability

• Anyone can verify that:
• Every ballot was cast by a voter with the right to vote
• No voter cast more than two counted ballots
• Prevent ballot stuffing

• A simple solution:
• Equip voters with credentials (PKI)
• Sign encrypted ballots
• Keep only one ballot / public key
• Verify against eligible voter list

21/3/2025 89

Belenios: Helios with credentials

• Extension to provide eligibility verifiability
• Adds a registration (credential) authority
• The BB generates login information for the voters

(username, password)
• The voters receive both credentials

𝑝𝑘௜, 𝑠𝑘௜ , (𝑢𝑖𝑑, 𝑝𝑤𝑑) using a private channel
• The voter logins to the BB using (𝑢𝑖𝑑, 𝑝𝑤𝑑)

• The ballot consists of
• Vote encryption 𝑐
• NIZK proof 𝜋 of vote validity
• A signature on 𝑐

21/3/2025 90

Belenios: A Simple Private and Verifiable Electronic Voting System. Véronique Cortier, Pierrick
Gaudry, and Stéphane Glondu. In Foundations of Security, Protocols, and Equational Reasoning, pp.
214-238, 2019.

Belenios: Helios with credentials

• The BB keeps one ballot per (𝑖𝑑, 𝑝𝑘)
• Last one if multiple exist

• The BB checks signatures and proofs
• The voters check that their ballots appear on the BB (individual

verifiability)
• Ballot stuffing can occur only if both the BB and the RA are corrupt

• Stuffed ballots need to have both a 𝑣𝑘 and an 𝑖𝑑
• Eligibility verifiability:

• Everyone can check that a ballot comes from a valid voter
• But: This reveals who abstained - illegal in some countries

21/3/2025 91

Belenios: A Simple Private and Verifiable Electronic Voting System. Véronique Cortier, Pierrick
Gaudry, and Stéphane Glondu. In Foundations of Security, Protocols, and Equational Reasoning, pp.
214-238, 2019.

Private eligibility verifiability (KTV-Helios)

• Participation privacy + Universal verifiability
• Main idea: Add null votes + vote update capabilities
• Voting proxies:

• Entities that add null votes for a voter
• Properties of null votes:

• They do not add to the result
• They are indistinguishable from regular votes
• Proofs that each vote is either a null vote or a normal vote
• Anonymous casting

• Also provide (some degree) of receipt freeness
• The voter may prove that he cast 𝑐, but..
• If there exists another ballot 𝑐′ cast for them, they cannot prove that

• 𝑐ᇱ ≠ 𝑐ᇱᇱ ⋅ 𝑐ିଵ (which updates their true ballot to 𝑐′′)

21/3/2025 92Kulyk, O., Teague, V., Volkamer, M. Extending Helios Towards Private Eligibility Verifiability. Vote-ID 2015.

BeleniosRF: Belenios with receipt-freeness
• Use a rerandomizing server

• Rerandomizes all the ballots before publishing them to the BB
• This breaks the validity of signatures!

• Solution: Signatures on Randomizable Ciphertexts
• Given a ciphertext, signature pair (𝑐, 𝜎)

• Rerandomize the ciphertext to 𝑐′
• Without the decryption key

• Adapt the signature so that it publicly verifies for 𝑐′
• Without the signing key

21/3/2025 93
Pyrros Chaidos, Véronique Cortier, Georg Fuchsbauer, and David Galindo. BeleniosRF: A non-interactive receipt-free electronic
voting scheme. In 23rd ACM Conference on Computer and Communications Security (CCS’16), pages 1614–
1625, Vienna, Austria, 2016.

BeleniosRF: Belenios with receipt-freeness

• No need for proofs of correct rerandomization for RF
• The 𝐸𝐴 rerandomizes the ciphertexts and adapts the signatures of validity

• Security:
• Rerandomization appears as fresh encryption
• One-more unforgeability: The signer can create signatures on messages

they have never seen

• Is it enough?
• The voter might sell their keys and passwords!

21/3/2025 94

Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Signatures on
randomizable ciphertexts. In Public Key Cryptography - PKC 2011

