Voting With Blind Signatures

A practical secret voting scheme for large scale elections

• **Main idea:** How would real-world elections work if the identity validation took place in a different physical space than counting?

Assumptions:

- Voters have cryptographic key pairs
- Voters can send two messages
- Access to an anonymous channel

27/3/2025

Fujioko A, Okamoto T, Ohta T (1992) A practical secret voting scheme for large-scale elections. In: Proceedings of advances in cryptology, AUSCRYPT'92, Springer, pp 244–260

A practical secret voting scheme for large scale elections (FOO)

- Preparation V_i
 - Select and commit to the vote
 - $b_i = Commit(v_i, r_i)$
 - Blind ballot for pk_{EA}
 - $bb_i = Blind(b_i, pk_{EA})$
 - Sign with voter sk_{v_i}
 - $sbb_i = Sign(sk_{v_i}, bb_i)$
 - Send to the EA
 - (id, bb_i, sbb_i)

- Authorisation by the EA
 - Check voter eligibility and previous authorization requests for double voting
 - If everything is ok sign the blind ballot and return it to the voter
 - $sbb_i' = Sign(sk_{EA}, bb_i)$
 - Announce total number of eligible voters by publishing to the BB
 - $T = \{id, bb_i, sbb_i'\}$

A practical secret voting scheme for large scale elections (FOO)

- Voting Phase 1
 - Unblind the ballot signature
 - $sb_i = Unblind(sbb'_i)$
 - Send ballot and signature to the BB through an anonymous channel
 - (b_i, sb_i)
 - Eligibility is publicly verifiable by verifying the EA signature
 - Everybody can create a list of eligible ballots and verify it against *T*

- Voting Phase 2
 - After everyone has voted!
 - Send decommitment values over an anonymous channel
 - (v_i, r_i)
- (Public) Counting Phase
 - Verify all commitments
 - Verify eligibility
 - Compute tally using successfully verified decommited values

A practical secret voting scheme for large scale elections (FOO)

- Voting Phase 1
 - Unblind the ballot signature
 - $sb_i = Unblind(sbb'_i)$
 - Send ballot and signature to the BB through an anonymous channel
 - (b_i, sb_i)
 - Eligibility is publicly verifiable by verifying the EA signature
 - Everybody can create a list of eligible ballots and verify it against *T*

- Voting Phase 2
 - After everyone has voted!
 - Send decommitment values over an anonymous channel
 - (v_i, r_i)
- (Public) Counting Phase
 - Verify all commitments
 - Verify eligibility
 - Compute tally using successfully verified decommited values

Voting with Blind Signatures: Discussion

Privacy

- Commitment schemes
- Blind signatures
- Anonymous channel
- Major difference with Helios
 - There is no need to require trust in the server for privacy!

Verifiability

- Individual
 - Existence of the signed ballots and decommitments in the BB
- Universal
 - Counting can be replicated
 - No secret keys involved
- Elibigility
 - Based on the unforgeability of the blind signature scheme

But: Voting is a two-step process in different protocol phases

Voting With Ring Signatures

LSAG Voting

- Remove the authority from the FOO scheme
- All voters have cryptographic key pairs
- There is a **reliable** repository of identities and public key pairs
 - Who creates it?

Voting phase:

- Each voter picks v_i and signs it using a LSAG scheme
 - The ring is selected from the public repository of identities
- The ballot is (v_i, σ_i)
- The ballot is posted via an anonymous channel

Tallying phase:

- Everyone can retrieve the ballots from the BB and verify the signatures by retrieving the identities from the repository

27/3/2025

Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. "Linkable Spontaneous Anonymous Group Signature for Ad Hoc Groups (Extended Abstract)". In: *ACISP 2004*. Vol. 3108. LNCS. 2004, pp. 325–335. doi: 10. 1007/978-3-540-27800-9_28.

102

LSAG Voting

Privacy

- Anonymous channel
- Ring anonymity

Verifiability

- The counting process can be performed by everyone
- The linkability property of the LSAG prevents double voting

27/3/2025

Joseph K. Liu, Victor K. Wei, and Duncan S. Wong. "Linkable Spontaneous Anonymous Group Signature for Ad Hoc Groups (Extended Abstract)". In: *ACISP 2004*. Vol. 3108. LNCS. 2004, pp. 325–335. doi: 10. 1007/978-3-540-27800-9_28.

Open Vote Network

Decentralised Voting

A different paradigm

Large scale election

- Authorities involved
 - mixing,
 - tallying,
 - BB maintenance
- Some trust required
- Each voter is only interested in casting their ballot
 - Vote & Go

- Boardroom voting
 - No entity is special
 - Conducted by the voters themselves
 - They may send other messages except their votes
 - Private channels lead to disputes
 - Robustness is important
 - A voter should not disrupt an election

Anonymous Voting by 2-Round Public Discussion

- Setup
 - Select a group \mathbb{G} of prime order q
- Preparation
 - Each of *n* voters V_i samples $x_i \stackrel{\$}{\leftarrow} \mathbb{Z}_q$

Commitment

- Each V_i broadcasts $\langle g^{x_i}, DLPRV(x_i, g, g^{x_i}) \rangle$
- When every voter is finished everyone computes

•
$$Y_i = \frac{\prod_{j=1}^{i-1} g^{x_j}}{\prod_{j=i+1}^{n} g^{x_j}} = g^{y_i}$$
 for some $y_i \in \mathbb{Z}_q$

Voting

- Each V_i selects $v_i \in \{0,1\}$ and broadcasts
 - $Y_i^{x_i} g^{v_i}$
- Self-Tallying
 - Everyone computes
 - $\prod_{i=1}^n Y_i^{\mathbf{x}_i} g^{\mathbf{v}_i} = g^{\sum_i \mathbf{v}_i}$
 - Solve simple DLOG

27/3/2025

Hao, Feng, Peter Y. A. Ryan and Piotr Zielinski. "Anonymous voting by two-round public discussion." *IET Inf. Secur.* 4 (2010): 62-67.

Protocol Magic

Correctness

•
$$\sum_{i} x_{i} y_{i} = \sum_{i=1}^{n} \sum_{j=1}^{i-1} x_{i} x_{j} - \sum_{i=1}^{n} \sum_{j=i+1}^{n} x_{i} x_{j} = 0$$

Intuition

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	<i>x</i> ₄
x_1		I	-	-
<i>x</i> ₂	+		-	-
<i>x</i> ₃	+	+		-
<i>x</i> ₄	+	+	+	

Robustness - Fairness

- The protocol is not robust
 - If a voter that has participated in the **commitment round** does not participate in the **voting round** the result cannot be computed
- The protocol is not fair
 - The last voter learns the result before the rest
 - They can adapt their vote for a favorable result
- Solution: A recovery round

Recovery Round

- *L*: The set of voters that have performed both rounds
 - They participate in one more round in order to post cancellation tokens
 - They compute $Z_i \leftarrow \frac{\prod_{j \in [i+1,n] \setminus L} g^{x_i}}{\prod_{j \in [1,i-1] \setminus L} g^{x_i}}$
 - The cancellation token is $(Z_i^{x_i}, DLPRV(x_i, g, Z_i))$
 - They are used to remove the commitments of the players that did not vote
- Tallying becomes

•
$$\prod_{i=1}^{n} Y_i^{\boldsymbol{x}_i} g^{\boldsymbol{v}_i} \cdot \prod_{i \in L} Z_i^{\boldsymbol{x}_i} = g^{\sum_{i \in L} \boldsymbol{v}_i}$$

No	First round	Second round	Third round	Recovery
1	g^{x_1}	commitment	$g^{x_1y_1} = g^{x_1(-x_2-x_3-x_4-x_5)}$	$\hat{h}_1^{x_1} = g^{x_1(x_2 + x_4)}$
2	g^{x_2}	commitment	Abort	-
3	g^{x_3}	commitment	$g^{x_3y_3} = g^{x_3(x_1+x_2-x_4-x_5)}$	$\hat{h}_3^{x_3} = g^{x_3(x_4 - x_2)}$
4	g^{x_4}	commitment	Abort	-
5	g^{x_5}	commitment	$g^{x_5y_5} = g^{x_5(x_1+x_2+x_3+x_4)}$	$\hat{h}_5^{x_5} = g^{x_5(-x_2 - x_4)}$

Implementation on the Blockchain

- Ethereum
- Smart Contracts for
 - Registration (using the accounts of the voter)
 - Voting
 - Tallying
- Restrictions
 - integers of 256 bits
 - expensive cryptographic computations
 - one vote or six registrations per block
 - small number of allowed local variables
 - order of transactions in a block and timers
- Linear Complexity for Tally And Vote
- Maximum number of voters: 50
- Cost/voter: 0.73\$ (2017)

27/3/2025

Patrick McCorry, Siamak Shahandashti, and Feng Hao, A smart contract for boardroom voting with maximum voter privacy, pp. 357–375, 01 2017.

Improvements

- Organize voters in Merkle Tree
 - only the root is stored (256 bits)
- Instead of voter list a voter provides a proof of membership
- Tally off-chain by an untrusted tallier
- Publish computation trace in Merkle Tree
- Subject to verification

Mohamed Seifelnasr and Hisham Galal, Scalable open-vote network on ethereum, pp. 436–450, 08 2020

Voting on the blockchain

- Conceptual similarity between blockchain and the BB
 - Append-only
 - Broadcast channel
 - No central authority anyone can be a miner (given enough computing power)
 - Pseudonymity
- Good for universal/individual verifiability (recorded as cast)
- But...
- Registration/authentication/eligibility verifiability are inherently centralized
- Does not help with verifying voter intent
- Does not help with coercion-resistance / receipt-freeness
- Intensifies threats associated with everlasting privacy
- Is it actually decentralized? (concentration of mining power)

Voting on the blockchain

- To sum up... 'using Blockchain for voting solves a small part of the problem with an unnecessarily big hammer' (Ben Adida, 2017)
- However...
- ... it might be useful for different types of elections
 - new election paradigms on a smaller scale
 - blockchain governance