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Set Cover

• Input:

– U : universe, |U| = n,

– S = {S1, S2, . . . , Sk}: a collection of subsets of U ,

– c : S → Q+: a cost function.

• Feasible solution:

– a subset T of S such that
⋃

t∈T t = U .

• Goal:

– minimize the cost of T :
∑

t∈T c (t).
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A Greedy algorithm for Set Cover

C ← ∅.
while C �= U do

find the most cost-effective set in the current iteration, say S.
let α = c(S)

|S−C| , i.e. the cost-effectiveness of S.
pick S, and for each e ∈ S − C set price (e) = α.
C ← C ∪ S.

end while
output the picked sets.
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Dual Fitting

• Solve the given IP (opt. sol. OPT) with some combinatorial
algorithm (yielding sol. SOL).

• Find a solution of cost D for the dual program of the
corresponding LP relaxation (opt. sol. OPTf), and a suitable
quantity r such that:

– SOL ≤ D

– D
r ≤ OPTf [fitting]

• SOL ≤ D ≤ r ·OPTf ≤ r ·OPT, therefore the algorithm has an
approximation factor of r.
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Analysis of the Greedy algorithm for Set Cover

IP formulation of Set Cover:

• minimize
∑

S∈S c (S) · xS

• subject to:

–
∑

S:e∈S xS ≥ 1, e ∈ U
– xS ∈ {0, 1}, S ∈ S

LP relaxation:

• minimize
∑

S∈S c (S) · xS

• subject to:

–
∑

S:e∈S xS ≥ 1, e ∈ U
– xS ≥ 0, S ∈ S

Dual program:

• maximize
∑

e∈U ye

• subject to:

–
∑

e∈S ye ≤ c (S), S ∈ S
– ye ≥ 0, e ∈ U
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Analysis of the Greedy algorithm for Set Cover

SOL =
∑
e∈U

price (e)

To obtain a solution for the dual, we set ye = price (e) for each e ∈ U .
Therefore, D = SOL. In general this is not a feasible solution.

Dividing it by r = Hn yields a feasible solution.

Lemma 1 The vector y with ye = price(e)
Hn

for each e ∈ U is a feasible
solution for the dual program.

Therefore, SOL = D ≤ Hn ·OPTf ≤ Hn ·OPT.
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Analysis of the Greedy algorithm for Set Cover

Proof
Consider S ∈ S and its elements e1, e2, . . . , ei, . . . , ek in the order in
which they are covered by the algorithm.

Before the iteration in which ei is covered, S contains at least
k − i + 1 uncovered elements. Therefore, ei can be covered with an
average cost of at most c(S)

k−i+1 .

price (ei) ≤
c (S)

k − i + 1
⇒ yei ≤

1
Hn
· c (S)
k − i + 1

Summing over all elements in S, we get

∑
e∈S

ye ≤
c (S)
Hn

·
k∑

i=1

1
k − i + 1

=
Hk

Hn
· c (S) ≤ c (S)
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Tight Example

Universe: U = {e1, e2, . . . , en}, where n = 2k − 1.

Sets: Si = {ej : i · j = 1}, i = 1, . . . , n, each of cost 1.

Each set contains 2k−1 = n+1
2 elements, and each element belongs to

n+1
2 sets. A fractional cover is: xi = 2

n+1 . Its cost is 2n
n+1 .

Any integral set cover must pick at least k = log (n + 1) sets.

OPT
OPTf

≥ log n

2
· n + 1

n
>

Hn

2
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Generalizations of Set Cover

• Set Multicover: Each element e has to be covered re times,
possibly picking the same set k ≥ 1 times at a cost of k · c (S).

• Multiset Multicover: Instead of sets, we consider multisets where
the multiplicity of each element in any set does not exceed its
coverage requirement: M (S, e) ≤ re.

• Covering integer programs: minimize c · x, subject to A · x ≥ b.
All entries in A,b, c are nonnegative and x is required to be
nonnegative and integral.
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A Greedy algorithm for constrained Set Multicover

consider a multiset Um where each element e has multiplicity re.
multiset C ← ∅.
while C �= U do

compute the average cost per new element of each unpicked
S ∈ S in this iteration: c (S) = c(S)

|S∩(Um−C)| .
pick the most cost-effective set, say S.
for each e ∈ S ∩ (Um − C) set price (e, je) = c (S).
C ← C ∪ S.

end while
output the picked sets.
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Analysis of the Greedy algorithm for

constrained Set Multicover

IP formulation:

• minimize
∑

S∈S c (S) · xS

• subject to:

–
∑

S:e∈S xS ≥ re, e ∈ U
– xS ∈ {0, 1}, S ∈ S

LP relaxation:

• minimize
∑

S∈S c (S) · xS

• subject to:

–
∑

S:e∈S xS ≥ re, e ∈ U
– −xS ≥ −1, S ∈ S
– xS ≥ 0, S ∈ S

Dual program:

• maximize
∑

e∈U re ·ye−
∑

S∈S zS

• subject to:

–
∑

e∈S ye − zS ≤ c (S), S ∈ S
– ye ≥ 0, e ∈ U
– zS ≥ 0, S ∈ S
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Analysis of the Greedy algorithm for

constrained Set Multicover

SOL =
∑
e∈U

re∑
j=1

price (e, j)

Consider the objective function value D of the dual solution (α, β),
where αe = price (e, re) for each e ∈ U and

βS =
∑

e covered by S

(price (e, re)− price (e, je)) ,

for each S ∈ S that was picked by the algorithm and βS = 0
otherwise.

D =
∑

e∈U re · price (e, re)−∑
e∈U

(
re · price (e, re)−

∑re

j=1 price (e, j)
)

= SOL
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Analysis of the Greedy algorithm for

constrained Set Multicover

Lemma 2 The pair (y, z) where ye = αe

Hn
and zS = βS

Hn
is a feasible

solution for the dual program.

Therefore, D
Hn
≤ OPTf ⇒ SOL ≤ Hn ·OPT which implies an

approximation factor of Hn for the previous algorithm.
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Analysis of the Greedy algorithm for

constrained Set Multicover

Proof
Consider S ∈ S and its elements e1, e2, . . . , ei, . . . , ek in the order in
which their requirements are covered by the algorithm.

Case 1: S is not picked
Just before the last copy of ei is covered, S contains at least
k − i + 1 alive elements. So, price (ei, rei) ≤

c(S)
k−i+1 . Moreover,

since zS = 0 we get:

∑
e∈S

ye − zS ≤
1

Hn
·

k∑
i=1

c (S)
k − i + 1

≤ c (S)
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Analysis of the Greedy algorithm for

constrained Set Multicover

Case 2: S is picked
Assume that just before S is picked, k′ of its elements are
completely covered.

∑
e∈S

ye−zS =
1

Hn
·
(

k∑
i=1

price (ei, rei)−
k∑

i=k′+1

(price (ei, rei)− price (ei, ji))

)

=
1

Hn
·

⎛
⎝ k′∑

i=1

price (ei, rei) +
k∑

i=k′+1

price (ei, ji)

⎞
⎠ ≤ c (S)
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Simple Rounding

We convert an (optimal) fractional solution for Set Cover into an
integral solution by picking only those sets S for which xS ≥ 1

f .

Since in the optimal solution we have 0 ≤ xS ≤ 1 for all S, it follows
that SOL ≤ f ·OPTf .

Moreover, the sets picked in this manner form a valid set cover. For
any e ∈ U , we have∑

S:e∈S

xS ≥ 1⇒ f · max
S:e∈S

xS ≥ 1⇒ max
S:e∈S

xS ≥
1
f

Therefore, e is covered by at least one set in the integral set cover.
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Tight Example

Let V1, . . . , Vk be k disjoint sets with n elements each.

The instance has universe U = V1 ∪ . . . ∪ Vk and all nk possible sets
which contain exactly one element from each Vi. The cost of each set
is 1.

f = nk−1

OPTf =
1

nk−1

SOL = nk

OPT = n⇒ SOL = f ·OPT
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Randomized Rounding algorithm for Set Cover

solve the LP relaxation and treat the values of the fractional
solution x =

(
x1, . . . , x|S|

)
as a probability vector.

for each set S ∈ S, include S in the integral set cover C with
probability xS .

repeat the above step t times and take the union C ′ of all created
covers.

• The solution returned by this algorithm need not be feasible. We
obtain bounds on its expected cost and on the probability that it
is not feasible.
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Analysis of the Randomized Rounding algorithm

The expected cost of the cover C returned by a single iteration is:

E [c (C)] =
∑
S∈S

Pr [S ∈ C] · c (S) =
∑
S∈S

xS · c (S) = OPTf

Now, consider an element e and let Pe be the probability that e is
not covered by C. Suppose that e belongs to k of the sets in S and
let p1, . . . , pk be the probabilities with which each of them was
included in C. We wish to obtain an upper bound on Pe. Since e was
fractionally covered in the optimal solution of the LP relaxation, it
must be that p1 + . . . + pk = d ≥ 1.
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Analysis of the Randomized Rounding algorithm

Pe =
k∏

i=1

(1− pi)

We shall find the values of pi for which
L = log Pe =

∑k
i=1 log (1− pi) is maximized. Substituting

d− p1 − . . .− pk−1 for pk in L, we have that for each i �= k:

∂L

∂pi
= − 1

1− pi
+

1
1− d + p1 + . . . + pk−1

= − 1
1− pi

+
1

1− pk

Therefore at the maximum,
p1 = . . . = pk = p⇒ k · p = d ≥ 1⇒ p ≥ 1

k . So,

Pe = (1− p)k ≤
(
1− 1

k

)k ≤ 1
e .
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Analysis of the Randomized Rounding algorithm

The probability that e is not covered in C ′ is at most
(

1
e

)t. So, the

probability that C ′ is not feasible is at most n ·
(

1
e

)t. The expected
cost of C ′ is E [c (C ′)] ≤ t ·E [c (C)] = t ·OPTf .

Pick t such that n ·
(

1
e

)t ≤ 1
4 ⇒ t = O (log n). Then, the probability

that C ′ is not valid is at most 1
4 and, by Markov’s inequality:

Pr [c (C ′) ≥ 4t ·OPTf ] ≤
E [c (C ′)]
4t ·OPTf

≤ 1
4

Therefore, the probability that the algorithm outputs a valid set
cover with cost no more than O (log n) ·OPT is at least 1

2 .
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Half-integrality of Vertex Cover

IP formulation:

• minimize
∑

v∈V c (v) · xv

• subject to:

– xu + xv ≥ 1, (u, v) ∈ E

– xv ∈ {0, 1}, v ∈ V

LP relaxation:

• minimize
∑

v∈V c (v) · xv

• subject to:

– xu + xv ≥ 1, (u, v) ∈ E

– xv ≥ 0, v ∈ V

Extreme point solution: a feasible solution that cannot be expressed
as convex combination of two other feasible solutions.

Half-integral solution: a feasible solution in which each variable is 0,
1, or 1

2 .
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Half-integrality of Vertex Cover

Lemma 3 Let x be a feasible, non-half-integral solution for the LP
relaxation. Then x is not an extreme point solution.

Proof
Let V− be the set of vertices to which x assigns a non-half-integral
value less than 1

2 and V+ be the set of vertices to which x assigns a
non-half-integral value greater than 1

2 . For ε > 0 define the following
vectors:

y : yv =

⎧⎪⎪⎨
⎪⎪⎩

xv + ε , v ∈ V+

xv − ε , v ∈ V−

xv , otherwise

, z : zv =

⎧⎪⎪⎨
⎪⎪⎩

xv − ε , v ∈ V+

xv + ε , v ∈ V−

xv , otherwise

y, z are feasible solutions, and x = 1
2 · (y + z).
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Half-integrality of Vertex Cover

Since any extreme point solution of the LP relaxation is half-integral,
we immediately have a factor 2 approximation algorithm for Vertex
Cover.

The algorithm finds an extreme point solution x of the LP relaxation
and picks those vertices v for which xv = 1

2 or xv = 1.
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Complementary Slackness Conditions

Primal

• minimize
∑n

j=1 cj · xj

• subject to:

–
∑n

j=1 aij ·xj ≥ bi, i = 1, . . . ,m

– xj ≥ 0, j = 1, . . . , n

Dual

• maximize
∑m

i=1 bi · yi

• subject to:

–
∑m

i=1 aij ·yi ≤ cj , j = 1, . . . , n

– yi ≥ 0, i = 1, . . . ,m

Primal Complementary Slackness Conditions
For each 1 ≤ j ≤ n: either xj = 0 or

∑m
i=1 aij · yi = cj

Dual Complementary Slackness Conditions
For each 1 ≤ i ≤ m: either yi = 0 or

∑n
j=1 aij · xj = bi

If x and y are primal and dual feasible, respectively, and they satisfy
the complementary slackness conditions then they are both optimal.
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Relaxed Complementary Slackness Conditions

Relaxed Primal Complementary Slackness Conditions
For α ≥ 1, for each 1 ≤ j ≤ n: either xj = 0 or
cj

α ≤
∑m

i=1 aij · yi ≤ cj

Relaxed Dual Complementary Slackness Conditions
For β ≥ 1, for each 1 ≤ i ≤ m: either yi = 0 or
bi ≤

∑n
j=1 aij · xj ≤ β · bi

If x and y are primal and dual feasible, respectively, and they satisfy
the relaxed complementary slackness conditions then:

n∑
j=1

cj · xj ≤ α · β ·
m∑

i=1

bi · yi
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Overview of the Primal-Dual schema

• We construct an approximation algorithm for a given IP by
ensuring one set of conditions (for example, α := 1) and suitably
relaxing the other.

• The algorithm starts with a primal infeasible solution and a dual
feasible solution (usually x = 0, y = 0).

• It iteratively improves the feasibility of the primal solution and
the optimality of the dual solution.

• In the end, we obtain x′ and y′ which satisfy the relaxed
complementary slackness conditions, with a suitable choice of β.
We take care to always modify x integrally, so that x′ is also a
feasible solution of the original IP.

• SOL ≤ β ·OPT.

29



Application to Set Cover

Primal

• minimize
∑

S∈S c (S) · xS

• subject to:

–
∑

S:e∈S xS ≥ 1, e ∈ U
– xS ≥ 0, S ∈ S

Dual

• maximize
∑

e∈U ye

• subject to:

–
∑

e∈S ye ≤ c (S), S ∈ S
– ye ≥ 0, e ∈ U

We work with α = 1, β = f .

Primal conditions
For each S ∈ S: xS = 0 or

∑
e∈S ye = c (S)

Dual conditions
For each e ∈ U : ye = 0 or 1 ≤

∑
S:e∈S xS ≤ f
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An f-approximation algorithm for Set Cover

x← 0.
y← 0.
while there is an uncovered element e do

raise ye until some set becomes tight.
pick all tight sets and update x.
consider all elements occurring in these sets covered.

end while
output the set cover x.
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“Another” f-approximation algorithm for Set Cover

for each S ∈ S, set t (S) := c (S).
C ← ∅.
while C �= U do

choose e ∈ U − C.
let m := minS:e∈S t (S).
for each S containing e, set t (S) := t (S)−m.
pick all sets S with t (S) = 0.
C ← C ∪

⋃
S:t(S)=0 S.

end while
output all picked sets.

32



Tight Example

...

en+1

e1 e2 en-1

en

1 1 1

1+
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