Approximation Algorithms

Original presentation: Valia Mitsou
Amendments: Aris Pagourtzis

Outline

1. Introduction
2. Vertex Cover
3. Knapsack
4. TSP

1. Introduction

Optimization Problems

- Optimization Problem: Every instance of the problem corresponds to some feasible solutions each of them having a value via an Objective Function.
- We seek for an Optimal Solution i.e. a feasible solution that has an optimal value.
- Optimization problems can be either Maximization or Minimization
- Example: The Vertex Cover Problem
- Min or Max: Mimimization
- Instance: A graph
- Feasible Solutions: Every Vertex Cover
- Objective Function: The cardinality | $* \mid$ function
- Optimal Solution: A Vertex Cover of minimum cardinality

The PO-class

We call the class of optimization problems that can be optimally solved in polynomial time PO class (PO stands for P-Optimization).
Examples: Shortest Path, Maximum Matching, ...

Relation of P to PO (i)

Consider a minimization problem Π such that the size (in bits) of a feasible solution is polynomial in the size of the input. Assume also that the objective function is efficiently computable.
Π : given an instance of size n find a feasible solution of minimum value.

The corresponding decision problem is:
Π_{d} : Given an instance of Π of size n and an integer k is there a feasible solution of value less or equal to k ?
\rightsquigarrow If the decision version is polynomially solvable on n and $\log k$
then we can construct a polynomial time algorithm for the optimization version (in most cases)

Relation of P to PO (ii)

- Determine bounds A, B, such that any feasible solution is of value between A and B.
- Then do binary search in $[A, B]$ to find the optimum value k $(\log (B-A)$ runs of the decision version algorithm).
- Exploit knowledge of k in order to determine the optimum solution (not known how to do this in general).

The above (if everything works) is a polynomial time algorithm in the size of the input. Therefore, Π lies in PO.

The NPO-class: NP-Optimization Problems

- Each instance is associated with at least one feasible solution.
- The size (in bits) of any feasible solution is bounded by a polynomial in the input size (n).
- The objective function is in class FP, i.e. it is poly-time computable in the size of a feasible solution (hence also in $n)$.

Relation to NP: the decision version of an NPO problem is in NP. Several NP-complete decision problems correspond to problems in NPO which are consequently NP-hard (why?).
What can we do then?

- Solve the problem exactly on limited instances.
- Find polynomial time approximation algorithms

Notation

- П: Problem
- I: Instance
- $\mathrm{SOL}_{A}(\Pi, I)$: The solution we obtain for the instance I of the problem Π using algorithm A.
- OPT (Π, I) : The optimal solution for the instance I of the problem Π.

Note: We usually omit Π, I and A from the above notation.

Approximability

- An algorithm A for a minimization problem Π achieves a ρ_{A} approximation factor, $\left(\rho_{A}: \mathbb{N} \rightarrow \mathbb{Q}^{+}\right)$if for every instance I of size $|I|=n$:

$$
\frac{\operatorname{sOL}_{A}(I)}{\operatorname{OPT}(I)} \leq \rho_{A}(n)
$$

- An algorithm A for a maximization problem Π achieves a ρ_{A} approximation factor, $\left(\rho_{A}: \mathbb{N} \rightarrow \mathbb{Q}^{+}\right)$if for every instance I of size $|I|=n$:

$$
\frac{\operatorname{sOL}_{A}(I)}{\operatorname{OPT}(I)} \geq \rho_{A}(n)
$$

\rightsquigarrow An approximation algorithm of factor ρ guarantees that the solution that the algorithm computes cannot be worse than ρ times the optimal solution.

Approximation Schemes

Informally: We can have as good approximation factor as we want trading off time.

Formally:

- A is an Approximation Scheme (AS) for problem Π if on input (I, ε), where I an instance and $\varepsilon>0$ an error parameter:
${ }^{\circ} \operatorname{SOL}_{A}(I, \varepsilon) \leq(1+\varepsilon) \cdot \operatorname{OPT}(I)$, for minimization problem
- $\operatorname{SOL}_{A}(I, \varepsilon) \geq(1-\varepsilon) \cdot \operatorname{OPT}(I)$, for maximization problem
- A is a PTAS (Polynomial Time AS) if for every fixed $\varepsilon>0$ it runs in polynomial time in the size of I.
- A is an FPTAS (Fully PTAS) if for every fixed $\varepsilon>0$ it runs in polynomial time in the size of I and in $1 / \varepsilon$.

Approximation World

Depending on the approximation factor we have several classes of approximation:

- logn: $\rho(n)=O(\log n)$
- APX: $\rho(n)=\rho$ (constant factor approximation)

Representatives

- Non-approximable: Traveling Salesman Problem
- logn: Set Cover
- APX: Vertex Cover / Ferry Cover
- PTAS: Makespan Scheduling
- FPTAS: Knapsack

2. Vertex Cover

The (Cardinality) Vertex Cover Problem

Definition: Given a graph $G(V, E)$ find a minimum cardinality Vertex Cover, i.e. a set $V^{\prime} \subseteq V$ such that every edge has at least one endpoint in V^{\prime}.

- A trivial feasible solution would be the set V
- Finding a minimum cardinality Vertex Cover is NP-hard (reduction from 3-SAT)
- An approximation algorithm of factor 2 will be presented

Lower Bounding

A general strategy for obtaining a ρ-approximation algorithm (for a minimization problem) is the following:

- Find a lower bound l of the optimal solution ($l \leq$ OPT)
- Find a factor ρ such that SOL $=\rho \cdot l$
\rightsquigarrow The previous scheme implies SOL $\leq \rho \cdot$ OPT

Matchings

- Definition: Given a graph $G(V, E)$ a matching is a subset of the edges $M \subseteq E$ such that no two edges in M share an endpoint.
- Maximal Matching: A matching that no more edges can be added.
- Maximum Matching: A maximum cardinality matching.
\rightsquigarrow Maximal Matching is solved in polynomial time with the greedy algorithm
\rightsquigarrow Maximum Matching is also solved in polynomial time via a reduction to max-flow

A 2-Approximation Algorithm for Vertex Cover

- The Algorithm: Find a maximal matching M of the graph and output the set V^{\prime} of matched vertices
- Correctness:
- Edges belonging in M are all covered by V^{\prime}
- Since M is a maximal matching, any other edge $e \in E \backslash M$ will share at least one endpoint v with some $e^{\prime} \in M$. So v is in V^{\prime} and guards e.
- Analysis:
- Any vertex cover should pick at least one endpoint of each matched edge $\rightarrow|M| \leq$ OPT
- $\left|V^{\prime}\right|=2 \mid M$

Thus SOL $=\left|V^{\prime}\right|=2|M| \leq 2$ OPT \Rightarrow SOL ≤ 2 OPT
\rightsquigarrow Vertex Cover is in APX

Can we do better?

Questions

- Can the approximation guarantee be improved by a better analysis?
- Can an approximation algorithm with a better guarantee be designed using the same lower bounding scheme?
- Is there some other lower bounding methods that can lead to an improved approximation algorithm?

Answers

- Tight Examples
- Other kind of examples
- This is not so immediate...

Tight Examples

- A better analysis might imply an l^{\prime} s.t. $l<l^{\prime} \leq$ OPT. Then there would be a $\rho^{\prime}<\rho$ s.t. $\rho \cdot l=\rho^{\prime} \cdot l^{\prime}$, so

$$
\mathrm{SOL}=\rho \cdot l=\rho^{\prime} \cdot l^{\prime} \leq \rho^{\prime} \mathrm{OPT}
$$

Thus we could obtain a better approximation factor $\rho^{\prime}<\rho$.

- Definition: An infinite family of instances in which $l=$ OPT is called Tight Example for the ρ-approximation algorithm.
- If $l=$ OPT then there is no $l^{\prime}>l$ s.t $l^{\prime} \leq$ OPT. \rightsquigarrow So we can't find a better factor by better analysis

Tight Example for the matching algorithm

- The infinite family $K_{n, n}$ of the complete balanced bipartite graphs is a tight example.
- $|M|=n=$ OPT. So the solution returned is 2 times the optimal solution.

Other kind of examples

- Using the same lower bound $l \leq$ OPT we might find a better algorithm with $\rho^{\prime}<\rho$ that computes SOL $=\rho^{\prime} \cdot l$. This would imply a better ρ^{\prime} approximation algorithm.
- An infinite family where $l=\frac{1}{\rho}$ OPT implies that $\mathrm{SOL}=l \cdot \rho^{\prime}=\frac{1}{\rho} \rho^{\prime}$ OPT $<$ OPT (contradiction).
\rightsquigarrow Thus it is impossible to find another algorithm with better approximation factor using the lower bound $l \leq$ OPT

Using the matching lower bound

- The infinite family $K_{2 n+1}$ of the complete bipartite graphs with odd number of vertices have an optimal vertex of cardinality $2 n$
- A maximal matching could be $|M|=n=\frac{1}{2}$ OPT. So the solution returned is the optimal solution.

Other lower bounds for Vertex Cover

- This is still an open research area.
- Best known result for the approximation factor (until 2004) is $2-\Theta\left(\frac{1}{\sqrt{\log n}}\right)$ (due to George Karakostas)
- Uses Linear Programming.

Pseudo-polynomial time algorithms

- An instance I of any problem Π consists of objects (sets, graphs,...) and numbers.
- The size of $I(|I|)$ is the number of bits needed to write the instance I.
- Numbers in I are written in binary
- Let I_{u} be the instance I where all numbers are written in unary
- Definition: A pseudo-polynomial time algorithm is an algorithm running in polynomial time in $\left|I_{u}\right|$
- Pseudo-polynomial time algorithms can be obtained using Dynamic Programming

Strong NP-hardness

- Definition: A problem is called strongly NP-hard if any problem in NP can be polynomially reduced to it and numbers in the reduced instance are written in unary
- Informally: A strongly NP-hard problem remains NP-hard even if the input numbers are less than some polynomial of the size of the objects.
\rightsquigarrow Strongly NP-hard problems cannot admit a pseudo-polynomial time algorithm, assuming $P \neq N P$
(else we could solve the reduced instance in polynomial time, thus we could solve every problem in NP in polynomial time.
That would imply $P=N P$)

The existence of FPTAS

Theorem: For a minimization problem Π if \forall instance I,

- OPT is strictly bounded by a polynomial of $\left|I_{u}\right|$ and
- the objective function is integer valued
then Π admits an FPTAS $\Rightarrow \Pi$ admits a pseudo-polynomial time algorithm
\rightsquigarrow A strongly NP-hard problem (under the previous assumptions) cannot admit an FPTAS unless $P=N P$

The Knapsack Problem (i)

- Definition: The discrete version is given a set of n items $X=\left\{x_{1}, \ldots, x_{n}\right\}$ where a profit: $X \rightarrow \mathbb{N}$ and a weight : $X \rightarrow \mathbb{N}$ function are provided and a "knapsack" of total capacity $B \in \mathbb{N}$, find a subset $Y \subseteq X$ whose total size is bounded by B and maximizes the total profit.
- Definition: The continuous version is given a set of n continuous items $X=\left\{x_{1}, \ldots, x_{n}\right\}$ where profit and weight function are provided and a "knapsack" of total capacity $B \in \mathbb{N}$, find a sequence $\left\{w_{1}, \ldots, w_{n}\right\}$ of portions where $\sum_{i=1}^{n} w_{i}=B$ that maximizes the total profit.

The Knapsack Problem (ii)

- The greedy algorithm (sort the objects by decreasing ratio of profit to weight) solves in polynomial time the continuous version
- The greedy algorithm can be made to perform arbitrarily bad for the discrete version.
- Discrete Knapsack is NP-hard
- Pseudo-polynomial time and FPTAS algorithms will be presented for the discrete version.
- For now on we focus on discrete knapsack and call it "knapsack"

A pseudo-polynomial time algorithm for knapsack (i)

- Let P be the profit of the most profitable object
- $n P$ is a trivial upper bound on the total profit
- For $i \in\{1, \ldots, n\}$ and $p \in\{1, \ldots, n P\}$ let $S(i, p)$ denote a subset of $\left\{x_{1}, \ldots, x_{i}\right\}$ whose total profit is exactly p and its total weight is minimized
- Let $W(i, p)$ denote the weight of $S(i, p)$ (∞ if no such a set exists)

A pseudo-polynomial time algorithm for knapsack (ii)
The following recursive scheme computes all values $W(i, p)$ in $O\left(n^{2} P\right)$

- $W(1, p)=\operatorname{weight}\left(x_{1}\right)$, if $p=\operatorname{profit}\left(x_{1}\right), \infty$ else
- $W(i+1, p)=$

$$
\left\{\begin{array}{lr}
W(i, p), & \text { if } \operatorname{profit}\left(x_{i+1}\right)>p \\
\min \left\{W(i, p), \text { weight }\left(x_{i+1}\right)+W\left(i, p-\operatorname{profit}\left(x_{i+1}\right)\right)\right\}, \text { else }
\end{array}\right.
$$

The optimal solution of the problem is $\max \{p \mid W(n, p) \leq B\}$
\rightsquigarrow The optimal solution can be computed in polynomial time on n and P

An FPTAS for Knapsack

- Idea: The previous algorithm could be a polynomial time algorithm if P was bounded by a polynomial of n
- Ignore a number of least significant bits of the profits of the objects
- Modified profits profit' should now be numbers bounded by a polynomial of n and $\frac{1}{\varepsilon}$ (ε is the error parameter)
- The algorithm:

1. Given $\varepsilon>0$ define $K=\frac{\varepsilon P}{n}$
2. Set new profit function profit', $\operatorname{profit}^{\prime}\left(x_{i}\right)=\left\lceil\frac{\operatorname{profit}\left(x_{i}\right)}{K}\right\rceil$
3. Run the pseudo-polynomial time algorithm described previously and output the result

Analysis

Theorem: The previous algorithm is an FPTAS

1. $\mathrm{SOL} \geq(1-\varepsilon) \mathrm{OPT}$
2. Runs in polynomial time in n and $\frac{1}{\varepsilon}$

Proof:

1. Let S and O denote the output set and the optimal set

- profit $\left(x_{i}\right)=\left\lceil\frac{\operatorname{profit}\left(x_{i}\right)}{K}\right\rceil \Rightarrow$ $\operatorname{profit}\left(x_{i}\right) \leq K \cdot \operatorname{profit}\left(x_{i}\right) \leq \operatorname{profit}\left(x_{i}\right)+K$
- $\forall A \subseteq X: \operatorname{profit}(A) \leq K \cdot \operatorname{profit}^{\prime}(A) \leq \operatorname{profit}(A)+n \cdot K$
- $K=\frac{\varepsilon P}{n}, \operatorname{profit}^{\prime}(S) \geq \operatorname{profit}^{\prime}(O)$, OPT $\geq P$

Thus, SOL $=\operatorname{profit}(S) \geq K \cdot \operatorname{profit}(S)-n K \geq$
$K \cdot \operatorname{profit}(O)-n K \geq \operatorname{profit}(O)-n K=$ OPT $-\varepsilon P$
$\geq(1-\varepsilon) \cdot$ OPT
2. The algorithm's running time is $O\left(n^{2}\left\lceil\frac{P}{K}\right\rceil\right)=O\left(n^{2}\left\lceil\frac{n}{\varepsilon}\right\rceil\right)$

Hardness of Approximation

To show that an optimization problem Π is hard to approximate we can use

- A Gap-introducing reduction: Reduces an NP-complete decision problem Π^{\prime} to Π
- A Gap-preserving reduction: Reduces a hard to approximate optimization problem Π^{\prime} to Π

Gap-introducing reductions (i)
Suppose that Π^{\prime} is a decision problem and Π a minimization problem (similar for maximization).
A reduction h from Π^{\prime} to Π is called gap-introducing if:

1. Transforms (in polynomial time) any instance I^{\prime} of Π^{\prime} to an instance $I=h\left(I^{\prime}\right)$ of Π
2. There are functions f and α s.t.

- If I^{\prime} ' is a 'yes instance' of Π^{\prime} then $\operatorname{OPT}(\Pi, I) \leq f(I)$
- If I^{\prime} is a 'no instance' of Π^{\prime} then $\operatorname{OPT}(\Pi, I)>\alpha(|I|) \cdot f(I)$

Gap-introducing reductions (ii)
Theorem: If Π^{\prime} is NP-complete then Π cannot be approximated with a factor α

Proof: If Π had an approximation algorithm of factor α then SOL $\leq \alpha \cdot$ OPT. So,

- I^{\prime} is a 'yes instance' of $\Pi^{\prime} \Rightarrow \mathrm{SOL} \leq \alpha \cdot \mathrm{OPT}(\Pi, I) \leq \alpha \cdot f(I)$
- I^{\prime} is a 'no instance' of $\Pi^{\prime} \Rightarrow \mathrm{SOL}>\operatorname{OPT}(\Pi, I)>\alpha(|I|) \cdot f(I)$

Then by using the approximation algorithm for Π we could be able to determine in polynomial time whether the instance I^{\prime} is 'yes' or 'no'.

Since Π is NP-complete, this would imply $P=N P$

Gap-preserving reductions (i)

Suppose that Π^{\prime} is a minimization problem and Π a minimization (similar for other cases).
A reduction h from Π^{\prime} to Π is called gap-preserving if:

1. Transforms (in polynomial time) any instance I^{\prime} of Π^{\prime} to an instance $I=h\left(I^{\prime}\right)$ of Π
2. There are functions $f, f^{\prime}, \alpha, \beta$ s.t.

- OPT $\left(\Pi^{\prime}, I^{\prime}\right) \leq f^{\prime}\left(I^{\prime}\right) \Rightarrow \operatorname{OPT}(\Pi, I) \leq f(I)$
- $\operatorname{OPT}\left(\Pi^{\prime}, I^{\prime}\right)>\beta\left(\left|I^{\prime}\right|\right) \cdot f^{\prime}\left(I^{\prime}\right) \Rightarrow \operatorname{OPT}(\Pi, I)>\alpha(|I|) \cdot f(I)$

Gap-preserving reductions (ii)
Theorem: If Π^{\prime} is non-approximable with a factor β then Π cannot be approximated with a factor α unless $P=N P$

Proof: If Π had an approximation algorithm of factor α then SOL $\geq \alpha \cdot$ OPT. So,

- $\operatorname{OPT}\left(\Pi^{\prime}, I^{\prime}\right) \leq f^{\prime}\left(I^{\prime}\right) \Rightarrow \mathrm{SOL} \leq \alpha \cdot \mathrm{OPT}(\Pi, I) \leq \alpha \cdot f(I)$
- $\operatorname{OPT}\left(\Pi^{\prime}, I^{\prime}\right)>\beta\left(\left|I^{\prime}\right|\right) f^{\prime}\left(I^{\prime}\right) \Rightarrow \mathrm{SOL}>\operatorname{OPT}(\Pi, I)>\alpha(|I|) \cdot f(I)$

But Π^{\prime} cannot be approximated with a factor β means that there is an NP-complete decision problem $\Pi^{\prime \prime}$ and a gap-introducing reduction from $\Pi^{\prime \prime}$ to Π^{\prime} s.t.

- $I^{\prime \prime}$ is a 'yes instance' of $\Pi^{\prime \prime} \Rightarrow \operatorname{OPT}\left(\Pi^{\prime}, I^{\prime}\right) \leq f^{\prime \prime}\left(I^{\prime}\right)$
- $I^{\prime \prime}$ is a 'no instance' of $\Pi^{\prime \prime} \Rightarrow \operatorname{OPT}\left(\Pi^{\prime}, I^{\prime}\right)>\beta\left(\left|I^{\prime}\right|\right) \cdot f^{\prime \prime}\left(I^{\prime}\right)$

Thus, by running the algorithm for Π we could decide $\Pi^{\prime \prime}$. This implies $P=N P$

The Traveling Salesman Problem

Definition: Given a complete graph $K_{n}(V, E)$ and a weight function $w: E \rightarrow \mathbb{Q}$ find a tour, i.e. a permutation of the vertices, that has minimum total weight.

- The TSP problem is NP-hard
- TSP is non-approximable with a factor $\alpha(n)$ polynomial in n, via a gap-introducing reduction from Hamilton Cycle.
Definition: Given a graph $G(V, E)$ a Hamilton Cycle is a cycle that uses every vertex only ones.
- To determine whether G has a Hamilton Cycle or not is NP-complete.

TSP is non-approximable (i)
Reduction: $G(V, E),|V|=n$, is an instance of Hamilton Cycle. The instance of TSP will be K_{n} with a weight function w, $w(e)=1$ if $e \in E$ else $w(e)=n+2$. Then

- If G has a Hamilton Cycle then OPT(TSP) $=n$
- If I^{\prime} is a 'no instance' of Π^{\prime} then $\operatorname{OPT}(T S P)>2 n$

TSP is non-approximable (ii)

\rightsquigarrow TSP is APX-hard, i.e there exist a constant α (in the example 2) that TSP cannot be approximated with factor α, unless $P=N P$
\rightsquigarrow Bonus!!! In the reduction if we set $w(e)=\alpha(n) \cdot n, e \notin E$ then we cannot have an $\alpha(n)$ approximation factor for TSP. Thus TSP is non-approximable

THE END!!!

