Valiant Vazirani Theorem and Toda's Theorem

Algorithms and Complexity II

National Technical University of Athens

January 13, 2019

Overview

Valiant Vazirani Theorem

2 Toda's Theorem

Definitions

- USAT is the satisfiability problem for boolean formulas that are promised to have at most one satisfying assignment.
- \mathbb{GF}_2^n is the vector space of dimension n over \mathbb{GF}_2 , the field of two elements.
- Let \mathbb{F} be a field, \mathbb{F}^n be a vector space over \mathbb{F} , and let E be a subset of \mathbb{F}^n . Then E is a subspace of \mathbb{F}^n if:
 - **1** The zero vector, $\mathbf{0}$, is in E.
 - ② If x and y are elements of E, then the sum x + y is an element of E.
 - § If x is an element of E and c is a scalar from \mathbb{F} , then the scalar product cx is an element of E.
- For a set A of vectors, the orthogonal complement of A is the set $A^{\perp} = {}^{def} \{ \mathbf{y} | \forall \mathbf{x} \in A \ \mathbf{x} \cdot \mathbf{y} = 0 \}$, where \cdot denotes inner product.

Valiant Vazirani Lemma

Lemma

Let S be a nonempty subset of \mathbb{GF}_2^n . Let $E_0, ..., E_n$ be a random tower of linear subspaces of \mathbb{GF}_2^n ,

$$\{{\bf 0}\}=E_0\subset E_1\subset ...\subset E_n={\mathbb G}{\mathbb F}_2^n$$
, with dim $E_i=i$.

Then $Pr(\exists i | S \cap E_i| = 1) \geqslant \frac{3}{4}$.

How can we choose a tower of linear subspaces uniformly at random?

- Choose a random basis $x_1, ..., x_n$ of \mathbb{F}^n . This can be done efficiently.
- Define $E_i = \{x_1, ..., x_{n-i}\}^{\perp}$.
- Each E_i is represented by some random vectors $\mathbf{x_1}, ..., \mathbf{x_{n-i}}$.
- It holds that $E_{i-1} = E_i \cap \{\mathbf{x_{n-i+1}}\}^{\perp}$.

```
For example, if \mathbb{F}^n=\mathbb{G}\mathbb{F}_2^n, for n=4, and the random basis is \{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\}, then F_0=\{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\}^\perp=\{(0,0,0,0), (0,0,0,1)\} F_1=\{(1,0,0,0), (0,1,0,0), (0,0,1,0)\}^\perp=\{(0,0,0,0), (0,0,0,1)\} F_2=\{(1,0,0,0), (0,1,0,0)\}^\perp=\{(0,0,0,0), (0,0,0,1), (0,0,1,0), (0,0,1,1)\} F_3=\{(1,0,0,0)\}^\perp=\{(0,0,0,0), (0,0,0,1), (0,0,1,0), (0,1,0,0), (0,1,0,1), (0,1,1,0), (0,0,1,1), (0,1,1,1)\} F_4=\mathbb{G}\mathbb{F}_2^4
```

Valiant Vazirani Theorem

Theorem ([Valiant and Vazirani, 1986])

 $NP \subseteq RP^{USAT}$.

Proof. We show that $SAT \in RP^{USAT}$.

That is, we show that there is a polynomial-time bounded probabilistic oracle Turing machine M with oracle USAT such that:

$$\phi$$
 is satisfiable $\Rightarrow Pr(M \text{ accepts } \phi) \geqslant \frac{3}{4}$, ϕ is unsatisfiable $\Rightarrow Pr(M \text{ accepts } \phi) = 0$.

- Let ϕ be the input formula and w a string of random bits that M produces.
- $M(\phi \# w)$ constructs a random tower of linear subspaces $F_i \subseteq \mathbb{GF}_2^n$ (as in the Lemma), where n is the number of boolean variables $x_1, ..., x_n$ of ϕ .
- For each $0 \le i \le n$, M constructs a formula ψ_i , the satisfying assignments of which are the n-vectors of F_i .

Valiant Vazirani Theorem

Proof cont.

- This construction is a straightforward encoding of the inner product of $(x_1, ..., x_n)$ with the random vectors representing F_i .
- The machine M queries the oracle on the conjunctions $\phi \wedge \psi_i$ and accepts iff the oracle responds "yes" to any of these queries.
- Let S be the set of truth assignments satisfying ϕ .
 - ① If $S \neq \emptyset$, then $Pr_w(M \text{ accepts } \phi \# w) = Pr(\exists i \phi \land \psi_i \in USAT) = Pr(\exists i | S \cap F_i| = 1) \geqslant \frac{3}{4}$.
 - ② If $S = \emptyset$, then $Pr_w(M \text{ accepts } \phi \# w) = Pr(\exists i \phi \land \psi_i \in USAT) = Pr(\exists i | S \cap F_i| = 1) = 0.$

How we encode F_i by ψ_i ?

- Let $\mathbf{a_1}, ..., \mathbf{a_n}$ be a random basis of \mathbb{GF}_2^n . Then, $F_{i-1} = \{\mathbf{a_1}, ..., \mathbf{a_{n-i+1}}\}^{\perp} = F_i \cap \{\mathbf{a_{i-n+1}}\}^{\perp}$.
- For example, if ϕ has 4 variables, x_1, x_2, x_3, x_4 , and the basis chosen is $\{\mathbf{a_1} = (1,0,0,0), \mathbf{a_2} = (0,1,0,0), \mathbf{a_3} = (0,0,1,0), \mathbf{a_4} = (0,0,0,1)\}$, then
 - $F_4 = \mathbb{GF}_2^4$ is encoded by $\psi_4 = (x_1 \vee \neg x_1) \wedge (x_2 \vee \neg x_2) \wedge (x_3 \vee \neg x_3) \wedge (x_4 \vee \neg x_4)$, i.e. all truth assignments satisfy ψ_4 .
 - ② $F_3 = F_4 \cap \{(0,0,0,1)\}^{\perp}$ is encoded by $\psi_3 = \psi_4 \wedge (x_1 \vee \neg x_1) \wedge (x_2 \vee \neg x_2) \wedge (x_3 \vee \neg x_3) \wedge (\neg x_4)$, i.e. all the satisfying truth assignments of ψ_3 correspond to vectors orthogonal to (0,0,0,1).
 - **③** $F_2 = F_3 \cap \{(0,0,1,0)\}^{\perp}$ is encoded by $\psi_2 = \psi_3 \wedge (x_1 \vee \neg x_1) \wedge (x_2 \vee \neg x_2) \wedge (\neg x_3) \wedge (x_4 \vee \neg x_4).$
 - **③** $F_1 = F_2 \cap \{(0,1,0,0)\}^{\perp}$ is encoded by $\psi_1 = \psi_2 \wedge (x_1 \vee \neg x_1) \wedge (\neg x_2) \wedge (x_3 \vee \neg x_3) \wedge (x_4 \vee \neg x_4).$
 - **5** $F_0 = F_1 \cap \{(1,0,0,0)\}^{\perp} = \{(0,0,0,0)\}$ is encoded by $\psi_0 = \psi_1 \wedge (\neg x_1) \wedge (x_2 \vee \neg x_2) \wedge (x_3 \vee \neg x_3) \wedge (x_4 \vee \neg x_4).$

Proof of VVL

Lemma

Fix a set
$$S \subseteq \mathbb{F}_2^n$$
, then for $\mathbf{x_1},...,\mathbf{x_{n+1}} \in_R \mathbb{F}_2^n$, (a) if $\mathbf{0} \in S$, then $Pr(|S \cap \{\mathbf{x_1},\mathbf{x_2},...,\mathbf{x_{n+1}}\}^{\perp}|=1) > \frac{1}{2}$ (b) if $\mathbf{0} \notin S$, and $2^{i-1} \leqslant |S| \leqslant 2^i$, then $Pr(|S \cap \{\mathbf{x_1},\mathbf{x_2},...,\mathbf{x_{i+1}}\}^{\perp}|=1) > \frac{1}{8}$.

Proof.(a) Since we always have $\mathbf{0} \in \{\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_{n+1}}\}^{\perp}$, if $\mathbf{0} \in S$, then $\mathbf{0} \in S \cap \{\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_{n+1}}\}^{\perp}$. For any $\mathbf{x} \in \mathbb{F}_2^n$, $\mathbf{x} \neq \mathbf{0}$, we have for any j that $Pr(\mathbf{x_j} \cdot \mathbf{x} = 0) = \frac{1}{2}$. Therefore, since the $\mathbf{x_j}$ are chosen independently, $Pr(\mathbf{x_1} \cdot \mathbf{x} = \mathbf{x_2} \cdot \mathbf{x} = ... = \mathbf{x_{n+1}} \cdot \mathbf{x} = 0) = \frac{1}{2^{n+1}}$. Thus $Pr(\exists \mathbf{x} \in S - \{\mathbf{0}\}, \mathbf{x} \in \{\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_{n+1}}\}^{\perp}) \leqslant \sum_{\mathbf{x} \in S - \{\mathbf{0}\}} Pr(\mathbf{x} \in \{\mathbf{x_1}, \mathbf{x_2}, ..., \mathbf{x_{n+1}}\}^{\perp}) = \frac{|S| - 1}{2^{n+1}} < \frac{1}{2}$. It follows that with probability greater than $\frac{1}{2}$, $\mathbf{0}$ is the only element of

 $S \cap \{x_1, x_2, ..., x_{n+1}\}^{\perp}$.

Proof of VVL

Lemma

```
Fix a set S \subseteq \mathbb{F}_2^n, then for \mathbf{x_1},...,\mathbf{x_{n+1}} \in_R \mathbb{F}_2^n, (a) if \mathbf{0} \in S, then Pr(|S \cap \{\mathbf{x_1},\mathbf{x_2},...,\mathbf{x_{n+1}}\}^{\perp}|=1) > \frac{1}{2} (b) if \mathbf{0} \notin S, and 2^{i-1} \leqslant |S| \leqslant 2^i, then Pr(|S \cap \{\mathbf{x_1},\mathbf{x_2},...,\mathbf{x_{i+1}}\}^{\perp}|=1) > \frac{1}{8}.
```

Proof.(b) Suppose that
$$\mathbf{0} \not\in S$$
 and $2^{i-1} \leqslant |S| \leqslant 2^i$. Define $h(\mathbf{x}) = (\mathbf{x_1} \cdot \mathbf{x}, ... \mathbf{x_{i+1}} \cdot \mathbf{x}) \in \mathbb{F}_2^{i+1}$ Then, $Pr[h(\mathbf{x}) = \mathbf{0}] = \frac{1}{2^{i+1}}$. Suppose now that $\mathbf{x} \neq \mathbf{y}$ and $\mathbf{x}, \mathbf{y} \neq \mathbf{0}$. Then, $Pr[h(\mathbf{x}) = h(\mathbf{y}) = \mathbf{0}] = 1/2^{2(i+1)}$ for $\mathbf{x}, \mathbf{y} \in S$, $\mathbf{x} \neq \mathbf{y}$.

Thus,
$$Pr[\exists \mathbf{y} \in S \setminus \{\mathbf{x}\}.h(\mathbf{x}) = h(\mathbf{y}) = \mathbf{0}] \le$$

 $\le \sum_{\mathbf{y} \in S \setminus \{\mathbf{x}\}} Pr[h(\mathbf{x}) = h(\mathbf{y}) = \mathbf{0}] = \frac{|S|-1}{2^{2(i+1)}} < \frac{1}{2^{i+2}}$, since $|S| \le 2^i$.

Proof of VVL

Proof.(b) Therefore, $Pr[h(\mathbf{x}) = \mathbf{0} \text{ and } \forall \mathbf{y} \in S \setminus \{\mathbf{x}\}.h(\mathbf{y}) \neq \mathbf{0}] = \\ = Pr[h(\mathbf{x}) = \mathbf{0}] - Pr[\exists \mathbf{y} \in S \setminus \{\mathbf{x}\}.h(\mathbf{x}) = h(\mathbf{y}) = \mathbf{0}] > \frac{1}{2^{i+1}} - \frac{1}{2^{i+2}} = \frac{1}{2^{i+2}}. \\ \text{Taking the union of these events, which are disjoint, over all choices of } \mathbf{x} \in S, \\ Pr[\exists \mathbf{x}.h(\mathbf{x}) = \mathbf{0} \text{ and } \forall \mathbf{y} \in S \setminus \{\mathbf{x}\}.h(\mathbf{y}) \neq \mathbf{0}] > \frac{|S|}{2^{i+2}} \geq \frac{2^{i-1}}{2^{i+2}} = \frac{1}{8}, \text{ since}$

 $|S| > 2^{i-1}$.

Logspace analog of Valiant-Vazirani Theorem

Theorem ([Avi Wigderson, 1994])

$$STCONN \le_{RL}^{1/n^3} UNIQUE - STCONN$$

That is, there is a logspace bounded probabilistic oracle Turing machine M with oracle UNIQUE - STCONN such that

G has at least one s-t path $\Rightarrow Pr(M \text{ accepts } G) \geqslant \frac{1}{n^3}$, G has no s-t path $\Rightarrow Pr(M \text{ accepts } G) = 0$.

Lemma (2)

$$BP \cdot \oplus P \subseteq P^{\#P}$$
.

Proof. Let $L \in BP \cdot \oplus P$. Then there exists $A \in \oplus P$ such that for all x

- $x \in L \Rightarrow \exists^+ y : x; y \in A$
- $x \notin L \Rightarrow \exists^+ y : x, y \notin A$

where y has length $|x|^k$ for some $k \in \mathbb{N}$. Equivalently,

- $x \in L \Rightarrow |W(n^k, A, x)| \geqslant \frac{3}{4} \cdot 2^{|x|^k}$
- $x \notin L \Rightarrow |W(n^k, A, x)| \leqslant \frac{1}{4} \cdot 2^{|x|^k}$

where $W(n^k, A, x)$ is the witness set

$$W(n^k, A, x) = ^{def} \{ y \in \{0, 1\}^{|x|^k} : x; y \in A \}.$$

Proof cont. Because $A \in \oplus P$, there exists a polynomial-time nondeterministic TM M such that x; $y \in A$ iff $acc_M(x; y)$ is odd.

We construct M' such that

- $acc_M(x; y) \equiv 1 \pmod{2} \Rightarrow acc_{M'}(x; y) \equiv -1 \pmod{2^{|x|^{k+1}}}$
- $acc_M(x; y) \equiv 0 \pmod{2} \Rightarrow acc_{M'}(x; y) \equiv 0 \pmod{2^{|x|^{k+1}}}$

How?

The machine M' has $h^m(acc_M(x; y))$, where $h(z) = 4z^3 + 3z^4$, and $m = log(|x|^k + 1)$.

It holds that

z is odd
$$\Rightarrow h^m(z) \equiv -1 \pmod{2^{2^{m}}}$$

z is even $\Rightarrow h^m(z) \equiv 0 \pmod{2^{2^m}}$

Now we can determine membership in L by a $P^{\#P}$ computation as follows: we construct a new TM N that on input x of length n:

- generates all possible strings x, y with $|y| = n^k$ by nondeterministic branching, one computation path for each such string,
- 2 for each x; y, runs M' on x; y.

If we know this quantity we can decide if $x \in L$. Why?

Recall that $L \in BP \cdot \oplus P$.

Thus there exists $A \in \oplus P$ such that for all x

•
$$x \in L \Rightarrow \frac{3}{4} \cdot 2^{|x|^k} \leqslant |W(n^k, A, x)| \leqslant 2^{|x|^k} \Rightarrow$$

$$2^{|x|^k} \leqslant 2^{|x|^{k+1}} - |W(n^k, A, x)| \leqslant \frac{5}{4} \cdot 2^{|x|^k}$$

•
$$x \notin L \Rightarrow 0 \leqslant |W(n^k, A, x)| \leqslant \frac{1}{4} \cdot 2^{|x|^k} \Rightarrow$$

$$\frac{7}{4} \cdot 2^{|x|^k} \leqslant 2^{|x|^{k+1}} - |W(n^k, A, x)| \leqslant 2^{|x|^{k+1}}.$$

So a polynomial-time TM makes an oracle call for $acc_N(x)$ and computes $acc_N(x) \mod 2^{|x|^{k+1}}$.

References

L.G. Valiant and V.V. Vazirani

NP is as easy as detecting unique solutions

Theoretical Computer Science 47 (1986), 85 – 93.

Dexter Kozen

Theory of Computation

Springer, New York, 2006.

Avi Wigderson

 $NL/poly \subseteq \oplus L/poly$

Structure in Complexity Theory Conference 1994: 59–62.