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Introduction

• Suppose a mathematician circulates a proof of an important result,
say Riemann Hypothesis, fitting 10 thousand pages.

• To verify it would take us several years, going through all of those
pages.

• Weird question: Can we do better than that? (e.g. ignore most part
of the proof)

• Even weirder answer: Yes, according to the PCP theorem.
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The idea behind PCP

So, the mathematician can rewrite his proof in a certain format. the PCP
format, so we can verify it by probabilistically selecting a constant number
of bits to examine it. Furthermore, this verification has the following
properties:

1. A correct proof will always convince us.
2. A false proof will convince us with only negligible probability (2−100 if

we examine 300 bits).
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The idea behind PCP

• In general, a mathematical proof is invalid if it has even a single error
somewhere, which can be very difficult to detect.
• What the PCP theorem tells us is that there is a mechanical way to

rewrite the proof so that the error is almost everywhere!

A nice analogue is the following:

Initial Proof PCP transformation PCP format
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Standard definitions of NP

From now on, we shall refer to languages L ⊆ {0, 1}∗.

Definition (Classic definition)
NP =

⋃
c∈N

NTIME(nc)

Definition (YES-certificate definition)
A language L is in NP if there exists a polynomial p and a
polynomial-time TM V (called verifier) such that, given an input x ,
verifies certificates (proofs), denoted π:

x ∈ L⇒ ∃π ∈ {0, 1}p(|x |) : V (x , π) = 1
x /∈ L⇒ ∀π ∈ {0, 1}p(|x |) : V (x , π) = 0

If V (x , π) = 1, then we call π a correct proof for x.
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Towards a new characterization of NP

Definition (PCP verifier)
Let L be a language and r , q : N→ N. We say that L has an
[r(n), q(n)]-PCP verifier if there is a polynomial-time TM V such that:

On input x ∈ {0, 1}n and a string π ∈ {0, 1}∗, V uses at most r(n)
random coins and makes at most q(n) non-adaptive queries to locations of
π, satisfying

• Completeness: x ∈ L⇒ ∃π ∈ {0, 1}∗ : Pr[V (x , π) = 1] = 1.

• Soundness: x /∈ L⇒ ∀π ∈ {0, 1}∗ : Pr[V (x , π) = 1] ≤ 1
2 .

We say that L ∈ PCP[r(n), q(n)], if L has a [r(n), q(n)]-PCP verifier.
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Towards a new characterization of NP

Notes:
1. Proofs checkable by an [r , q]-PCP verifier are of length at most q2r .

The verifier looks at only q bits of the proof for any particular choice
of its random coins, and there are only 2r such choices.

2. The constant 1/2 in the soundness condition is arbitrary, in the sense
that we can execute the verifier multiple times to make the constant
as small as we want.

Vasilis Margonis (CoReLab, NTUA) PCP April 25, 2018 10 / 37



The PCP theorem

By the definitions of P and NP:
• P = PCP[0, 0]
• NP = PCP[0, poly(n)]

Surprisingly...

Theorem (Arora, Safra, Lund, Motwani, Sudan, Szegedy)

NP = PCP[O(logn),O(1)]
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Proof of the PCP theorem - easy direction

Lemma

PCP[O(logn),O(1)] ⊆ NP

Proof.
An [O(logn),O(1)]-PCP verifier can check proofs of length at most

2O(logn)O(1) = O(nc).

Hence, a nondeterministic machine could “guess” the proof in O(nc) time,
and verify it deterministically by running the verifier for all 2O(logn) = nc

possible outcomes of its random coin tosses. If the verifier accepts for all
these possible coin tosses then the nondeterministic machine accepts.

Let p(n) be the running time of the verifier. Then,

PCP[O(logn),O(1)] ⊆ NTIME[O(nc) + nc · p(n)] ⊆ NP.
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Proof of the PCP theorem - hard direction

Lemma

NP ⊆ PCP[O(logn),O(1)]

The original proof is very extensive and outside the scope of this
presentation. However, Irit Dinur gave a significantly simpler (but still
hard) proof in 2007.
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Motivation: Approximate solutions to NP-hard problems

• Since the discovery of NP-completeness in 1972, researchers tried to
efficiently compute good approximate solutions to NP-hard
optimization problems.
• After failing to design good approximation algorithms for some

problems, they tried to give inapproximability results, but this effort
also stalled.
• Researchers slowly began to realize that classic Cook/Karp style

reductions do not suffice for proving limits on approximation
algorithms. (apart from few isolated successes)
• The PCP Theorem, not only gave a new characterization of NP, but

also provided a new type of reductions suitable for proving hardness of
approximation, the gap-producing reductions.
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Case Study: Max-3Sat

Input: A 3CNF formula φ, with n variables and m clauses.

e.g. φ = (x1 ∨ x̄2 ∨ x4) ∧ . . . ∧ (x2 ∨ x̄3 ∨ x̄n)

Goal: Find an assignment that satisfies as many clauses as possible.

Definition
• val(φ) denotes the maximum fraction of clauses that can satisfied by

any assignment. For example, φ is satisfiable iff val(φ) = 1.

• Let ρ < 1. An algorithm A is an ρ-approximation algorithm for
Max-3SAT if for every 3CNF formula φ with m clauses,

SOL(A) ≥ ρ · val(φ) ·m︸ ︷︷ ︸
OPT

.
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A simple randomized algorithm for Max-3Sat

Algorithm
For every variable xi , set xi = 1 with probability 1

2 , independently.

Claim
This is a 7

8 -approximation algorithm (in expectation).

Proof: We define the following random variable for every clause Cj

Yj =
{

1, clause j is satisfied
0, otherwise

Then, the number of clauses satisfied by the algorithm is

SOL =
m∑

j=1
Yj
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A simple randomized algorithm for Max-3Sat

• For every clause Cj

Pr[Yj = 1] = 1−
(1

2

)3
= 7

8 .

• Hence,

E[SOL] = E

 m∑
j=1

Yj

 =
m∑

j=1
Pr[Yj = 1] =

m∑
j=1

7
8 = 7

8m ≥ 7
8OPT.

Remark
This algorithm can be derandomized via the method of conditional
expectations. (See appendix section)
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The hardness of approximation view

• Any hope for a PTAS or an FPTAS?
• The PCP Theorem implies that the answer is NO (unless P = NP).

The reason is that it is equivalent to the following theorem.

Theorem (Gap-producing reduction)
There exists ρ < 1 such that ∀L ∈ NP there is a polynomial-time function
f mapping strings to 3CNF formulas such that:

x ∈ L⇒ val(f (x)) = 1 (1)
x /∈ L⇒ val(f (x)) < ρ (2)
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Max-3SAT is APX-hard

Corollary
There exists some constant ρ < 1 such that there is no polynomial-time
ρ-approximation algorithm for Max-3SAT, unless P = NP.

• Indeed, we can convert a ρ-approximation algorithm A for
Max-3SAT into an algorithm deciding L.

• We apply the reduction f on x and then run the approximation
algorithm to the resultant 3CNF formula f (x).

• (1) and (2) together imply that x ∈ L iff A(f (x)) returns an
assignment that satisfies at least a ρ fraction of f (x)’s clauses.
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Recap

• There is a deterministic 7
8 -approximation algorithm.

• There exists a constant ρ < 1 such that there is no ρ-approximation
unless P = NP.
• No hope for a PTAS.

Question: Can we do better than 7/8?

More important question: what is the actual value of ρ?

Håstad answered both...
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Only 3 bits ?

Theorem (Håstad, 1997)

NP = PCP1−ε, 1
2 +ε[O(logn), 3], ∀ε > 0

Moreover, the tests used by V are linear: Given a proof π ∈ {0, 1}m, V
chooses a random triple (i , j , k) and a bit bijk ∈ {0, 1} according to some
distribution and accepts iff πi ⊕ πj ⊕ πk = bijk .
• Completeness:

x ∈ L⇒ ∃π ∈ {0, 1}m : Pr
(i ,j,k)∈[m]3

[
πi ⊕ πj ⊕ πk = bijk

]
≥ 1− ε

• Soundness:

x /∈ L⇒ ∀π ∈ {0, 1}m : Pr
(i ,j,k)∈[m]3

[
πi ⊕ πj ⊕ πk = bijk

]
≤ 1

2 + ε
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3-bit PCP and Max-E3LIN

• We can convert the computation of Håstad’s 3-bit PCP into an
instance of a problem called Max-E3LIN, as follows:

π1 ⊕ π1 ⊕ π1 = b111

π1 ⊕ π1 ⊕ π2 = b112

...
πm ⊕ πm ⊕ πm = bmmm

I If x ∈ L, ∃π = (π1, . . . , πm) that
satisfies all constraints.

I If x /∈ L, ∀π = (π1, . . . , πm) at
most a (1/2 + ε) fraction of
constraints can be satisfied.

Corollary
H̊astad’s Theorem implies that there is no (1/2 + ε)-approximation for
Max-E3LIN, for every ε > 0.

• This is a tight result! The problem has a simple 1
2 -approximation

algorithm.
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Hardness of approximating Max-3SAT

Corollary
For every ε > 0, (7/8 + ε)-approximation to Max-3SAT is NP-hard.

Proof: Take an instance of Max-E3LIN with n variables and m
constraints, where we want to determine whether at least a (1− ν) or at
most a (1/2 + ν) fraction of constraints can be satisfied. We Construct an
an instance of Max-3SAT with 4m clauses and n variables:

E1 : x1⊕x2 ⊕ x3 = 0
E2 : x4⊕x1 ⊕ x7 = 1

...
Em : x5⊕xn ⊕ x9 = 1

⇒

E1 :
{

(x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x3),
(x1 ∨ x2 ∨ x3), (x1 ∨ x2 ∨ x3).

...

Em :
{

(x5 ∨ xn ∨ x9), (x5 ∨ xn ∨ x9),
(x5 ∨ xn ∨ x9), (x5 ∨ xn ∨ x9).
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Hardness of approximating Max-3SAT

• If xi , xj , xk satisfy a linear constraint, then they satisfy all four
corresponding clauses. Otherwise, they satisfy exactly three clauses.

• Completeness: If at least a (1− ν) fraction of constraints can be
satisfied, then the fraction of clauses that can be satisfied is at least

(1− ν) · 4
4 + ν · 3

4 =
(

1− ν

4

)

• Soundness: If at most a (1/2 + ν) fraction of constraints can be
satisfied, then the fraction of clauses that can be satisfied is at most(1

2 + ν

)
· 4

4 +
(1

2 − ν
)
· 3

4 =
(7

8 + ν

4

)
= ρ

• Therefore, it is NP-hard to approximate Max-3SAT within a factor
better than ρ = (7/8 + ν/4) = (7/8 + ε).
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Vertex Cover & Independent Set

Vertex Cover:
• Current best:

(
2−Θ

(
1/
√

log |V |
))

-apx. [Karakostas, 2009]
• NP-hard to approximate within a factor of 1.3606. [Dinur & Safra,

2005]
• If UGC is true, Vertex Cover cannot be approximated within any

constant factor better than 2. [Khot & Regev, 2008]
Independent Set:
• Trivial (1/n)-approximation: return any vertex of the graph.
• For every ε > 0 there is no (1/n1−ε)-approximation algorithm.

[Zuckerman, 2007]
• No (2O(

√
log d)/d)-approximation algorithm exists, where d is the

graph’s maximum degree. [Trevisan, 2001]
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Max Cut & Metric TSP

Max-Cut:
• NP-hard to approximate with a ratio better than 16/17 ≈ 0.941.

[Håstad, 2001]
• Using semidefinite programming, there is an approximation algorithm

with a ratio of α ≈ 0.878. [Goemans & Williamson, 1995]
• If UGC is true, this is the best possible approximation ratio for Max

Cut. [Khot et al., 2007]
Metric TSP:
• The best known approximation ratio is 3/2. [Christofides, 1976]
• 5500-apx for asymmetric distances. [Svensson, Tarnawski & Végn,

2017]
• There is no polynomial time algorithm for Metric TSP with

performance ratio better that 123/122 (and 75/74 for asymmetric
distances). [Karpinski, Lampis & Schmied, 2013]
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Colorability

• For every ε > 0, there is no n1−ε-approximation algorithm.
[Zuckerman, 2007]

An interesting special case of the problem is to devise algorithms that
color a 3-colorable graph with a minimum number of colors.

• There is a polynomial time algorithm that colors every 3-colorable
graph with at most Õ(n3/14≈0.214) colors. [Karger & Blum, 1997]
• There is no polynomial time algorithm that colors every 3-colorable

graph using at most 4 colors. [Khanna, Linial & Safra, 1993]

This is one of the largest gaps between known approximation algorithms
and known inapproximability results.
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Deterministic choices

We saw the following randomized algorithm for Max-3SAT

Algorithm
For every variable xi , set xi = 1 with probability 1

2 , independently.

and we proved that

E[SOL] = E

 m∑
j=1

Yj

 =
m∑

j=1
Pr[Yj = 1] =

m∑
j=1

7
8 = 7

8m ≥ 7
8OPT.

Idea: What if we set x1 = b1 ∈ {0, 1} deterministically and all others 1
with probability 1

2?

Then, the number of clauses satisfied would be E[SOL|x1 = b1].
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Maximization of conditional expectations

• We have

E[SOL] = E[SOL|x1 = 0] · Pr[x1 = 0] + E[SOL|x1 = 1] · Pr[x1 = 1]

= 1
2
(

E[SOL|x1 = 0]︸ ︷︷ ︸
E0

+ E[SOL|x1 = 1]︸ ︷︷ ︸
E0

)
.

• So E[SOL] is a convex combination of E0 and E1. Hence,

max
b1∈{0,1}

E[SOL|x1 = b1] ≥ E[SOL] = 7
8m.

• Suppose that we set x1 = b1 ∈ {0, 1} so as to maximize the
conditional expectation E[SOL|x1 = b1], and for the rest variables we
continue with probability 1/2. Then, in expectation, we satisfy at
least as many clauses as the full-randomized algorithm!
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Derandomizing...

Do the same for all variables, sticking with every choice along the way.

Algorithm 1 De-randomized(φ, n,m)
1: for i=1:n do
2: E0 ← E[SOL | x1 = b1, . . . , xi−1 = bi−1, xi = 0];
3: E1 ← E[SOL | x1 = b1, . . . , xi−1 = bi−1, xi = 1];
4: if E0 ≥ E1 then
5: bi ← 0;
6: else
7: bi ← 1;
8: end if
9: end for

10: Output: Assign bi to variable xi .
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Analysis

• In every iteration i ∈ [n], we choose bi so as to maximize the
conditional expectation

E[SOL|x1 = b1, . . . , xi = bi ].
• We already proved that

E[SOL|x1 = b1] ≥ E[SOL] = 7
8m.

• Using the same argument, for every i ∈ {2, . . . , n}

E[SOL|x1 = b1, . . . , xi = bi ] ≥ E[SOL|x1 = b1, . . . , xi−1 = bi−1].
• Then, by induction:

E[SOL|x1 = b1, . . . , xn = bn] ≥E[SOL|x1 = b1, . . . , xn−1 = bn−1]
...

≥E[SOL|x1 = b1] ≥ E[SOL] = 7
8m.
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Analysis

• E[SOL|x1 = b1, . . . , xn = bn] is the number of clauses satisfied by the
algorithm. Thus, the derandomized algorithm is a deterministic
7/8-approximation.
• We must show that in each iteration i the conditional expectation can

be computed in polynomial time.
• We have that

E[SOL|x1 = b1, . . . , xi = bi ] =
m∑

j=1
Pr[Yj = 1|x1 = b1, . . . , xi = bi ]︸ ︷︷ ︸

Pj

.

• Let Cj = (l1 ∨ l2 ∨ l3), then

Pj =


1, one literal already true
0, all literals already false

3/4, one literal already false
1/2, two literals already false

• We compute Pj in O(1)
time. So, naively, the
running time of the
algorithm is O(n ·m).
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