Minimum Makespan Scheduling

Approximation Algorithms 2009
Petros Potikas
Minimum makespan scheduling

Definition: Let \(p_1, p_2, \ldots, p_n \) be the processing times for \(n \) jobs and \(m \) identical machines.

Goal: Find an assignment of the \(n \) jobs to the \(m \) machines, so that the completion time, also called *makespan*, is minimized.
Minimum makespan scheduling

Results

- Strongly NP-hard problem
- Approximation algorithm with ratio 2
- PTAS
- No FPTAS
Minimum makespan scheduling

Lower bounds

1. The average time for which a machine has to run, \((\sum_i p_i)/m\),

2. The last processing time.

\[\text{LB} = \max \{ (\sum_i p_i)/m, \max_i \{ p_i \} \} \]
Minimum makespan scheduling

Algorithm 1 (Graham, 1966)

1. Order the \(n \) jobs arbitrarily.

2. Schedule jobs on machines in this order, scheduling the next job on machine that has been assigned least so far.
Minimum makespan scheduling

Theorem 1: Algorithm 1 achieves a 2-approximation.

Proof:
Let M_i be the machine that completes last in the schedule produced by the algorithm and let j be the last job scheduled on this machine.

Let start_j be the time that job j starts.
From the choice of M_i by the algorithm we know that all the other machines are busy until start_j.

Thus, $\text{start}_j \leq (\sum_i p_i)/m \leq \text{OPT}$
Minimum makespan scheduling

Theorem 1: Algorithm 1 achieves an approximation factor 2.

Proof (cont’d):
Furthermore, $p_j \leq \text{OPT}$

Thus, the makespan produced by the algorithm is

$$\text{start}_j + p_j \leq 2 \cdot \text{OPT}$$

We also proved, that $\text{LB} \leq \text{OPT} \leq 2 \cdot \text{LB}$. □
Minimum makespan scheduling

Tight example:

A sequence of m^2 jobs with unit processing time, followed by a single job of length m.

$OPT = m+1$, while the algorithm gives makespan $2m$.
Minimum makespan scheduling

Algorithm 2 (Graham)

1. Sort the n jobs by decreasing processing times.

2. Schedule jobs on machines in this order, scheduling the next job on machine that has been assigned least so far.

Theorem 2: Algorithm 2 achieves a $4/3$-approximation.

Tight example:
m machines, $n=2m+1$ jobs
two jobs of length $m+1$, $m+2$, ..., $2m$
one job of length m
A PTAS for minimum makespan scheduling

We will, for every $\varepsilon>0$, derive an algorithm A_ε that

- Returns a schedule with makespan $\leq (1+3\varepsilon)\text{OPT}$
- Runs in time $O(n^{2k} \left\lceil \log_2(1/\varepsilon) \right\rceil)$ where $k= \left\lceil \log_{1+\varepsilon}(1/\varepsilon) \right\rceil$

A_ε is therefore a

Polynomial Time Approximation Scheme (PTAS)

but not a

Fully Polynomial Time Approximation Scheme (FPTAS)

(in an FPTAS, time is not only polynomial in n but also in $1/\varepsilon$)
Restricted bin packing

There exists a schedule with makespan t iff n objects of sizes p_1, p_2, \ldots, p_n can be packed into m bins of capacity t.

Reduction from minimum makespan to bin packing:
Let I be the sizes of the n objects, p_1, p_2, \ldots, p_n and $\text{bins}(I, t)$ the minimum number of bins of size required to pack these n objects.

$$\text{OPT}(\text{makespan}) = \min \{ t : \text{bins}(I, t) \leq m \}$$

We know that

$$LB \leq t \leq 2 \cdot LB$$

So the idea is to binary search $[LB, 2 \cdot LB]$ to find the minimum t for which $\text{bins}(I, t) \leq m$.

We can’t do this exactly!
Core algorithm: restricted bin packing (fixed number of object sizes), of time \(O(n^{2k}) \) that uses \(\alpha(I,t,\varepsilon) \) bins of size \(t(1+\varepsilon) \). This packing has the property

\[\forall t, \varepsilon \quad \alpha(I,t,\varepsilon) \leq \text{bins}(I,t) \]

Thus \(\forall \varepsilon \quad \alpha(I,2\text{LB},\varepsilon) \leq \text{bins}(I,2\text{LB}) \leq m \)

So, the PTAS is the following:

- If \(\alpha(I,\text{LB},\varepsilon) \leq m \) then use packing given by core algorithm for \(t=\text{LB} \). This has makespan

\[\leq \text{LB}(1+\varepsilon) \leq \text{OPT}(1+\varepsilon) \]

- If \(\alpha(I,\text{LB},\varepsilon) > m \), then perform a binary search to find an interval \([T',T]\) in \([\text{LB},2\text{LB}]\) with \(T-T' \leq \varepsilon \text{LB} \), \(\alpha(I,T',\varepsilon) > m \) and \(\alpha(I,T,\varepsilon) \leq m \). Return the packing given by the core algorithm for \(t=T \).

Notice that \(m < \alpha(I,T',\varepsilon) \leq \text{bins}(I,T') \), so \(T' \leq \text{OPT} \) and

\[T \leq T' + \varepsilon \text{LB} \leq \text{OPT} + \varepsilon \text{OPT} \leq (1+\varepsilon)\text{OPT} \]
The core algorithm for $t=T$ returns a schedule (packing) with makespan at most $(1+\epsilon)T$. The makespan of the schedule returned is at most

$$(1+\epsilon)T \leq (1+\epsilon)^2 \text{OPT} \leq (1+3\epsilon)\text{OPT}$$

The binary search uses at most $\log_2 1/\epsilon$ steps.

Error introduced by two sources:

- Rounding objects so that there a bounded number of different sizes

- Terminating the binary search to ensure polynomial running time
Exact restricted bin packing

n items to pack in bins of size t, with k different sizes only

Input $I=(i_1,i_2,\ldots,i_k)$ (fix an ordering on the object sizes)

BINS(i_1,i_2,\ldots,i_k): minimum number of bins needed to pack these objects

Suppose we are given (n_1,n_2,\ldots,n_k), $\sum_i n_i = n$

First, compute Q, the set of all k-tuples (q_1,q_2,\ldots,q_k), such that BINS(q_1,q_2,\ldots,q_k)=1 (at most $O(n^k)$ such tuples)
Exact restricted bin packing

Use **dynamic programming** to find all the entries of the table
$$\text{BINS}(i_1, i_2, \ldots, i_k), \text{ for } 0 \leq i_j \leq n_j$$

1. \(\forall q \in Q\) set \(\text{BINS}(q) = 1\)
2. If \(\exists j\), such that \(i_j < 0\) then set \(\text{BINS}(i_1, i_2, \ldots, i_k) = \infty\)
3. For all other \(q\), use recurrence relation
 \[
 \text{BINS}(i_1, i_2, \ldots, i_k) = 1 + \min_{(q_1, q_2, \ldots, q_k) \in Q} \text{BINS}(i_1-q_1, i_2-q_2, \ldots, i_k-q_k)
 \]

Since there are \(O(n^k)\) entries and each one takes \(O(n^k)\) time, the algorithm needs \(O(n^{2k})\) time.
The Core Algorithm

$t \in [LB, 2LB]$, so $\forall j, p_j \leq t$

1. An object is small if it has size $\leq t\varepsilon$.
2. Non-small objects are rounded.
 If $p_j \in [t\varepsilon(1+\varepsilon)^i, t\varepsilon(1+\varepsilon)^{i+1}]$, then set $p_j' = t\varepsilon(1+\varepsilon)^i$. There can be at most $k = \lceil\log_{1+\varepsilon} 1/\varepsilon \rceil$ different sizes.
3. Use dynamic programming algorithm to optimally pack non-small objects using p_j' costs into bins of size t.
 Rounding can reduce size by a factor of $1+\varepsilon$ at most, so packing is valid for bins of size $t(1+\varepsilon)$ with the original p_j object sizes.
4. Place the small objects items into the $t(1+\varepsilon)$ packing greedily. Open new bins only if needed. If new bins are opened, then all other must be filled at height t at least.
5. Let $\alpha(I, t, \varepsilon)$ be the number of bins used (of size $t(1+\varepsilon)$).
The Core Algorithm

Lemma: \(\alpha(I,t,\varepsilon) \leq \text{bins}(I,t) \).

Proof:
Case 1: The algorithm opens new bins. Then all the bins, except possibly the last one, are filled to at least size \(t \). Thus, the optimal packing into bins of size \(t \) must use at least \(\alpha(I,t,\varepsilon) \) bins.

Case 2: The algorithm does not open new bins. Let \(I' \) be the set of non-small items. Then
\[
\alpha(I,t,\varepsilon) = \alpha(I',t,\varepsilon) \\
\leq \text{bins}(I',t) \\
\leq \text{bins}(I,t).
\]

The optimal packing of \(I' \) uses \(\text{bins}(I',t) \) bins, so the same packing of the rounded down \(I' \) also uses \(\text{bins}(I',t) \) bins.

But \(\alpha(I',t,\varepsilon) \) is the optimal number of bins needed for the rounded down \(I' \). The first inequality holds.

Packing optimally more items can not reduce the number of bins needed. \(\square \)