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Why Complexity?
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Problems.... Problems....

Decision Problems

o Have answers of the form “yes” or “no”
Search Problems

o Encoding: each instance x of the problem is represented as a string
of an alphabet (|3 > 2). o Have answers of the form of an object.
o Decision problems have the form “Is x in L?”, where L is a o Relation R(x, y) connecting instances x with answers (objects) y
language, L C Y. we wish to find for x.
‘ o Given instance x, find a y such that (x,y) € R.

o So, for an encoding of the input, using the alphabet >, we
associate the following language with the decision problem II:

L(IT) = {x € ¥* | x is a representation of a “yes” instance of the problem IT}

Example
Example . . . . ..
FACTORING: Given integer N, find its prime decomposition
? ki k
o Given a number x, is this number prime? (x € PRIMES) N =pi'py’ - 'Plrcr'z"-

o Given graph G and a number £, is there a clique with k£ (or more) nodes
in G?
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Problems....

Optimization Problems
o For each instance x there is a set of Feasible Solutions F/(x).
o To each s € F(x) we map a positive integer ¢(x), using the
objective function c(s).
o We search for the solution s € F(x) which minimizes (or
maximizes) the objective function c(s).

Turing Machines Undecidability
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Example
o The Traveling Salesperson Problem (TSP):
Given a finite set C = {cy, ..., c,} of cities and a distance
d(ci, ;) € Z7,V(ci,¢;) € C?, we ask for a permutation 7 of C, that
minimizes this quantity:

n—1

Z d(Cr(iys Cr(i+1)) + d(Crny> Cr(1))
i=1

v

Algorithms & Complexity
[sleYelelel ] 0000000000

Problems....
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‘What have we learned?

o Computational Complexity classifies problems into classes,
and studies the relations and the structure of these classes.

o We have decision problems with boolean answer, or
function/optimization problems which output an object as an
answer.

o Given some nice properties of polynomials, we identify
polynomial-time algorithms as efficient algorithms.

Algorithms & Complexity Turing Machines Undecidability

Problems....
A Model Discussion

o There are many computational models (RAM, Turing Machines
etc).

o The Church-Turing Thesis states that all computation models
are equivalent. That is, every computation model can be simulated
by a Turing Machine.

o In Complexity Theory, we consider efficiently computable the
problems which are solved (aka the languages that are decided) in
polynomial number of steps (Edmonds-Cobham Thesis).
[Eﬂiciently Computable = Polynomial-Time Computable]

1
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Definitions

Definition

A Turing Machine M is a quintuple M = (Q, 3, 9, qo, F):
° QO =1{490,91,92,493; - - - ;qn, Gyes, Gno } is a finite set of states.
¥ is the alphabet. The tape alphabet is I' = ¥ U {U}.
go € Qs the initial state.
F C Qs the set of final states.
§:(Q\F) xI' - QO x T x{S,L,R} is the transition function.

©

©

©

©

A TM is a “programming language” with a single data structure (a
tape), and a cursor, which moves left and right on the tape.

©

©

Function 0 is the program of the machine.
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Definitions

Definition

If for a language L there is a TM M, which if x € L then M(x) = “yes”,
and if x ¢ L then M(x) 1, we call L recursively enumerable.

*By M(x) 1 we mean that M does not halt on input x (it runs forever).

Theorem
If L is recursive, then it is recursively enumerable. J

Proof: Exercise

Definition

If fis a function, f: X* — X*, we say that a TM M computes f if, for
any string x € ¥*, M(x) = f(x). If such M exists, f is called a
recursive function.

o Turing Machines can be thought as algorithms for solving string
related problems.

Turing Machines Undecidability
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Definitions

Turing Machines and Languages

Definition
Let L C ¥* be a language and M a TM such that, for every string
xex®
o If x € L, then M(x) = “yes”
o If x ¢ L, then M(x) = “no”
Then we say that M decides L.

o Alternatively, we say that M(x) = L(x), where L(x) = xr(x) is the
characteristic function of L (if we consider 1 as “yes” and 0 as
“no” N

o If L is decided by some TM M, then L is called a recursive
language.

Turing Machines Undecidability
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Definitions

Multitape Turing Machines

o We can extend the previous Turing Machine definition to obtain a
Turing Machine with multiple tapes:

Definition
A k-tape Turing Machine M is a quintuple M = (Q, X, 9, qo, F):
° 0=1{90,91,92,93; - - - ,qn, Ghalt; 9yes gno } 1s a finite set of states.
o X is the alphabet. The tape alphabet is I' = ¥ U {LI}.
o ¢o € Qis the initial state.
o F C Qis the set of final states.
0 0:(Q\F)xT* — Q@ x (I x {S,L, R})¥ is the transition function.
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Properties of Turing Machines Properties of Turing Machines
Bounds on Turing Machines Multitape Turing Machines

o We will characterize the “performance” of a Turing Machine by
the amount of time and space required on instances of size n, when Theorem

these amounts are expressed as a function of 7. ) ) : ; e
P Given any k-tape Turing Machine M operating within time T(n), we can

construct a TM M’ operating within time O (T2 (n)) such that, for any

Definiti
efinition input x € ¥*, M(x) = M'(x).

Let 7: N — N. We say that machine M operates within time 7(n) if,
for any input string x, the time required by M to reach a final state is at Proof: See Th.2.1 (p.30) in [1].
most 7(|x|). Function 7 is a time bound for M.

Definition o This is a strong evidence of the robustness of our model: Adding a
Let S : N — N. We say that machine M operates within space S(n) if, bounded number of strings does not increase their computational
for any input string x, M visits at most S(|x|) locations on its work tapes capabilities, and affects their efficiency only polynomially.
(excluding the input tape) during its computation. Function S is a space
bound for M. |
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Properties of Turing Machines NTMs
Linear Speedup Nondeterministic Turing Machines
Theorem
Let M be a TM that decides L. C X7, that oper: ates v‘wthm time T(n). o We will now introduce an unrealistic model of computation:
Then, for every e > 0, there is a TM M’ which decides the same
language and operates within time T'(n) = £T(n) + n + 2. Definition
Proof: See Th.2.2 (p.32) in [1]. A Turing Machine M is a quintuple M = (Q, X3, §, qo, F):
o If, for example, T is linear, i.e. something like cn, then this theorem ° 0=1{90,91,492,93; - - -, Gn, Gnait Gyes, Gno } 1s a finite set of states.

Y. is the alphabet. The tape alphabet is I' = X U {LI}.

qo € Q is the initial state.

F C Qis the set of final states.

Theorem 0:(Q\F) xT' — Pow(Q x I x {S,L, R}) is the transition

Let M be a TM that decides L C 3*, that operates within space S(n). relation. )
Then, for every € > 0, there is a TM M’ which decides the same
language and operates within space S'(n) = £S(n) + 2.

states that the constant ¢ can be made arbitrarily close to 1. So, it is fair

o

to start using the O (-) notation in our time bounds.

(%}

o A similar theorem holds for space:

(%}

(%}
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NTMs

Nondeterministic Turing Machines

o In this model, an input is accepted if there is some sequence of
nondeterministic choices that results in “yes”.

o An input is rejected if there is no sequence of choices that lead to
acceptance.

o Observe the similarity with recursively enumerable languages.

Definition

We say that M operates within bound T(n), if for every input x € £*
and every sequence of nondeterministic choices, M reaches a final state
within T(|x|) steps.

o The above definition requires that M does not have computation
paths longer than T(n), where n = |x| the length of the input.

o The amount of time charged is the depth of the computation tree.
21
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NTMs

‘What have we learned? \

o A recursive language is decided by a TM.

o A recursive enumerable language is accepted by a TM that
halts only if x € L.

o Multiple tape TMs can be simulated by a one-tape TM with
quadratic overhead.

o Linear speedup justifies the O (-) notation.

o Nondeterministic TMs move in “parallel universes”, making
different choices simultaneously.

o A Deterministic TM computation is a path.

o A Nondeterministic TM computation is a tree, i.€.
exponentially many paths ran simultaneously.

Algorithms & Complexity Turing Machines Undecidability
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Diagonalization

Diagonalization

Suppose there is a town with just one
barber, who is male. In this town, the
barber shaves all those, and only
those, men in town who do not shave
themselves. Who shaves the barber?

George showed it wouldn’t fit in.
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Diagonalization

Diagonalization

Theorem
The functions from N to N are uncountable.

Proof: Let, for the sake of contradiction that are countable: ¢1, ¢o, . ...

Consider the following function: f(x) = ¢,(x) + 1. This function must
appear somewhere in this enumeration, so let ¢, = f(x). Then
¢y(x) = ¢x(x) + 1, and if we choose y as an argument, then

¢y(Y) = ¢y()’) +1.0

o Using the same argument:

Theorem
The functions from {0,1}* to {0, 1} are uncountable.

Algorithms & Complexity Turing Machines Undecidability
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Simulation

The Universal Turing Machine

o So far, our computational models are specified to solve a single
problem.

o Turing observed that there is a TM that can simulate any other TM

M, given M’s description as input.

Theorem

There exists a TM U such that for every x,w € ¥*, U(x, w) = M,,(x).
Also, if My, halts within T steps on input x, then U (x, w) halts within
CTlog T steps, where C is a constant independent of x, and depending
only on M,,’s alphabet size number of tapes and number of states.

Proof: See section 3.1 in [1], and Th. 1.9 and section 1.7 in [2].

Algorithms & Complexity Turing Machines Undecidability
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Simulation

Machines as strings

o It is obvious that we can represent a Turing Machine as a string:
Just write down the description and encode it using an alphabet, e.g.

{0,1}.
@ We denote by L M the TM M’s representation as a string.
o Also, if x € ¥*, we denote by M, the TM that x represents.

Keep in mind that:
o Every string represents some TM.
o Every TM is represented by infinitely many strings.

o There exists (af least) an uncomputable function from {0, 1}* to
{0, 1}, since the set of all TMs is countable.

Algorithms & Complexity Turing Machines Undecidability
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Undecidability

The Halting Problem

o Consider the following problem: “Given the description of a TM M,
and a string x, will M halt on input x? ” This is called the
HALTING PROBLEM.

o We want to compute this problem ! ! ! (Given a computer
program and an input, will this program enter an infinite loop?)

o Inlanguage form: H = { M_i; x | M(x) |}, where “ | ” means that
the machine halts, and “ 1 ” that it runs forever.

Theorem
H is recursively enumerable.

Proof: See Th.3.1 (p.59) in [1]
o In fact, H is not just a recursively enumerable language:
If we had an algorithm for deciding H, then we would be able to derive
an algorithm for deciding any r.e. language (RE-complete).
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Undecidability Undecidability
The Haltlng Problem o Recursive languages are a proper subset of recursive enumerable
ones.
° But.... o Recall that the complement of a language L is defined as:
Theorem L={xe¥X|x¢ L} =2"\L
H is not recursive.
Pl’OOf: See Th.3.1 (p.60) in [1] Theorem
o Suppose, for the sake of contradiction, that there is a TM My that @ If Lis recursive, so is L.
decides H. @ L is recursive if and only if L and L are recursively enumerable.

o Consider the TM D:
’ D(.M.) : if My(.M_; . M.) = “yes” then T else “yes”

o What is D(I_DJ)?
o If D(.D.) 1, then My accepts the input, so . D_i; . D € H, so

Proof: Exercise
o Let E(M) = {x| (g0, ¢) & (g, yUxL, e}
o E(M) is the language enumerated by M.

D(D) |.
. Theorem
o If D(LD.) |, then My rejects LDy LD, so LD1; D ¢ H, so ) _ _ _
D(D) 1.0 L is recursively enumerable iff there is a TM M such that L = E(M).
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Undecidability Undecidability
More Undecidability Rice’s Theorem
o The HALTING PROBLEM, our first undecidable problem, was
o The previous problems lead us to a more general conclusion:

the first, but not the only undecidable problem. Its spawns a wide
range of such problems, via reductions.

o To show that a problem A is undecidable we establish that, if there
is an algorithm for A, then there would be an algorithm for H,
which is absurd.

Any non-trivial property of
Turing Machines is undecidable

o If a TM M accepts a language L, we write L = L(M).

Theorem

The following languages are not recursive: Theorem (Rice’s Theorem)

@ {M | M halts on all inputs} Suppose that C is a proper, non-empty subset of the set of all recursively
enumerable languages. Then, the following problem is undecidable:

@ {M;x | Thereis a y such that M(x) = y}
@ {M;x | The computation of M uses all states of M}

@ {M;x;y| M(x) = y}

Given a Turing Machine M, is L(M) € C?
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Undecidability

Rice’s Theorem

Proof: See Th3.2 (p.62) in [1]

o We can assume that () ¢ C (why?).

o Since C is nonempty, 3 L € C, accepted by the TM M.

o Let My the TM deciding the HALTING PROBLEM for an
arbitrary input x. For each x € ¥*, we construct a TM M as

follows:
| M(y) : if My(x) = “yes” then M, (y) else 1 |

o We claim that: L(M) € C if and only if x € H.
Proof of the claim:

o If x € H, then My(x) = “yes”, and so M will accept y or never halt,
depending on whether y € L. Then the language accepted by M is
exactly L, which is in C.

o If My(x) 1, M never halts, and thus M accepts the language {),
which is not in C. [J

Complexity Classes
00000000000000000000000000000000000000000000000000000000

Oracles & The Polynomial Hierarchy
0000000000000000000000

Contents

Introduction

Turing Machines

Undecidability

Complexity Classes

Oracles & The Polynomial Hierarchy
The Structure of NP

Randomized Computation
Non-Uniform Complexity
Interactive Proofs

Inapproximability

Derandomization of Complexity Classes
Counting Complexity

¢ © © 0 © 06 © ¢ © ¢ © © o

Epilogue

Algorithms & Complexity
000000 0000000000

Turing Machines Undecidability
00000000008

Undecidability

‘What have we learned? N

o TMs are encoded by strings.

o The Universal TM U (x, M) can simulate any other TM M
along with an input x.

o The Halting Problem is recursively enumerable, but not
recursive.

o Many other problems can be proved undecidable, by a
reduction from the Halting Problem.

o Rice’s theorem states that any non-trivial property of TMs is an
undecidable problem.

Complexity Classes
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Introduction

Parameters used to define complexity classes:

o Model of Computation (Turing Machine, RAM, Circuits)

©

Mode of Computation (Deterministic, Nondeterministic,
Probabilistic)

Complexity Measures (Time, Space, Circuit Size-Depth)

©

[»

Other Parameters (Randomization, Interaction)
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Introduction Introduction

Our first complexity classes Our first complexity classes

Definition
LetLC ¥ and 7,5: N — N:
o We say that L € DTIME[T(n)] if there exists a TM M deciding L,
which operates within the fime bound O (T(n)), where n = |x|.

o We say that L € DSPACE(S(n)] if there exists a TM M deciding
L, which operates within space bound O (S(n)), that is, for any
input x, requires space at most S(|x]).

o We say that L € NTIME([T(n)] if there exists a nondeterministic
TM M deciding L, which operates within the time bound
O (T(n)).

o We say that L € NSPACE[S(n)] if there exists a nondeterministic
TM M deciding L, which operates within space bound O (S(n)).

o The above are Complexity Classes, in the sense that they are sets
of languages.

o All these classes are parameterized by a function 7 or S, so they
are families of classes (for each function we obtain a complexity
class).

Definition (Complementary complexity class)

For any complexity class C, coC denotes the class: {L | L € C}, where
L=*\L={xeX*|x¢L}.

o We want to define “reasonable” complexity classes, in the sense
that we want to “compute more problems”, given more
computational resources.
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Constructible Functions Constructible Functions

Constructible Functions Constructible Functions

o Can we use all computable functions to define Complexity
Classes?

Theorem (Gap Theorem)

For any computable functions r and a, there exists a computable function

f such that f(n) > a(n), and

DTIME|[f(n)] = DTIME[r(f(n))]

o That means, for r(n) = 92/

22f(n)

, the incementation from f(n) to
does not allow the computation of any new function!

o So, we must use some restricted families of functions:

Definition (Time-Constructible Function)

A nondecreasing function 7 : N — N is time constructible if
T(n) > n and there is a TM M that computes the function
x +— LT(|x|)2 in time T(n).

Definition (Space-Constructible Function)

A nondecreasing function S : N — N is space-constructible if
S(n) > logn and there is a TM M that computes S(|x|) using S(|x|)
space, given x as input.

@ The restriction T(n) > n is to allow the machine to read its input.

o The restriction S(n) > logn is to allow the machine to “remember” the
index of the cell of the input tape that it is currently reading.

o Also, if f1(n), fo(n) are time/space-constructible functions, so are

f1+ fas f1 - f2 and 2.
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Complexity Classes

Constructible Functions

Theorem (Hierarchy Theorems)

Let t1, to be time-constructible functions, and si, so be
space-constructible functions. Then:

@ Ifti(n)logti(n) = o(t2(n)), then DTIME(t;) C DTIME(z2).
@ Ift(n+ 1) = o(t2(n)), then NTIME(#;) C NTIME(1,).
@ If s1(n) = o(s2(n)), then DSPACE(s;) C DSPACE(s2).

@ If s1(n) = o(s2(n)), then NSPACE(s;) C NSPACE(s2).

Complexity Classes Oracles & The Polynomial Hierarchy
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Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

Proof (cont'd):

Jng : n** > cnlogn Vn > ng

There exists a xpy, s.t. xpy = LM and |xp| > ng (why?) Then,

D(xp) = 1 — M(xy) (while we have also that D(x) = M(x), Vx)
Contradiction!! ]

o So, we have the hierachy:
DTIME[n] C DTIME[r?] C DTIME|[n?®] C

o We will later see that the class containing the problems we can
efficiently solve (recall the Edmonds-Cobham Thesis) is the class
P = {J.cy DTIME[1].

Complexity Classes Oracles & The Polynomial Hierarchy
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Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

Theorem
DTIME|n] C DTIME[n!~]

Proof (Diagonalization):
Let D be the following machine:

See Th.3.1 (p.69) in [2]

On input x, run for |x|1* steps U (M,, x);
If U(My,x) = b, then return 1 — b;
Else return 0;

o Clearly, L = L(D) € DTIME[n!9]

o We claim that L ¢ DTIME|[n]:
Let L € DTIME[n] = 3 M : M(x)
works for O (|x|) steps.
The time to simulate M using U is c|x| log |x|, for some c.

= D(x) Vx € ¥*, and M

Complexity Classes Oracles & The Polynomial Hierarchy
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Relations among Complexity Classes

o Hierarchy Theorems tell us how classes of the same kind relate to
each other, when we vary the complexity bound.
o The most interesting results concern relationships between classes
of different kinds:
Theorem

Suppose that T(n), S(n) are time-constructible and space-constructible
functions, respectively. Then:

@ DTIME|[T(n)] C NTIME|[T(n)]

@ DSPACE[S(n)] € NSPACE|[S(n)]
@ NTIME|T(n)] C DSPACE[T(n)]
@ NSPACE[S(n)] € DTIME[206()]

Corollary

NTIME|[T(n)] C | | DTIME[c"")]

c>1
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Relations among Complexity Classes

Proof:
@ Trivial
@ Trivial

Oracles & The Polynomial Hierarchy
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See Th.7.4 (p.147) in [1]

@ We can simulate the machine for each nondeterministic choice,

using at most 7(n) steps in each simulation.

There are exponentially many simulations, but we can simulate

them one-by-one, reusing the same space.

@ Recall the notion of a configuration of a TM: For a k-tape
machine, is a 2k — 2 tuple: (g, i, wa, U2, ..., We—1, Ug—1)

How many configurations are there?

o |QJ choices for the state
o n + 1 choices for i, and
o Fewer than |X|(22)5()

for the remaining strings

So, the total number of configurations on input size n is at most

nc; ") = 20(S(m),

Complexity Classes
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Relations among Complexity Classes

The essential Complexity Hierarchy

Definition
L = DSPACE|logn]
NL = NSPACE]log ]

P = | | DTIME([x]
ceN

NP = | | NTIME[r‘]
ceN

PSPACE = |_| DSPACE[x]
ceN

NPSPACE = | | NSPACE|n']
ceN

Oracles & The Polynomial Hierarchy
0000000000000000000000
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Relations among Complexity Classes

Proof (cont'd):

Definition (Configuration Graph of a TM)

The configuration graph of M on input x, denoted G(M, x), has as
vertices all the possible configurations, and there is an edge between
two vertices C and C' if and only if C' can be reached from C in one
step, according to M’s transition function.

@ So, we have reduced this simulation to REACHABILITY *
problem (also known as S-T CONN), for which we know there is
a poly-time (O (nQ)) algorithm.

o So, the simulation takes (20(3(”)))2 ~ 20(5(n) steps. [

*REACHABILITY: Given a graph G and two nodes vy, v, € V, is there a
path from vy to v,,?

Complexity Classes Oracles & The Polynomial Hierarchy
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Relations among Complexity Classes

The essential Complexity Hierarchy

Definition
EXP = | | DTIME[2"]
ceN
NEXP = | | NTIME[2"]
ceN
EXPSPACE = | | DSPACE[2"]
ceN
NEXPSPACE = | | NSPACE[2"]
ceN

L CNL C P C NP C PSPACE C NPSPACE C EXP C NEXP
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Certificates & Quantifiers

Certificate Characterization of NP

Definition
Let R C ¥* x ¥* a binary relation on strings.
o Ris called polynomially decidable if there is a DTM deciding the
language {x;y | (x,y) € R} in polynomial time.
o R is called polynomially balanced if (x,y) € R implies
ly| < |x|¥, for some k > 1.

Theorem

Let L C ¥* be a language. L € NP if and only if there is a polynomially
decidable and polynomially balanced relation R, such that:

L={x|3yR(x,y)}

o This y is called succinct certificate, or witness.
@ So, an NP Search Problem is the problem of computing witnesses.

Complexity Classes Oracles & The Polynomial Hierarchy
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Certificates & Quantifiers

Can creativity be automated?

As we saw:
o Class P: Efficient Computation
o Class NP: Efficient Verification
o So, if we can efficiently verify a mathematical proof, can we create

it efficiently?
If P= NP...

o For every mathematical statement, and given a page limit, we would
(quickly) generate a proof, if one exists.

o Given detailed constraints on an engineering task, we would (quickly)
generate a design which meets the given criteria, if one exists.

o Given data on some phenomenon and modeling restrictions, we would
(quickly) generate a theory to explain the data, if one exists.

See “A. Wigderson: Knowledge, Creativity and P versus NP”

Complexity Classes Oracles & The Polynomial Hierarchy
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Certificates & Quantifiers

Proof: See Pr.9.1 (p.181) in [1]
(<) If such an R exists, we can construct the following NTM deciding
L:

“On input x, guess a y, such that |y| < |x|¥, and then test (in poly-time)
if (x,y) € R.If so, accept, else reject.” Observe that an accepting
computation exists if and only if x € L.

(=) If L € NP, then 3 an NTM N that decides L in time |x|¥, for some
k. Define the following R:

“(x,y) € Rif and only if y is an encoding of an accepting computation
of N(x).”

R is polynomially balanced and decidable (why?), so, given by
assumption that N decides L, we have our conclusion. []
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Certificates & Quantifiers

Complementary complexity classes

o Deterministic complexity classes are in general closed under
complement (col. = L, coP = P, coPSPACE = PSPACE).

o Complementaries of non-deterministic complexity classes are very
interesting:

o The class coNP contains all the languages that have succinct
disqualifications (the analogue of succinct certificate for the class
NP). The “no” instance of a problem in coNP has a short proof of
its being a “no” instance.

PQNPﬂcoNPI

o Note the similarity and the difference with R = RE N coRE.

o So:
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Certificates & Quantifiers

Quantifier Characterization of Complexity Classes

Definition
We denote as C = (Q1/02), where Q1, Qs € {3, V}, the class C of
languages L satisfying:

o x€L= Q1yR(x,y)
o x¢ L= Qoy—R(x,y)

o P=(V/V)
o NP = (3/V)
o coNP = (V/3)

Complexity Classes Oracles & The Polynomial Hierarchy
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Space Computation
def REACH(s,t,k)
if k==1:
if (s==t or (s,t) in edges): return true
if k>1:

for u in vertices:
if (REACH(s,u, floor(k/2)) and
] (REACH(u,t,ceil(k/2))): return true
return false

o We generate all nodes u one after the other, reusing space.

o The algorithm has recursion depth of [logn].

o For each recursion level, we have to store s, ¢, k and u, that is,
O (logn) space.

o Thus, the total space used is O (log2 n) [
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Space Computation

Savitch’s Theorem

o REACHABILITY € NL.

See Ex.2.10 (p.48) in [1]

Theorem (Savitch’s Theorem)
REACHABILITY € DSPACE[log2 nj

PI‘OOf: See Th.7.4 (p.149) in [1]
REACH(x, y,i) : “There is a path from x to 'y, of length < i".

o We can solve REACHABILITY if we can compute
REACH(x, y, n), for any nodes x, y € V, since any path in G can
be at most # long.

o If i = 1, we can check whether REACH(x, y, i).

o If i > 1, we use recursion:

Complexity Classes
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Space Computation

Savitch’s Theorem

Corollary

NSPACE[S(n)] C DSPACE[S?(n)], for any space-constructible
function S(n) > logn.

Proof:

o Let M be the nondeterministic TM to be simulated.

o We run the algorithm of Savitch’s Theorem proof on the
configuration graph of M on input x.

o Since the configuration graph has ¢ nodes, O ($?(n)) space
suffices. []

Corollary
PSPACE = NPSPACE
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Space Computation

NL-Completeness

o In Complexity Theory, we “connect” problems in a complexity
class with partial ordering relations, called reductions, which
formalize the notion of “a problem that is at least as hard as
another”.

o A reduction must be computationally weaker than the class in
which we use it.

Definition

A language L, is logspace reducible to a language Lo, denoted
Ly Sf;l Ly, if there is a function f : ¥* — >*, computable by a DTM in
O (logn) space, such that for all x € ¥*:

x€L & f(x) € Ly

We say that a language A is NL-complete if it is in NL and for every
BeNL,B<! A

—m *
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Space Computation

Certificate Definition of NL

o We want to give a characterization of NL, similar to the one we
gave for NP.

o A certificate may be polynomially long, so a logspace machine
may not have the space to store it.

o So, we will assume that the certificate is provided to the machine
on a separate tape that is read once.

Complexity Classes Oracles & The Polynomial Hierarchy
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Space Computation

NL-Completeness

Theorem
REACHABILITY is NL-complete.

Proof: See Th.4.18 (p.89) in [2]

o We ’ve argued why REACHABILITY € NL.

o Let L € NL, that is, it is decided by a O (logn) NTM N.

o Given input x, we can construct the configuration graph of N(x).
o We can assume that this graph has a single accepting node.

@ We can construct this in logspace: Given configurations C, C' we
can in space O (|C| 4 |C']) = O (log |x|) check the graph’s
adjacency matrix if they are connected by an edge.

o Itisclear that x € L if and only if the produced instance of
REACHABILITY has a “yes” answer. [
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Space Computation

Certificate Definition of NL

Definition

A language L is in NL if there exists a deterministic TM M with an
additional special read-once input tape, such that for every x € *:

x € L& 3y, |yl € poly(|x]),M(x,y) =1

where by M(x, y) we denote the output of M where x is placed on its
input tape, and y is placed on its special read-once tape, and M uses at
most O (log |x|) space on its read-write tapes for every input x.

@ What if remove the read-once restriction and allow the TM’s head to
move back and forth on the certificate, and read each bit multiple times?
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Space Computation

Immerman-Szelepscényi

Theorem (The Immerman-Szelepscényi Theorem)

REACHABILITY € NL

Proof: See Th4.20 (p.91) in [2]

o It suffices to show a O (logn) verification algorithm A such that:
V (G, s, 1), 3 a polynomial certificate u such that:
A((G,s,1),u) = “yes” iff is not reachable from s.

o A has read-once access to u.

o G's vertices are identified by numbers in {1, ... ,n} = [n]
o Cj: “The set of vertices reachable from s in < i steps.”

© Membership in C; is easily certified:

o Vi € [n]: vg, ..., v along the path from s to v, k < i.

o The certificate is at most polynomial in 7.
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The Immerman-Szelepscényi Theorem

Proof (cont'd):

o Since the verifier has been convinced of |C,|, we can use the 1st
type of certificate to convince the verifier that 7 ¢ C,,.
o Certifying that v ¢ C;, given |G}
The certificate is the list of certificates that u € C;, for every
u € G.
The verifier will check:

@ Each certificate is valid

@ Vertex u, given a certificate for u, is larger than the previous.
@ No certificate is provided for v.

@ The total number of certificates is exactly |C;|.

Oracles & The Polynomial Hierarchy
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Space Computation

The Immerman-Szelepscényi Theorem

Proof (cont'd):

o We can check the certificate using read-once access:
@D vo=s
@ forj> 0, (Vj;l, Vj) € E(G)
@ w=v
@ Path ends within at most i steps
o We now construct two types of certificates:

@ A certificate that a vertex v ¢ C;, given |C;].
@ A certificate that |C;| = ¢, for some c, given |C;_1].

o Since Cy = {s}, we can provide the 2nd certificate to convince the
verifier for the sizes of C1,...,C,

o C, is the set of vertices reachable from s.

Oracles & The Polynomial Hierarchy
0000000000000000000000

Complexity Classes
00000000000000000000000000008000000000000000000000000000

Space Computation

The Immerman-Szelepscényi Theorem

Proof (contd):
Certifying that v ¢ C;, given |C;_, |
The certificate is the list of certificates that u € C;_1, foreveryu € C;_;
The verifier will check:

@ Each certificate is valid

@ Vertex u, given a certificate for u, is larger than the previous.

@ No certificate is provided for v or for a neighbour of v.

@ The total number of certificates is exactly |Ci—1]|.
Certifying that |C;| = c, given |C;_|
The certificate will consist of # certificates, for vertices 1 to n, in
ascending order.
The verifier will check all certificates, and count the vertices that have
been certified to be in C;. If |C;| = ¢, it accepts. [J
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The Immerman-Szelepscényi Theorem

Corollary

For every space constructible S(n) > logn:

NSPACE|[S()] = coNSPACE|S(n)]
Proof:
o Let L € NSPACEIS(n)]. We will show that 3 S(n) space-bounded
NTM M deciding L:

o M on input x uses the above certification procedure on the
configuration graph of M. []

Corollary
NL = coNL
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Our Complexity Hierarchy Landscape

PSPACE

= NPSPACE
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What about Undirected Reachability?

o UNDIRECTED REACHABILITY captures the phenomenon of
configuration graphs with both directions.

o H. Lewis and C. Papadimitriou defined the class SL (Symmetric
Logspace) as the class of languages decided by a Symmetric
Turing Machine using logarithmic space.

o Obviously,

L CSL CNL|
@ Asin the case of NL, UNDIRECTED REACHABILITY is
SL-complete.
@ But in 2004, Omer Reingold showed, using expander graphs, a
deterministic logspace algorithm for UNDIRECTED
REACHABILITY, so:

Theorem (Reingold, 2004)
L =SL
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Reductions & Completeness

Karp Reductions

Definition

A language L; is Karp reducible to a language Lo, denoted by
Ly <b, Ly, if there is a function f : ¥* — X*, computable by a
polynomial-time DTM, such that for all x € X*:

x€L & flx) € Ly

Definition
Let C be a complexity class.

o We say that a language A is C-hard (or <4,-hard for C) if for every
BeC,B<h A

o We say that a language A is C-complete, if it is C-hard, and also
AcC.
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Reductions & Completeness

Karp reductions vs logspace redutions

Theorem }

A logspace reduction is a polynomial-time reduction.

Pl’OOfi See Th.8.1 (p.160) in [1]

©

Let M the logspace reduction TM.
M has 200°¢1) pogsible configurations.

The machine is deterministic, so no configuration can be repeated
in the computation.

©

(7]

]

So, the computation takes O (nk ) time, for some k.
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Reductions & Completeness

Circuits and CVP

Definition (CVP)

Circuit Value Problem (CVP): Given a circuit C and an assignment x to
its variables, determine whether C(x) = 1.

o CVPeP.
Example

REACHABILITY <!, CVP: Graph G — circuit R(G):
o The gates are of the form:
° gijkl<i,j<n0<k<n
° hi,j,ka 1 S ivj)k S n
© g is true iff there is a path from i to j without intermediate
nodes bigger than k.
© h;j is true iff there is a path from i to j without intermediate
nodes bigger than &, and & is used.
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Reductions & Completeness

Circuits and CVP

Definition (Boolean circuits)

For every n € N an n-input, single output Boolean Circuit Cis a
directed acyclic graph with n sources and one sink.

@ All nonsource vertices are called gates and are labeled with one of A

(and), V (or) or — (not).

The vertices labeled with A and V have fan-in (i.e. number or incoming
edges) 2.

The vertices labeled with — have fan-in 1.

For every vertex v of C, we assign a value as follows: for some input

x € {0, 1}", if v s the i-th input vertex then val(v) = x;, and otherwise

val(v) is defined recursively by applying v’s logical operation on the
values of the vertices connected to v.

The output C(x) is the value of the output vertex.
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Reductions & Completeness

Circuits and CVP

Example

Qo

Qo

(*]

Input gates: g; ;0 is true iff (i = jor (i) € E(G)).
Fork=1,...,n: h,-’j,k = (gi,k,kfl A gk,j,k,l)
Fork=1,...,n: 8ijk = (gid’k_l V hi,j,k)

The output gate g1, , is true iff there is a path from 1 to n using
no intermediate paths above 7 (sic).

We also can compute the reduction in logspace: go over all
possible i, j, k’s and output the appropriate edges and sorts for the
variables (1, ..., 2n% 4 n?).
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Reductions & Completeness Reductions & Completeness
Composing Reductions Closure under reductions

Theorem o Complete problems are the maximal elements of the reductions

IfL1 Sf; Ly and Lo an Ls, then L1 §ﬁ1 Ls. partlal ordermg.

@ Complete problems capture the essence and difficulty of a

Proof: See Prop.8.2 (p.164) in [1] Complexity class.
o Let R, R’ be the aforementioned reductions.
o We have to prove that R'(R(x)) is a logspace reduction. Definition
o But R(x) may by longer than log |x|... A class C is closed under reductions if for all A, B C X*:
o We simulate Mg/ by remembering the head position i of the input IfA<BandB€C, thenA €C.

string of My, i.e. the output string of My.
o P,NP, coNP, L, NL, PSPACE, EXP are closed under Karp and

o If the head moves to the right, we increment i and simulate Mg :
logspace reductions.

long enough to take the i bit of the output.

o If the head stays in the same position, we just remember the i bit. o If an NP-complete language is in P, then P = NP.

o If the head moves to the left, we decrement i and start My from o If L is NP-complete, then L is coNP-complete.

the beggining, until we reach the desired bit. O o If a coNP-complete problem is in NP, then NP = coNP.
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Reductions & Completeness Reductions & Completeness
P-Completeness P-Completeness
Theorem Theorem
If two classes C and C' are both closed under reductions and there is an CVP is P-complete.

L C X* complete for both C and C', then C = C'.

Proof: See Th. 8.1 (p.168) in [1]

@ We have to show that for any L € P there is a reduction R from L

o Consider the Computation Table 7 of a poly-time TM M(x): 10 CVP
0 :

[Tij represents the contents of tape position j at step i.]

o R(x) must be a variable-free circuit such that x € L < R(x) = 1.
o But how to remember the head position and state? o T; depends only on Ti—q i1, Tic1.j, Ti1.i+1
—4,j=L —Lp - *
At the i step: if the state is q and the head is in position j, then o Lét I = XU (L x0) ! ! /
T;€ X x Q. B '
v Q . o o Encode s € I"as (s1,...,Sn), where m = [log |T'|].

° We say that the table is accepting if T, ; € (3 X {gyes}) for o Then the computation table can be seen as a table of binary entries

some j.

Sl'jg, 1 S 6 S m.
° Ob.serve that T,] depen.ds or.11y on the contents of the same of o S; depends only on the 3m entries S;_1 j_1.p/, Si_1¢» Si1js1.0
adjacent positions at time i — 1. where 1 < ¢/ < m.
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P-Completeness CIRCUIT SAT & SAT
Proof (cont’d): Definition (CIRCUIT SAT)
o So, there are m Boolean Functions f1, ..., f,, : {0,1}*" — {0,1} Given Boolen Circuit C, is there a truth assignment x appropriate to C,
s.t.: such that C(x) = 1?
Sije = fé(?ifl,jfla ?iq,j, ?ifl,j+1)
o Thus, there exists a Boolean Circuit C with 3m inputs and m Definition (SAT)
outputs computing T;;. Given a Boolean Expression ¢ in CNF, is it satisfiable?
o Cdepends only on M, and has constant size.
Example

o R(x) will be (Jx[¥ — 1) x (]x¥ — 2) copies of C.
o The input gates are fixed.
© R(x)’s output gate will be the first bit of Cj_q ;.

o The circuit C is fixed, so we can generate indexed copies of C,

CIRCUIT SAT <! SAT:
o Given C — Boolean Formula R(C), s.t. C(x) = 1 < R(C)(x) = T.
o Variables of C — variables of R(C).

using O (log |x|) space for indexing. O o Gate g of C — variable g of R(C).
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Reductions & Completeness Reductions & Completeness
CIRCUIT SAT & SAT Bounded Halting Problem
o We can define the time-bounded analogue of HP:
Example
o Gate g of C — clauses in R(C): Definition (Bounded Halting Problem (BHP))
° 8 E;?EIZ agtz;te;;éic(i ()ﬁg V) A gV ) =8ex Given the code LM of an NTM M, and input x and a string 0, decide
@8 : 8 . .
o ¢ FALSE gate: add (—g) if M accepts x in 7 steps. )
o g NOT gate & pred(g) = h:add (—gV —-h) A (gVh) =g —h
o g OR gate & pred(g) = {h,h'}: add Theorem
(mhVg) A (=h' Vg)A(hVH V—g) =g (hVH) BHP is NP-complete.
o g AND gate & pred(g) = {h,h’}: add /
(g V) A (=g V')A (=hV —h"Vg) =g (hANK) Proof:
o g output gate: add (g
C fiable if (d)11fC ° BHP € NP
o R(C) is satisfiable if and only if C'is. - .
(©) _ y o o Let A € NP. Then, 3 NTM M deciding A in time p(|x|), for some
o The construction can be done within log |x| space. U p € poly(|x|).

o The reduction is the function R(x) = (LM, x, 0?(*D). O
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Cook’s Theorem

Theorem (Cook’s Theorem)

SAT is NP-complete.

Proof: See Th.8.2 (p.171) in [1]

o SAT € NP.
o Let L € NP. We will show that L </ CIRCUIT SAT <! SAT.
o Since L € NP, there exists an NPTM M deciding L in r* steps.

o Let (c1,...,cx) € {0, 1}”k a certificate for M (recall the binary
encoding of the computation tree).
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NP-completeness: Web of Reductions

o Many NP-complete problems stem from Cook’s Theorem via
reductions:

o 3SAT,MAX2SAT, NAESAT
IS, CLIQUE, VERTEX COVER, MAX CUT

TSP(p), 3COL

o SET COVER, PARTITION, KNAPSACK, BIN PACKING

INTEGER PROGRAMMING (IP): Given m inequalities oven n
variables u; € {0, 1}, is there an assignment satisfying all the
inequalities?

©

©

©

o Always remember that these are decision versions of the
corresponding optimization problems.

o But 2SAT, 2COL € P.
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Cook’s Theorem

Proof (cont’d):

See Th.82 (p.171) in [1]

o If we fix a certificate, then the computation is deterministic (the
language’s Verifier V(x, y) is a DPTM).
o So, we can define the computation table T(M, x, ?)

@ As before, all non-top row and non-extreme column cells T; will
depend only on T;_1 j 1, Tj—1j, Ti—1,j+1 and the nondeterministic
choice ¢;_1.

o We now fixed a circuit C with 3m + 1 input gates.

o Thus, we can construct in log |x| space a circuit R(x) with variable
gates ¢y, . . . c,x corresponding to the nondeterministic choices of
the machine.

o R(x) is satisfiable if and only if x € L. O
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NP-completeness: Web of Reductions

Example
SAT <! TP:

o Every clause can be expressed as an inequality, eg:

(r1VEVE) —x+(1—x2)+(1—x3) >1

o This method is generalized by the notion of Constraint Satisfaction
Problems.

o A Constraint Satisfaction Problem (CSP) generalizes SAT by
allowing clauses of arbitrary form (instead of ORs of literals).

3SAT is the subcase of gCSP, where arity ¢ = 3 and the constraints
are ORs of the involved literals.
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Reductions & Completeness

Quantified Boolean Formulas

Definition (Quantified Boolean Formula)
A Quantified Boolean Formula F is a formula of the form:

F = E|X1VXQE|.X3 Tt Qn-xn ¢('x17 cee 7-xn)

where ¢ is plain (quantifier-free) boolean formula.

o Let TQBF the language of all true QBFs.

Example

F = Jx1Vxodxs [(Xl \Y ﬂ)CQ) VAN (—OCQ V )C3) VAN (—|X1 V xo V —|X3)]

The above is a True QBF ((1,0,0) and (1, 1, 1) satisfy it).
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Quantified Boolean Formulas

Proof (cont’d):

See Th. 19.1 (p.456) in [1] — Th.4.13 (p.84) in [2]

o Now, let M a TM with space bound p(n).

o We can create the configuration graph of M(x), having size
20(p(n))

o M accepts x iff there is a path of length at most 2°®(") from the
initial to the accepting configuration.

o Using Savitch’s Theorem idea, for two configurations C and C' we
have:
REACH(C,C,2") &
& 3C" [REACH(C,C",21) A REACH(C", C', 277 1)]

o But, this is a bad idea: Doubles the size each time.

o Instead, we use additional variables:
3C'VD{VDs [(D1 =CADy = C”) V (D1 =C'"ANDy = C/)] =
REACH(Dy, Dy, 2 1)
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Reductions & Completeness

Quantified Boolean Formulas

Theorem
TQBF is PSPACE-complete.

Proof: See Th. 19.1 (p.456) in [1] - Th.4.13 (p.84) in [2]

o TQBF € PSPACE:

Let ¢ be a QBF, with n variables and length m.

Recursive algorithm A(¢):

If n = 0, then there are only constants, hence O (m) time/space.
Ifn>0:

A(¢) = A(¢lyy=0) V A (Sl =1),if Q1 = 3, and

A(P) = A(Plu=0) N A(Plyy=1),if Q1 = V.

o Both recursive computations can be run on the same space.

o So spacey , = space,_1 m + O (m) = space, , = O (n - m).

© © ¢ ©
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Reductions & Completeness

Quantified Boolean Formulas

Proof (cont’d):

See Th. 19.1 (p.456) in [1] — Th.4.13 (p.84) in [2]
o The base case of the recursion is C; — Co, and can be encoded as
a quantifier-free formula.

o The size of the formula in the i step is
si <si-1+ 0O (p(n)) = O (p2(n)) O
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Reductions & Completeness

*Logical Characterizations

o Descriptive complexity is a branch of computational complexity
theory and of finite model theory that characterizes complexity
classes by the type of logic needed to express the languages in
them.

Theorem (Fagin’s Theorem)

The set of all properties expressible in Existential Second-Order Logic is
precisely NP.

Theorem

The class of all properties expressible in Horn Existential Second-Order
Logic with Successor is precisely P.

o HORNSAT is P-complete.
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Reductions & Completeness

‘What have we learned? N

Reductions relate problems with respect to hardness.

Complete problems reflect the difficulty of the class.
REACHABILITY is NL-complete.

Immerman-Szelepscényi’s Theorem implies that NL. = coNL.

¢ © © o

©

Circuit Value Problem (CVP) is P-complete under logspace
reductions.
o CIRCUIT SAT and SAT are NP-complete.

o True Quantified Boolean Formula (TQBF) is
PSPACE-complete.

Complexity Classes Oracles & The Polynomial Hierarchy
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Reductions & Completeness

‘What have we learned? N

o We define complexity classes using a computation model/mode
and complexity measures.

o Time/Space constructible functions are used as complexity
measures.

o Classes of the same kind form proper hierarchies.

o NP is the class of easily verifiable problems: given a certificate,
one can efficiently verify that it is correct.

o Savitch’s Theorem implies that PSPACE = NPSPACE.

Complexity Classes Oracles & The Polynomial Hierarchy
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Oracle Classes

Oracle TMs and Oracle Classes

Definition

A Turing Machine M’ with oracle is a multi-string deterministic TM
that has a special string, called query string, and three special states: ¢-
(query state), and gygs, gno (answer states). Let A C X* be an
arbitrary language. The computation of oracle machine M# proceeds
like an ordinary TM except for transitions from the query state: From
the g moves to either qygs, qno, depending on whether the current query
string is in A or not.

o The answer states allow the machine to use this answer to its
further computation.

o The computation of M’ with oracle A on iput x is denoted as
MA(x).
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Oracle TMs and Oracle Classes

Theorem
There exists an oracle B for which P? £ NP5,

PI’OOfi Th.14.5, p.340-342 in [1]

o We will find a language L € NP5\ P5.

o Let L = {1"| 3x € Bwith |x| = n}.

L € NP2 (why?)

We will define the oracle B C {0, 1}* such that L ¢ P5:

Let M}, Mj, . .. an enumeration of all PDTMs with oracle, such

that every machine appears infinitely many times in the

enumeration.

o We will define B iteratively: By = (), and B = | J,~, B:.

o Ini" stage, we have defined B;_1, the set of all strings in B with
length < i.

o Let also X the set of exceptions.

© © ©

Complexity Classes Oracles & The Polynomial Hierarchy
00000000000000000000000000000000000000000000000000000000 0800000000000000000000

Oracle Classes

Oracle TMs and Oracle Classes

Definition

Let C be a time complexity class (deterministic or nondeterministic).
Define C4 to be the class of all languages decided by machines of the
same sort and time bound as in C, only that the machines have now
oracle access to A. Also, we define: C$? = Urec, CF-

For example, PN? = [ J; _np P%. Note that PSAT = PNP,

Theorem

There exists an oracle A for which PA = NPA.

Proof: Th.14.4, p.340 in [1]
Take A to be a PSPACE-complete language. Then:

PSPACE C P4 C NP* C PSPACE”" = PSPACE"SPACE C PSPACE. O
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Proof (cont'd):
o We simulate M5(17) for i'°8' steps.
o How do we answer the oracle questions “Is x € B”?
o If |x| < i, we look for x in B;_;.
o —-Ifxe B, MIB goes to gyes
— Else M? goes to gno
o If |x| > i, M® goes to gno ,and x — X.
o Suppose that after at most /!¢ steps the machine rejects.
o Then we define B; = B;i_1 U{x € {0,1}* : |x| = i,x ¢ X}
sol € L,and L(MB) # L.
o Why {x € {0,1}*: |x|=i,x ¢ X} #0??
o If the machine accepts, we define B; = B; 1, so that 1° ¢ L.
o If the machine fails to halt in the allotted time, we set B; = B;_1,
but we know that the same machine will appear in the
enumeration with an index sufficiently large. (Il
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The Limits of Diagonalization

Complexity Classes
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Oracle Classes

As we saw, an oracle can transfer us to an alternative
computational “universe”.

(We saw a universe where P = NP, and another where P # NP)
Diagonalization is a technique that relies in the facts that:

o TMs are (effectively) represented by strings.

o A TM can simulate another without much overhead in
time/space.

So, diagonalization or any other proof technique relies only on
these two facts, holds also for every oracle.

Such results are called relativizing results.

E.g.,P4 C NP4, forevery A € {0,1}*.

The above two theorems indicate that P vs. NP is a
nonrelativizing result, so diagonalization and any other
relativizing method doesn’t suffice to prove it.

*Random Oracles

o We proved that:

o JAC T*: PA=NP*
o dBC ¥*: PE #£NP?

o What if we chose the oracle language at random?
o Now, consider the set /f = Pow(3*), and the sets:

{AcU: PP =NPY}

{Beu: P?£NPH}

o Can we compare these two sets, and find which is larger?

Theorem (Bennet, Gill)

Prycy- [PP £ NPP| =1

Oracles & The Polynomial Hierarchy
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See H. Vollmer & K.W. Wagner, “Measure one Results in Computational Complexity Theory”
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Cook Reductions

o A problem A is Cook-Reducible to a problem B, denoted by
A §‘} B, if there is an oracle DTM M? which in polynomial time
decides A (making at most polynomial many queries to B).

o Thatis: A € P?

o A<, B=A<,B
o A< A

Theorem
P, PSPACE are closed under SPT.

o Is NP closed under <2.2 (cf. Problem Sets!)
Complexity Classes Oracles & The Polynomial Hierarchy
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The Polynomial Hierarchy

The Polynomial Hierarchy

Polynomial Hierarchy Definition
o Al =¥ =1f =P
o A= P
o ¥, =NP¥
0 H‘f 1= coNP/
Q
— p
PH = 90 by
o E‘S =P

o A‘{ =P, E’{ = NP, H’{ = coNP
o A) =PNP ¥ = NPNP 1) = coNPN?
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The Polynomial Hierarchy

o X IPCXP

i+1
0o A BeX =
T~ _— AUBeY!,
NP D
AL =PNP ANBeX;
/ \ 20 Ac Hi] =
- »
I, = coNP? =5 — NP Aex
APZPNP éUB,AmB'dnd
/ i \ N Ac AI: /
I} = coNP ¥ = NP
P _ vy _
A0 - ZO -
— 7117 — AP —
=1 = A} =P
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Main Theorems

Proof (cont.):
IfLe Z‘i’ , we must show the existence or R:

o Le = 3INTM MK K € ¥ |, which decides L.

o KeXl | =3Selll ,: (ze K& Iw: (z,w) €9).

o We must describe a relation R (we know: x € L < accepting
computation of MX(x))

o Query Steps: “yes”— z; has a certificate w; st (z;, wi) € S.

o So, R(x) =“(x,y) € R iff yrecords an accepting computation
of M’ on x , together with a certificate w; for each yes query z; in the
computation.”

o We must show {x;y: (x,y) € R} € IV ;:

o Check that all steps of M’ are legal (poly time).
o Check that (z;, w;) € S (in ITY_,, and thus in TE_,).
o For all “no” queries z/, check z; ¢ K (another TIY ).
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Main Theorems

Theorem

Let L be a language , and i > 1. L € X¥ iff there is a polynomially
balanced relation R such that the language {x; y : (x,y) € R} isin II¥ |
and

L={x:3y,st:(x,y) €R}

Proof (by Induction): Th17.8, p.425-526 in [1]

o (Fori— 1

{x;y:(x,y) R} ePsoL={x|Ty: (x,y) € R} ENP V

o (Fori> 1)

If 4R € Hf_l, we must show that L € Ef =
3 NTM with X | oracle: NTM(x) guesses a y and asks [T/
oracle whether (x,y) ¢ R.
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Main Theorems

Corollary

Let L be a language ,andi > 1. L € Hf.’ iff there is a polynomially
balanced relation R such that the language {x; y : (x,y) € R} isin 3¢ _,
and

L={x:Yy|y < xf st (x,y) €R}

Corollary

Let L be a language , and i > 1. L € X¥ iff there is a polynomially
balanced, polynomially-time decicable (i + 1)-ary relation R such that:

L = {x:3y1Vy2Ty3...0y,s.t. : (x,y1,...,yi) € R}

where the " quantifier Qis V, if i is even, and 3, if i is odd.
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Main Theorems

Remark

P = (V3. / VAV Q) = (Vav.--Q /3 Q)
—_— —— —_— Y—
i quantifiers i quantifiers i quantifiers i quantifiers

Theorem

If for some i > 1, X' = IIY, then for all j > i

P _ 117 — AP — YP
2= I = AP = 3

Or, the polynomial hierarchy collapses to the i level.

y

Pl’OOf: Th.17.9, p.427 in [1]
o It suffices to show that: Ef = Hf' = Ef 1= P

1

P Py .
o LetLe Xl | = IRcI: L= {x3y: (x,y) € R}
oI =5 = Re X!
°o (x,y) ER& Iz: (x,y,2) €8, SeIll ;.
o So,xe€ L& Ty;z: (x,y,2) €S, S€Il? |, hence L € X O
Complexity Classes Oracles & The Polynomial Hierarchy
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Main Theorems

Theorem

If there is a PH-complete problem, then the polynomial hierarchy
collapses to some finite level.

Proof: Th.17.11, p.429 in [1]

©

Let L is PH-complete.
SinceLEPH,Ji>0:Le X
But any L’ € X, | reduces to L.

© © ©

Since PH is closed under reductions, we imply that L' € ¥/, so

zfzzl.’

i+1° 0

Theorem
PH C PSPACE J

o PH = PSPACE (Open). If it was, then PH has complete
problems, so it collapses to some finite level.
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Main Theorems

Corollary

If P=NP, or even NP=coNP, the Polynomial Hierarchy collapses to the
first level.

QSAT, Definition

Given expression ¢, with Boolean variables partitioned into i sets Xj,is
¢ satisfied by the overall truth assignment of the expression:

IX1VXo3Xs.....0Xio

where Q is 3 if i is odd, and V if i is even.

Theorem
For all i > 1 QSAT, is X/-complete.
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Main Theorems

Relativized Results

Let’s see how the inclusion of the Polynomial Hierarchy to Polynomial
Space, and the inclusions of each level of PH to the next relativizes:

o PH* + PSPACE relative to some oracle A C ©.*.
(Yao 1985, Hastad 1986)
o Pry[PH” # PSPACE"] = 1
(Cai 1986, Babai 1987)

o (Vie N) 224 ¢ 224 relative to some oracle A C 2.
(Yao 1985, Hastad 1986)

o Pra[(Vie N) =4 ¢ 22 =1

(Rossman-Servedio-Tan, 2015)
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Self-Reducibility of SAT

¢ ©

It is easy to see that:
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The Complexity of Optimization Problems

Self-Reducibility of SAT

For a Boolean formula ¢ with n variables and m clauses.

(& € SAT & (s, —0 € SAT) V (¢];,—1 € SAT)]

Definition (FSAT)

FSAT: Given a Boolean expression ¢, if ¢ is satisfiable then return a

© ©

Self-Reducibility Tree of depth n:
Example

Qb(X]_ ) XQ)

N

¢‘x1:0 ¢|x1:1

/ N\ / N\

¢|x1:0,x2:0 ¢|x1:0,x2:1 ¢|x1:1,x2:0 ¢‘X1=17x2:1

Thus, we can self-reduce SAT to instances of smaller size. satisfying truth assignment for ¢. Otherwise return “no”.

o FP is the function analogue of P: it contains functions computable
by a DTM in poly-time.

o FSAT € FP = SAT € P.

o What about the opposite?

o If SAT € P, we can use the self-reducibility property to fix
variables one-by-one, and retrieve a solution.

@ We only need 2n calls to the alleged poly-time algorithm for SAT.
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The Complexity of Optimization Problems

What about TSP? The Classes PN? and FPNF
o PSAT s the class of languages decided in pol time with a SAT
o We can solve TSP using a hypothetical algorithm for the oracle (Polynomial number of adaptive queries).

NP-complete decision version of TSP:

o SAT is NP-complete = PSAT=PNP

NP . .
o We can find the cost of the optimum tour by binary search (in the o FP™ is the class of functions that can be computed by a

interval [0, 2"]).

© When we find the optimum cost C, we fix it, and start changing
intercity distances one-by one, by setting each distance to C + 1.
o We then ask the NP-oracle if there still is a tour of optimum cost

at most C:

o If there is, then this edge is not in the optimum tour.
o If there is not, we know that this edge is in the optimum tour. o If z is a correct output of R(x), then S(z) is a correct output of x.

o After at most n? (polynomial) oracle queries, we can extract the

optimum tour, and thus have the solution to TSP.

poly-time DTM with a SAT oracle.
o FSAT, TSP € FP\P,

Definition (Reductions for Function Problems)

A function problem A reduces to B if there exists R, S € FL such that:

@ x€ A= R(x) €B.

Theorem
TSP is FPNP-complete.




Complexity Classes

000000000000 O0O0O0O00OO00OOOO0OOOO00OO0O00OOO0OOOO00OO000000000000
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The Complexity of Optimization Problems

o

Qo

What have we learned?

Oracle TMs have one-step oracle access to some language.
There exist oracles A, B C ¥* such that P4 = NP4 and
P? £ NP5,
Relativizing results hold for every oracle.
A Cook reduction A <. B is a poly-time TM deciding A, by
using B as an oracle.
The Polynomial Hierarchy can be viewed as:

o Oracle hierarchy of consecutive NP oracles.

o Quantifier hierarchy of alternating quantifiers.
If for some i > 1 Ef-’ = H’; , or there is a PH-complete
problem, then PH collapses to some finite level.

Optimization problems with decision version in NP (such as
TSP) are in FPNP.
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