Epyaothpio Aoyikhc ko Emiotiune Tmoloyiopov
EBviké6 Metodfio MoAvteyveio

2015-2016

[MAnpoyopiec MabBrjuatoc

Ocwpnrtikf MAnpopopikn | (XHMMT)
AXyépOpot & MoAvmAokéTnta Il (MIAY), A4-T.
Alddokovteg: L. Zdxoc, A. MayouvptlHcg
Bonfol Aiwdaokadioc: A. Avtwvémoudog, A. Xalk
Emupédetor Atovpavetov: A. Avtwvédmoviog

Aevtépa: 17:00 - 19:00 (1.1.31, Mok Ktipioe HMMT, EMIT)
Mépren: 15:00 - 17:00 (1.1.31, Mad Ktipie HMMY, EMIM)

‘Qpeg Mpovpeiov: Metd attd kdBe pndbnua, Mapookevn 11:00-13:00

Y eNido: www.corelab.ntua.gr/courses/complexity/

BaBpoAéynon:
Aloydviopo: 6 povadeg
Aoknoelg: 2 povédeg
Opthio: 2 povddec

Quizes : 2 povddeg

http://www.corelab.ntua.gr/courses/complexity/

Computation and Reasoning Laboratory
National Technical University of Athens

2015-2016

Professors:
S. Zachos, Professor
A. Pagourtzis, Ass. Professor

Slides: Antonis Antonopoulos

@@@@ This work is licensed under a Creative Commons Attribution-
TaTT NonCommercial- NoDerivatives 4.0 International License.

Bibliography

Textbooks

1 C. Papadimitriou, Computational Complexity, Addison
Wesley, 1994

2 S. Arora, B. Barak, Computational Complexity: A Modern
Approach, Cambridge University Press, 2009
3. 0. Goldreich, Computational Complexity: A Conceptual
Perspective, Cambridge University Press, 2008
Lecture Notes

1 L. Trevisan, Lecture Notes in Computational Complexity,
2002, UC Berkeley

2 E. Allender, M. Loui, and K. Regan, Three chapters for the
CRC Handbook on Algorithms and Theory of
Computation (M.J. Atallah, ed.), (Boca Raton: CRC Press,
1998).

Algorithms & Complexity Turing Machines Undecidability
0000 000000000 0000000000

Contents

Algorithms & Complexity Turing Machines Undecidability
[Yelole} 000000000 0000000000

Why Complexity?

Computational Complexity: Quantifying the amount of
computational resources required to solve a given task.
Classify computational problems according to their inherent
difficulty in complexity classes, and prove relations among
them.

Structural Complexity: “The study of the relations between
various complexity classes and the global properties of
individual classes. [...] The goal of structural complexity is a
thorough understanding of the relations between the various
complexity classes and the internal structure of these
complexity classes.” [J. Hartmanis]

Algorithms & Complexity Turing Machines Undecidability
ce00 000000000 0000000000

Problems....

Have answers of the form “yes” or “no”

Encoding: each instance x of the problem is represented as a
string of an alphabet X (|X| > 2).

Decision problems have the form “Is x in L?", where L is a
language, L C ¥*.

So, for an encoding of the input, using the alphabet ¥, we
associate the following language with the decision problem [1:

L(M) = {x € ¥* | x is a representation of a “yes” instance of the problem I}

Example

?
o Given a number X, is this number prime? (x € PRIMES)

o Given graph G and a number k, is there a clique with k (or more)
nodes in G?

Algorithms & Complexity Turing Machines Undecidability

coeo 000000000 0000000000
Problems....

For each instance x there is a

To each s € F(x) we map a positive integer c(x), using

We search for the solution s € F(x) which minimizes (or maximizes)
the objective function c(s).

Example

o The Traveling Salesperson Problem (TSP):
Given a finite set C = {c1,...,c,} of cities and a distance
d(ci, ¢j) € Z™,¥(ci, ¢j) € C?, we ask for a permutation 7 of
C, that minimizes this quantity:

n—1

> d(eniy, Eatirn)) + d(Cnny,)
i=1

Algorithms & Complexity Turing Machines Undecidability
cooe 000000000 0000000000
Problems....

A Model Discussion

There are many computational models (RAM, Turing
Machines etc).

The states that all computation
models are equivalent. That is, every computation model can
be simulated by a Turing Machine.

In Complexity Theory, we consider
the problems which are solved (aka the languages that are

decided) in (Edmonds-Cobham
Thesis).

Efficiently Computable = Polynomial-Time Computable J

Algorithms & Complexity Turing Machines Undecidability
0000 000000000 0000000000

Contents

Algorithms & Complexity Turing Machines Undecidability

0000 ©®00000000 0000000000

Definitions

A Turing Machine M is a quintuple M = (Q, X, d, qo, F):
Q = {90,91,92,93, - - -, dn; Ghalt; Gyes Gno} is a finite set of
states.
Y is the alphabet. The tape alphabet is ' = X U {U}.
qo € Q is the initial state.
F C Q is the set of final states.
d:(Q\F)xT — QxT x{S,L,R} is the transition function.

A TM is a “programming language” with a single data
structure (a tape), and a cursor, which moves left and right
on the tape.

Function 9 is the program of the machine.

Algorithms & Complexity Turing Machines Undecidability
0000 O®0000000 0000000000
Definitions

Turing Machines and Languages

Let L C X* be a language and M a TM such that, for every string
x EeX":

If x € L, then M(x) = "yes"

If x ¢ L, then M(x) = "no”
Then we say that

Alternatively, we say that M(x) = L(x), where L(x) = x(x)
is the characteristic function of L (if we consider 1 as “yes”

and 0 as “no").
If L is decided by some TM M, then L is called a

Algorithms & Complexity Turing Machines Undecidability
0000 OO®000000 0000000000

Definitions

If for a language L there is a TM M, which if x € L then
M(x) = "yes", and if x ¢ L then M(x) 1, we call L

*By M(x) 1 we mean that M does not halt on input x (it runs forever).

If L is recursive, then it is recursively enumerable. J

Proof: Exercise

Algorithms & Complexity Turing Machines Undecidability

0000 OO®000000 0000000000
Definitions

If for a language L there is a TM M, which if x € L then
M(x) = "yes", and if x ¢ L then M(x) 1, we call L

*By M(x) 1 we mean that M does not halt on input x (it runs forever).

If L is recursive, then it is recursively enumerable.

Proof: Exercise

If fis a function, f: ¥X* — ¥*, we say that a TM M computes f
if, for any string x € ¥, M(x) = f(x). If such M exists, f is
called a

Turing Machines can be thought as algorithms for solving
string related problems.

Algorithms & Complexity

Turing Machines Undecidability
0000

000800000 0000000000
Definitions

Multitape Turing Machines

We can extend the previous Turing Machine definition to
obtain a Turing Machine with multiple tapes:

A k-tape Turing Machine M is a quintuple M = (Q, X, 4§, qo, F):

Q = {90,91,92,93, - - -, Gn; Ghalt; Gyes, Gno } is a finite set of
states.

Y is the alphabet. The tape alphabet is ' = ¥ U {U}.
go € @ is the initial state.
F C Q is the set of final states.

§:(Q\F)xTk— Qx (Ix{S,L R} is the transition
function.

Algorithms & Complexity Turing Machines

Undecidability
0000

[eleleleY Tolelele) 0000000000
Properties of Turing Machines

Bounds on Turing Machines

We will characterize the “performance” of a Turing Machine
by the amount of time and space required on instances of size
n, when these amounts are expressed as a function of n.

Let T : N — N. We say that machine M operates within time
T(n) if, for any input string x, the time required by M to reach a
final state is at most T(|x|). Function T is a for M.

Let S : N — N. We say that machine M operates within space
S(n) if, for any input string x, M visits at most S(|x|) locations on

its work tapes (excluding the input tape) during its computation.
Function S is a for M.

Algorithms & Complexity Turing Machines Undecidability
0000 00000®000 0000000000

Properties of Turing Machines

Multitape Turing Machines

Given any k-tape Turing Machine M operating within time T (n),
we can construct a TM M’ operating within time O (T?(n)) such
that, for any input x € ¥*, M(x) = M'(x).

Proof: See Th.2.1 (p.30) in [1].

This is a strong evidence of the robustness of our model:
Adding a bounded number of strings does not increase their
computational capabilities, and affects their efficiency only
polynomially.

Algorithms & Complexity Turing Machines Undecidability
0000 000000®00 0000000000

Properties of Turing Machines

Linear Speedup

Let M be a TM that decides L C ¥*, that operates within time
T(n). Then, for every € > 0, there is a TM M’ which decides the
same language and operates within time T'(n) =T (n) + n+ 2.

Proof: See Th.2.2 (p.32) in [1].

If, for example, T is linear, i.e. something like cn, then this theorem
states that the constant ¢ can be made arbitrarily close to 1. So, it
is fair to start using the O (-) notation in our time bounds.

A similar theorem holds for space:

Let M be a TM that decides L C ¥*, that operates within space
S(n). Then, for every e > 0, there is a TM M’ which decides the
same language and operates within space S'(n) = S(n) + 2.

Algorithms & Complexity
0000

NTMs

Turing Machines Undecidability
000000080 0000000000

Nondeterministic Turing Machines

We will now introduce an unrealistic model of computation:

A Turing Machine M is a quintuple M = (Q, X, 4, qo, F):

Q — {q07 di,42,43,-..,dn, Gnalt, qye57 qno} is a finite set of
states.

Y is the alphabet. The tape alphabet is ' = ¥ U {U}.
go € @ is the initial state.
F C Q is the set of final states.

d:(Q\F)xT — Pow(Q xT x{S,L,R}) is the transition
relation.

Algorithms & Complexity Turing Machines Undecidability
0000 00000000e 0000000000

NTMs

Nondeterministic Turing Machines

In this model, an input is accepted if there is some sequence
of nondeterministic choices that results in “yes”.

An input is rejected if there is no sequence of choices that
lead to acceptance.

Observe the similarity with recursively enumerable languages.

We say that M operates within bound T(n), if for every input
x € L* and every sequence of nondeterministic choices, M reaches
a final state within T(|x|) steps.

The above definition requires that M does not have
computation paths longer than T(n), where n = |x| the
length of the input.

The amount of time charged is the depth of the

Algorithms & Complexity Turing Machines Undecidability
0000 000000000 0000000000

Contents

Algorithms & Complexity Turing Machines Undecidability
0000 000000000 ®000000000

Diagonalization

Diagonalization

Suppose there is a town with just
one barber, who is male. In this
town, the barber shaves all those,
and only those, men in town who
do not shave themselves. Who
shaves the barber?

George showed it wouldn’t fit in.

http://www.coopertoons.com/education/diagonal/diagonalargument.html

Algorithms & Complexity Turing Machines Undecidability
0000 000000000 O®00000000

Diagonalization

Diagonalization

The functions from N to N are uncountable. J

Proof: Let, for the sake of contradiction that are countable:

®1, 02, Consider the following function: f(x) = ¢x(x) + 1.
This function must appear somewhere in this enumeration, so let
¢y = f(x). Then ¢,(x) = ¢x(x) + 1, and if we choose y as an
argument, then ¢, (y) = ¢,(y) + 1. O

Algorithms & Complexity Turing Machines Undecidability
0000 000000000 00O®0000000

Simulation

Machines as strings

It is obvious that we can represent a Turing Machine as a
string: just write down the description and encode it using an
alphabet, e.g. {0,1}.

We denote by L M the TM M's representation as a string.
Also, if x € *, we denote by M, the TM that x represents.

o Every string represents some Turing Machine.
o Every TM is represented by infinitely many strings.

Turing Machines Undecidability

Algorithms & Complexity
000000000 000000000

0000

Simulation

The Universal Turing Machine

So far, our computational models are specified to solve a
single problem.

Turing observed that there is a TM that can simulate any
other TM M, given M's description as input.

There exists a TM U such that for every x,w € ¥*,

U(x, w) = My(x).

Also, if M,, halts within T steps on input x, then U(x,w) halts
within CT log T steps, where C is a constant indepedent of x, and
depending only on M,,’s alphabet size number of tapes and
number of states.

Proof: See section 3.1 in [1], and Th. 1.9 and section 1.7 in [2].

Algorithms & Complexity Turing Machines Undecidability
0000 000000000 0000®00000

Undecidability

The Halting Problem

Consider the following problem: “Given the description of a
TM M, and a string x, will M halt on input x? " This is
called the HALTING PROBLEM.

We want to compute this problem ! ! | (Given a
computer program and an input, will this program enter an
infinite loop?)

In language form: H= {LM_; x | M(x) |}, where “ | " means
that the machine halts, and “ 1" that it runs forever.

H is recursively enumerable. J

Proof: See Th.3.1 (p.59) in [1]
In fact, H is not just a recursively enumerable language:
If we had an algorithm for deciding H, then we would be able to
derive an algorithm for deciding any r.e. language (RE-complete).

Algorithms & Complexity Turing Machines Undecidability
0000 000000000 0000080000

Undecidability

The Halting Problem

But....

H is not recursive. J

Proof: See Th.3.1 (p.60) in [1]

Suppose, for the sake of contradiction, that there isa TM My
that decides H.

Consider the TM D:
| D(LMJ) : if My(M_J; LM_) = “yes” then 1 else “yes”
What is D(I_D_l)?

Algorithms & Complexity Turing Machines Undecidability
0000 000000000 0000080000
Undecidability

The Halting Problem

But....

H is not recursive. J

Proof: See Th.3.1 (p.60) in [1]
Suppose, for the sake of contradiction, that there isa TM My
that decides H.

Consider the TM D:

| D(LMJ) : if My(M_J; LM_) = “yes” then 1 else “yes”
What is D(I_D_l)?

If D(_DJ) 1, then My accepts the input, so LD; LDy € H, so
D(D) |.

If D(LDJ) |, then My rejects D ;LD 1, so LDy;D5 ¢ H, so
D(D) 1. O

Algorithms & Complexity Turing Machines Undecid. 3%
0000 000000000 000000000

Undecidability

Recursive languages are a proper subset of recursive
enumerable ones.

Recall that the complement of a language L is defined as:

I={xeX|x¢L}=x"\1L

1 [f L is recursive, so is L.

2 L is recursive if and only if L and L are recursively enumerable.

Proof: Exercise

Algorithms & Complexity Turing Machines Undecidability
0000 000000000 000000000

Undecidability

More Undecidability

The HALTING PROBLEM, our first undecidable problem, was
the first, but not the only undecidable problem. Its spawns a
wide range of such problems, via reductions.

To show that a problem A is undecidable we establish that, if
there is an algorithm for A, then there would be an algorithm
for H, which is absurd.

The following languages are not recursive:
L {M | M halts on all inputs}
2 {M;x | Thereis a y such that M(x) = y}
3. {M; x | The computation of M uses all states of M}
¢ {M;xy | M(x) =y}

Algorithms & Complexity Turing Machines Undecidability
0000 000000000 0000000080
Undecidability

Rice's Theorem

The previous problems lead us to a more general conlusion:

If a TM M accepts a language L, we write L = L(M):

Suppose that C is a proper, non-empty subset of the set of all

recursively enumerable languages. Then, the following problem is
undecidable:

Given a Turing Machine M, is L(M) € C?

Algorithms & Complexity Turing Machines Undecidability
0000 000000000 000000000e

Undecidability

Rice's Theorem

Proof: See Th.3.2 (p.62) in [1]

We can assume that) ¢ C (why?).
Since C is nonempty, 3 L € C, accepted by the TM M.

Let My the TM deciding the HALTING PROBLEM for an
arbitrary input x. For each x € ¥*, we construct a TM M as
follows:

| M(y) : if My(x) = "yes" then M,(y) else 1 |

We claim that: L(M) € C if and only if x € H.

Algorithms & Complexity Turing Machines Undecidability
0000 000000000 000000000e

Undecidability

Rice's Theorem

Proof: See Th.3.2 (p.62) in [1]

We can assume that) ¢ C (why?).

Since C is nonempty, 3 L € C, accepted by the TM M.

Let My the TM deciding the HALTING PROBLEM for an
arbitrary input x. For each x € ¥*, we construct a TM M as

follows:
| M(y) : if My(x) = "yes" then M,(y) else 1 |

We claim that: L(M) € C if and only if x € H.

Proof of the claim:

If x € H, then My(x) = “yes”, and so M will accept y or never
halt, depending on whether y € L. Then the language
accepted by M is exactly L, which is in C.

If My(x) T, M never halts, and thus M accepts the language
@, which is not in C. OJ

Complexity Classes
00000000000000000000000000000000

Contents

Complexity Classes
©0000000000000000000000000000000

Introduction

Parameters used to define complexity classes:

Model of Computation (Turing Machine, RAM, Circuits)
Mode of Computation (Deterministic, Nondeterministic,
Probabilistic)

Complexity Measures (Time, Space, Circuit Size-Depth)

Other Parameters (Randomization, Interaction)

Complexity Classes
0®000000000000000000000000000000

Introduction

Our first complexity classes

let LCY*, and T,S:N — N:

We say that L € DTIME[T (n)] if there exists a TM M
deciding L, which operates within the time bound O (T(n)),
where n = |x|.

We say that L € DSPACE[S(n)] if there exists a TM M
deciding L, which operates within space bound O (5(n)), that
is, for any input x, requires space at most S(|x|).

We say that L € NTIME[T (n)] if there exists a
nondeterministic TM M deciding L, which operates within the
time bound O (T (n)).

We say that L € NSPACE[S(n)] if there exists a
nondeterministic TM M deciding L, which operates within
space bound O (5(n)).

Complexity Classes
00®00000000000000000000000000000

Introduction

Our first complexity classes

The above are , in the sense that they
are sets of languages.

All these classes are parameterized by a function T or S, so
they are families of classes (for each function we obtain a
complexity class).

For any complexity class C, coC denotes the class: {L|Lec},
where L=Y*\L={xeX* | x¢ L}

We want to define “reasonable” complexity classes, in the
sense that we want to “compute more problems”, given more
computational resources.

Complexity Classes
000®0000000000000000000000000000

Constructible Functions

Constructible Functions

Can we use all computable functions to define Complexity
Classes?

For any computable functions r and a, there exists a computable
function f such that f(n) > a(n), and

DTIME[f(n)] = DTIME[r(f(n))]

That means, for r(n) = 22 the incementation from f(n) to
22" does not allow the computation of any new function!

So, we must use some restricted families of functions:

Complexity Classes
0000®000000000000000000000000000

Constructible Functions

Constructible Functions

A nondecreasing function T : N — N is if
T(n) > n and there is a TM M that computes the function
x = LT(|x])2 in time T(n).

A nondecreasing function S : N — N is if
S(n) > log n and there is a TM M that computes S(|x|) using
S(]x|) space, given x as input.

The restriction T(n) > n is to allow the machine to read its input.

The restriction S(n) > logn is to allow the machine to “remember”
the index of the cell of the input tape that it is currently reading.

Also, if fi(n), f2(n) are time/space-constructible functions, so are
fi+f, fi-fand £2.

Complexity Classes
00000®00000000000000000000000000

Complexity Classes

Constructible Functions

Let t1, to be time-constructible functions, and s1, s» be
space-constructible functions. Then:

v If t1(n) log t1(n) = o(t2(n)), then DTIME(t;) C DTIME(t,).
2 Ifti(n+ 1) = o(t2(n)), then NTIME(t;) C NTIME(z).

s If s1(n) = o(s2(n)), then DSPACE(s;) C DSPACE(s,).

« If si(n) = o(s2(n)), then NSPACE(s;) C NSPACE(sy).

Complexity Classes
00000080000000000000000000000000

Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

DTIME[n] C DTIME[n'9] J

Complexity Classes
00000080000000000000000000000000

Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

DTIME[n] C DTIME[n'9] J

Proof (Diagonalization): See Th.3.1 (p.69) in [2]
Let D be the following machine:

On input x, run for |x|'* steps U(M,, x);
If U(My,x)=b, then return 1— b;
Else return O;
Clearly, L = L(D) € DTIME[n9)]
We claim that L ¢ DTIME[n]:
Let L € DTIME[n] = 3 M : M(x) = D(x) Vx € ¥*, and M
works for O (x) steps.
The time to simulate M using U is c|x| log |x

, for some c.

Complexity Classes
00000008000000000000000000000000

Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

Proof (cont'd):

Ing : n** > cnlogn ¥Yn > ng

There exists a xy, s.t. xpy = .M and |xy| > ng (why?) Then,
D(xm) = 1 — M(xpm) (while we have also that D(x) = M(x), Vx)

Complexity Classes
00000008000000000000000000000000

Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

Proof (cont'd):

Ing : n** > cnlogn ¥Yn > ng

There exists a xy, s.t. xpy = .M and |xy| > ng (why?) Then,
D(xp) =1 — M(xm) (while we have also that D(x) = M(x), Vx)
Contradiction!! O

Complexity Classes
00000008000000000000000000000000

Complexity Classes

Simplified Case of Deterministic Time Hierarchy Theorem

Proof (cont'd):

dng : n** > cnlogn ¥Yn > ng

There exists a xy, s.t. xpy = .M and |xy| > ng (why?) Then,
D(xp) =1 — M(xm) (while we have also that D(x) = M(x), Vx)
Contradiction!! O

So, we have the hierachy:
DTIME[n] € DTIME[n?] C DTIME[n®] C - --

We will later see that the class containing the problems we
can efficiently solve (recall the Edmonds-Cobham Thesis) is
the class P = | ..y DTIME[n€].

Complexity Classes
00000000®00000000000000000000000

Relations among Complexity Classes

Hierarchy Theorems tell us how classes of the same kind
relate to each other, when we vary the complexity bound.
The most interesting results concern relationships between
classes of different kinds:

Suppose that T(n),S(n) are time-constructible and
space-constructible functions, respectively. Then:

1 DTIME[T(n)] € NTIME[T (n)]

> DSPACE[S(n)] € NSPACE[S(n)]

5 NTIME[T(n)] € DSPACE[T (n)]

4 NSPACE[S(n)] € DTIME[k'og+5(n)]

NTIME[T(n)] C |] DTIME[c"(")]
c>1

Complexity Classes
000000000®0000000000000000000000

Relations among Complexity Classes

Proof: See Th.7.4 (p.147) in [1]

1

2

3

Trivial

Trivial

We can simulate the machine for each nondeterministic
choice, using at most T(n) steps in each simulation.
There are exponentially many simulations, but we can
simulate them one-by-one, reusing the same space.

Recall the notion of a configuration of a TM: For a k-tape
machine, is a 2k — 2 tuple: (g, i, wa, 2, ..., Wk_1, Ux_1)
How many configurations are there?

|Q| choices for the state

n -+ 1 choices for i, and

Fewer than |X|(k=2)5(") for the remaining strings

So, the total number of configurations on input size n is at

| S
most nc; = clOg aesla)

Complexity Classes
0000000000e000000000000000000000

Relations among Complexity Classes

Proof (cont'd):

The configuration graph of M on input x, denoted G(M, x), has as
all the possible configurations, and there is an

between two vertices C and C’ if and only if C’ can be reached

from C in one step, according to M's transition function.

So, we have reduced this simulation to REACHABILITY*
problem (also known as S-T CONN), for which we know there
is a poly-time (O (n?)) algorithm.

So, the simulation takes czclz(log"+s(")) ~ klogn+5(n) steps. [

*REACHABILITY: Given a graph G and two nodes vq, v, € V, is there a
path from vy to v,,?

Complexity Classes
00000000000®00000000000000000000

Relations among Complexity Classes

The essential Complexity Hierarchy

L = DSPACE(log n]
NL = NSPACE]log n]
P = J DTIME[n‘]

ceN
NP = | J NTIME[n‘]
ceN
PSPACE = | | DSPACE[n‘]
ceN

NPSPACE = | | NSPACE[n‘]
ceN

Complexity Classes
000000000000e0000000000000000000

Relations among Complexity Classes

The essential Complexity Hierarchy

EXP = | DTIME[2"]
ceN

NEXP = |] NTIME[2"]
ceN

EXPSPACE = | | DSPACE[2"]
ceN

NEXPSPACE = |_J NSPACE[2"]
ceN

Complexity Classes
000000000000e0000000000000000000

Relations among Complexity Classes

The essential Complexity Hierarchy

EXP = | DTIME[2"]
ceN

NEXP = |] NTIME[2"]
ceN

EXPSPACE = | | DSPACE[2"]
ceN

NEXPSPACE = |_J NSPACE[2"]
ceN

LC NL C P C NP C PSPACE C NPSPACE C EXP C NEXP

Complexity Classes
0000000000000 e000000000000000000

Certificates & Quantifiers

Certificate Characterization of NP

Let R C X* X X* a binary relation on strings.

R is called if there isa DTM
deciding the language {x;y | (x,y) € R} in polynomial time.
R is called if (x,y) € R implies

ly| < |x|¥, for some k > 1.

Let L C X* be a language. L € NP if and only if there is a
polynomially decidable and polynomially balanced relation R, such
that:

L={x|3y R(x,y)}

This y is called , or

Complexity Classes
00000000000000e00000000000000000

Certificates & Quantifiers

Proof: See Pr.9.1 (p.181) in [1]
(<) If such an R exists, we can construct the following NTM
deciding L:

“On input x, guess a y, such that |y| < |x|¥, and then test (in
poly-time) if (x,y) € R. If so, accept, else reject.” Observe that
an accepting computation exists if and only if x € L.

(=) If L € NP, then 3 an NTM N that decides L in time |x|¥, for
some k. Define the following R:

“(x,y) € R if and only if y is an of an accepting
computation of N(x)."”

R is polynomially balanced and decidable (why?), so, given by
assumption that N decides L, we have our conclusion. [

Complexity Classes
000000000000000e0O00000000000000

Certificates & Quantifiers

Can creativity be automated?

As we saw:
Class P: Efficient Computation
Class NP: Efficient Verification
So, if we can efficiently verify a mathematical proof, can we
create it efficiently?

For every mathematical statement, and given a page limit, we would
(quickly) generate a proof, if one exists.

Given detailed constraints on an engineering task, we would
(quickly) generate a design which meets the given criteria, if one
exists.

Given data on some phenomenon and modeling restrictions, we
would (quickly) generate a theory to explain the date, if one exists.

See “A. Wigderson: Knowledge, Creativity and P versus NP"

http://www.math.ias.edu/~avi/PUBLICATIONS/MYPAPERS/AW09/AW09.pdf

Complexity Classes
00000000000000008O00000000000000

Certificates & Quantifiers

Complements of complexity classes

Deterministic complexity classes are in general closed under
complement (coL =L, coP = P, coPSPACE = PSPACE).
Complements of non-deterministic complexity classes are very
interesting:
The class coNP contains all the languages that have

(the analogue of succinct certificate for the
class NP). The “no” instance of a problem in coNP has a
short proof of its being a “no” instance.

So:
P CNPN coNPI

Note the similarity and the difference with R = RE N coRE.

Complexity Classes
00000000000000000e00000000000000

Certificates & Quantifiers

Quantifier Characterization of Complexity Classes

We denote as C = (Q1/Q2), where Q1, Q> € {3,V}, the class C of
languages L satisfying:

x € L= Qiy R(x,y)
x ¢ L= Qy —R(x,y)

P=(V/V)
NP = (3/V)
coNP = (V/3)

Complexity Classes
000000000000000000e0000000000000

Space Computation

Savitch's Theorem

REACHABILITY € NL. See Ex.2.10 (p.48) in [1]

REACHABILITY € DSPACE[log? n] J

Proof: See Th.7.4 (;.;.149) in [1]
PATH(x,y,i): “There is a path from x to y, of length < 2.
We can solve REACHABILITY if we can compute
PATH(x,y, [log n]), for any nodes x, y € V, since any path in
G can be at most nlog n long.
If i =0, we can check whether PATH(x,y,i).
Ifi>1:

| forall nodes z test whether PATH(x,z,i — 1) and PATH(z,y,i —1) |

Complexity Classes
0000000000000000000e000000000000

Space Computation

Savitch's Theorem

Proof (cont'd):

We generate all nodes z one after the other, reusing space.
Once a z is generated, we add (x, z,i — 1) to the tape, and
start working on this recursively.

If a negative answer is obtained to PATH(x,z,i — 1), we erase
this triple and move to the next z.

If a positive answer is obtained to PATH(x, z,i — 1), we erase
the triple and move to PATH(z,y,i —1).

If this is negative, we erase it and move to the next z.

If it is positive, we compare it to (x, y, i) to check that this is

the second recursive call, and then return a positive answer to
PATH(x,y,i).

The work tape contains at any moment at most [log n|, each
of length at most 3 log n. [J

Complexity Classes
00000000000000000000800000000000

Space Computation

Savitch's Theorem

NSPACE[S(n)] € DSPACE[S?(n)], for any space-constructible
function S(n) > log n.

Proof:

Let M be the nondeterministic TM to be simulated.

We run the algorithm of Savitch's Theorem proof on the
configuration graph of M on input x.

Since the configuration graph has c>(") nodes, O (S2(n))
space suffices. [

PSPACE = NPSPACE J

Complexity Classes
000000000000000000000e0000000000

Space Computation

NL-Completeness

In Complexity Theory, we “connect” problems in a complexity

class with partial ordering relations, called , Which
formalize the notion of “a problem that is at least as hard as
another” .

A reduction must be computationally weaker than the class in
which we use it.

A language L; is to a language L, denoted
L1 < Ly, if there is a function f : X* — ¥* computable by a
DTM in O (log n) space, such that for all x € X*:

X€L14:>f(X)€L2

We say that a language L is NL-complete if it is in NL and for
every Ae NL, A<, L.

Complexity Classes
0000000000000000000000e000000000
Space Computation

NL-Completeness

REACHABILITY is NL-complete. J

Complexity Classes
0000000000000000000000e000000000

Space Computation

NL-Completeness

REACHABILITY is NL-complete. J

Proof: See Th.4.18 (p.89) in [2]

We 've argued why REACHABILITY € NL.

Let L € NL, that is, it is decided by a O (logn) NTM N.
Given input x, we can construct the configuration graph of
N(x).

We can assume that this graph has a single accepting node.
We can construct this in logspace: Given configurations C, C’
we can in space O (|C| + |C']) = O (log|x|) check the graph's
adjacency matrix if they are connected by an edge.

It is clear that x € L if and only if the produced instance of
REACHABILITY has a “yes” answer. []

Complexity Classes
00000000000000000000000e00000000

Space Computation

Certificate Definition of NL

We want to give a characterization of NL, similar to the one
we gave for NP.

A certificate may be polynomially long, so a logspace machine
may not have the space to store it.

So, we will assume that the certificate is provided to the
machine on a separate tape that is

Complexity Classes
000000000000000000000000e0000000

Space Computation

Certificate Definition of NL

A language L is in NL if there exists a deterministic TM M with an
additional special read-once input tape, such that for every x € ¥*:

x € L< 3y, |y| € poly(|x]), M(x,y) =1

where by M(x, y) we denote the output of M where x is placed on
its input tape, and y is placed on its special read-once tape, and M

uses at most O (log |x|) space on its read-write tapes for every
input x.

What if remove the read-once restriction and allow the TM's head
to move back and forth on the certificate, and read each bit
multiple times?

Complexity Classes
0000000000000000000000000e000000
Space Computation

Immerman-Szelepscényi

REACHABILITY € NL J

Complexity Classes
0000000000000000000000000e000000

Space Computation

Immerman-Szelepscényi

REACHABILITY € NL J

Proof: See Th.4.20 (p.91) in [2]

It suffices to show a O (log n) verification algorithm A such
that: V (G, s, t), 3 a polynomial certificate u such that:
A((G,s, t),u) = "yes" iff t is not reachable from s.

A has read-once access to u.

G's vertices are identified by numbers in {1,...,n} = [n]
Ci: "The set of vertices reachable from s in < i steps.”
Membership in C; is easily certified:

Vi € [n]: w,..., vk along the path from s to v, k < /.
The certificate is at most polynomial in n.

Complexity Classes
00000000000000000000000000800000

Space Computation

The Immerman-Szelepscényi Theorem

Proof (cont'd):

We can check the certificate using read-once access:
Vo =S

for j >0, (vj—1,vj) € E(G)

Vk =V

Path ends within at most / steps

EN N

We now construct two types of certificates:

1 A certificate that a vertex v ¢ C;, given |G|

2 A certificate that |C;| = ¢, for some ¢, given |Ci_4].
Since Cp = {s}, we can provide the 2nd certificate to
convince the verifier for the sizes of Cy, ..., C,

C, is the set of vertices reachable from s.

Complexity Classes
000000000000000000000000000e0000

Space Computation

The Immerman-Szelepscényi Theorem

Proof (cont'd):

Since the verifier has been convinced of |C,|, we can use the
1st type of certificate to convince the verifier that t ¢ C,.

The certificate is the list of certificates that u € C;, for every
ueC(G.
The verifier will check:
1 Each certificate is valid
2. Vertex u, given a certificate for u, is larger than the previous.
3. No certificate is provided for v.
4 The total number of certificates is exactly |C;|.

Complexity Classes
0000000000000000000000000000e000

Space Computation

The Immerman-Szelepscényi Theorem

Proof (cont'd):

The certificate is the list of certificates that u € C;_1, for every
uve C_q
The verifier will check:

1 Each certificate is valid
2 Vertex u, given a certificate for u, is larger than the previous.
3. No certificate is provided for v or for a neighbour of v.

« The total number of certificates is exactly |Cj_1].

The certificate will consist of n certificates for each vertex.
The verifier will check all certificates, and count the vertices that
have been certified to be in C;. If |C;| = ¢, it accepts. [

Complexity Classes
00000000000000000000000000000e00

Space Computation

The Immerman-Szelepscényi Theorem

For every space constructible S(n) > log n:

NSPACE[S(n)] = coNSPACE[S(n)]

Proof:

Let L € NSPACE[S(n)]. We will show that 3 S(n)
space-bounded NTM M deciding L:

M on input x uses the above certification procedure on the
configuration graph of M. [

NL = coNL J

Complexity Classes
000000000000000000000000000000e0

Space Computation

What about Undirected Reachability?

UNDIRECTED REACHABILITY captures the phenomenon of

configuration graphs with both directions.

H. Lewis and C. Papadimitriou defined the class SL

(Symmetric Logspace) as the class of languages decided by a
using logarithmic space.

LCSLCNL

As in the case of NL, UNDIRECTED REACHABILITY is
SL-complete.

But in 2004, Omer Reingold showed, using expander graphs, a
deterministic logspace algorithm for UNDIRECTED
REACHABILITY, so:

Obviously,

Complexity Classes
0000000000000000000000000000000e

Space Computation

Our Complexity Hierarchy Landscape

PSPACE

= NPSPACE

Oracles & Optimization Problems
00000000000000000000000

Contents

Oracles & Optimization Problems
©0000000000000000000000

Oracle Classes

Oracle TMs and Oracle Classes

A Turing Machine M7 with oracle is a multi-string deterministic
TM that has a special string, called query string, and three
special states: g7 (query state), and qyes, gno (answer states).
Let A C X* be an arbitrary language. The computation of oracle
machine MA proceeds like an ordinary TM except for transitions
from the query state:

From the g> moves to either gyes, gno, depending on

whether the current query string is in A or not.

The answer states allow the machine to use this answer to its
further computation.

The computation of M’ with oracle A on iput x is denoted as
MA(x).

Oracles & Optimization Problems
0®000000000000000000000

Oracle Classes

Oracle TMs and Oracle Classes

Let C be a time complexity class (deterministic or
nondeterministic).

Define C# to be the class of all languages decided by machines of
the same sort and time bound as in C, only that the machines have
now oracle A. Also, we define: C$2 = ULee, Ct-

For example, PNP = [J, .\p PL. Note that PSAT = PNP.

There exists an oracle A for which PA = NPA J

Proof
Take A to be a PSPACE-complete language. Then:
PSPACE C PA C NP#A C NPSPACE C PSPACE. [J

Oracles & Optimization Problems
00®00000000000000000000

Oracle Classes

Oracle TMs and Oracle Classes

There exists an oracle B for which P& £ NP5 J

Proof:
We will find a language L € NP8\ P,
Let L = {17 | 3x € B with |x| = n}.
L € NPB (why?)
We will define the oracle B C {0,1}* such that L ¢ PE:

Th.14.5, p.340-342 [1]

Oracles & Optimization Problems
00®00000000000000000000

Oracle Classes

Oracle TMs and Oracle Classes

There exists an oracle B for which P& £ NP5 J

Proof: Th.14.5, p.340-342 [1]

We will find a language L € NP8\ P,

Let L = {17 | 3x € B with |x| = n}.

L € NPB (why?)

We will define the oracle B C {0,1}* such that L ¢ PE:

Let M{, M3, ... an enumeration of all PDTMs with oracle,
such that every machine appears infinitely many times in the
enumeration.

We will define B iteratively: By = (), and B = |J;~, Bi.

In it" stage, we have defined Bj_1, the set of all strings in B
with length < /.

Let also X the set of

Oracles & Optimization Problems
000®0000000000000000000

Oracle Classes

Proof (cont'd):

We simulate MZ(17) for 87 steps.

How do we answer the oracle questions “Is x € B"?

Oracles & Optimization Problems
000®0000000000000000000

Oracle Classes
Proof (cont'd):
We simulate MZ(17) for 87 steps.
How do we answer the oracle questions “Is x € B"?
If |x| < i, we look for x in Bj_;.

— If x € Bj_;1, M,-B goes to qyes
— Else M,-B goes to gno

If |x| > i, MB goes to qno ,and x — X.

Oracles & Optimization Problems
000®0000000000000000000

Oracle Classes

Proof (cont'd):
We simulate MZ(17) for 87 steps.
How do we answer the oracle questions “Is x € B"?
If |x| < i, we look for x in Bj_;.
— If x € Bj_;1, M,-B goes to qyes
— Else M,-B goes to gno
If |x| > i, MB goes to qno ,and x — X.

Suppose that after at most /67 steps the machine rejects.
Then we define B; = Bj_1 U {x € {0,1}* : |x| = i,x & X}
sol' €L, and L(MB) # L.

Why {x € {0,1}* : |x| =i, x ¢ X} #0? ?
If the machine accepts, we define B; = B;_1, so that i ¢ L.

If the machine fails to halt in the allotted time, we set
B; = B;_1, but we know that the same machine will appear in
the enumeration with an index sufficiently large. O

Oracles & Optimization Problems
00008000000 000000000000

Oracle Classes

The Limits of Diagonalization

As we saw, an oracle can transfer us to an alternative
computational “universe’.

(We saw a universe where P = NP, and another where P # NP)
Diagonalization is a technique that relies in the facts that:

So, diagonalization or any other proof technique relies only on
these two facts, holds also for every oracle.

Such results are called relativizing results.
E.g., PA C NP*, for every A € {0,1}*.
The above two theorems indicate that P vs. NP is a

nonrelativizing result, so diagonalization and any other
relativizing method doesn’t suffice to prove it.

Oracles & Optimization Problems
00000@00000000000000000

The Complexity of Optimization Problems

The Classes PNP and FPNP

PSAT is the class of languages decided in pol time with a SAT

oracle.
Polynomial number of queries
Queries computed adaptively
SAT is NP-complete = PSAT=pPNP

FPNP is the class of that can be computed by a
pol-time TM with a SAT oracle.

We will try to determine the complexity of the Traveling
Salesman Problem (TSP):

Goal: MAX OUTPUT <P, MAX-WEIGHT SAT <P TSP

Oracles & Optimization Problems
00000080000000000000000

The Complexity of Optimization Problems

FPNP_complete Problems

Given NTM N, with input 1”7, which halts after O (n), with output
a string of length n. Which is the largest output,of any
computation of N on 1”7

MAX OUTPUT is FPNP-complete.

Proof:
MAX OUTPUT € FPNP.

Let F: ¥* — ¥* € FPNP = J poly-time TM M’ s.t.
M3ET(x) = F(x)

We'll show: F <P, MAX OUTPUT:

Oracles & Optimization Problems
0000000@000000000000000

The Complexity of Optimization Problems

FPNP_complete Problems

Proof (cont'd):

Reductions R and S (log space computable) s.t.:
Vx, R(x) is a instance of MAX OUTPUT
S(max output of R(x)) — F(x)
NTM N:
Let n = p?(|x|), p(-), is the poly bound of SAT.
N(1™) generates x on a string.
M3ET query state (¢1):
If zz = 0 (¢1 unsat'd), then continue from gno.
If zz =1 (¢ sat'd), then guess assignment Ti:
If test succeeds, continue from qgygs.
If test fails, output=0" and halt. (Unsuccessful computation)
Continue to all guesses (z;), and halt, with output= zz,....00
—_—

n
(Successful computation)

Oracles & Optimization Problems
00000000®00000000000000

The Complexity of Optimization Problems

FPNP_complete Problems

Proof (cont'd):

We claim that the successful computation that outputs the largest
integer, correspond to a correct simulation:

Let j the smallest integer,s.t.: z; = 0, while ¢; was satisfiable.
Then, 3 another successful computation of N, s.t.: z; = 1.

The computations agree to the first j — 1 digits,= the 279
represents a larger number.

The S part: F(x) can be read off the end of the largest output of
N. 0

Oracles & Optimization Problems
000000000®0000000000000

The Complexity of Optimization Problems

FPNP_complete Problems

Given a set of clauses, each with an integer weight, find the truth

assignment that satisfies a set of clauses with the most total
weight.

Oracles & Optimization Problems
000000000®0000000000000

The Complexity of Optimization Problems

FPNP_complete Problems

Given a set of clauses, each with an integer weight, find the truth
assignment that satisfies a set of clauses with the most total
weight.

MAX-WEIGHT SAT is FPNP-complete.

Proof:

MAX-WEIGHT SAT is in FPNP: By binary search, and a SAT oracle,
we can find the largest possible total weight of satisfied clauses,
and then, by setting the variables 1-1, the truth assignment that
achieves it.

MAX OUTPUT </, MAX-WEIGHT SAT:

Oracles & Optimization Problems
0000000000®000000000000

The Complexity of Optimization Problems

FPNP_complete Problems

Proof (cont.):

NTMN(1") — ¢(N, m):

Any satisfying truth assignment of ¢(N, m) — legal comp. of
N(1™)

Clauses are given a huge weight (2"), so that any t.a. that
aspires to be optimum satisfy all clauses of ¢(N, m).

Add more clauses: (y;): i = 1,..n with weight 2"~

Now, optimum t.a. must not represent any legal computation,
but this which produces the /argest possible output value.

S part: From optimum t.a. of the resulting expression (or the
weight), we can recover the optimum output of N(1").

O

Oracles & Optimization Problems
00000000000®00000000000

The Complexity of Optimization Problems

FPNP_complete Problems

And the main result:

TSP is FPNP_complete. J

Oracles & Optimization Problems
000000000000e0000000000

The Complexity of Optimization Problems

The Class PNPllog7]

PNPllogn] ;s the class of all languages decided by a polynomial time
oracle machine, which on input x asks a total of O(log|x|) SAT
queries.

FPNPlog] is the corresponding class of functions.

Oracles & Optimization Problems
000000000000e0000000000

The Complexity of Optimization Problems

The Class PNPllog7]

PNPllogn] ;s the class of all languages decided by a polynomial time
oracle machine, which on input x asks a total of O(log|x|) SAT
queries.

FPNPlog] is the corresponding class of functions.

Given a graph, determine the size of his /argest clique. J

Oracles & Optimization Problems
000000000000e0000000000

The Complexity of Optimization Problems

The Class PNPllog7]

PNPllogn] ;s the class of all languages decided by a polynomial time
oracle machine, which on input x asks a total of O(log|x|) SAT
queries.

FPNPlog] is the corresponding class of functions.

Given a graph, determine the size of his /argest clique.

CLIQUE SIZE is FPNPIog_complete.

Oracles & Optimization Problems
0000000000000 8000000000

The Complexity of Optimization Problems

Conclusion

L TSP(p) is NP-complete.
2 TSP is FPNP-complete.
And now,
PNP . NPNP ?
Oracles for NPNP ?

Oracles & Optimization Problems
00000000000000e00000000

The Polynomial Hierarchy

The Polynomial Hierarchy

A =%F=T5=P

P
API_PZ
£f,, = NP/
I'IH:coNPI

PH= |z’
i=0

=P

AP =P, ¥ = NP, N? = coNP
A5 = PNP, ¥5 = NPNP 15 = coNPNP

Oracles & Optimization Problems
000000000000000e®0000000

The Polynomial Hierarchy

AL = PNPY
/ \
N5 = coNPNP ¥ =NpNP
\

Oracles & Optimization Problems
0000000000000000e000000

Basic Theorems

Basic Theorems

Let L be a language , and i > 1. L € X7 iff there is a polynomially
balanced relation R such that the language {x;y : (x,y) € R} is in
n? , and

L={x:3y,s.t.: (x,y) € R}

Proof (by Induction)

Fori=1
{xiy:(x,y)eR}ePsoL={x|3y:(x,y) € R} e NP v
Fori>1

If 3R € N?_;, we must show that L € ¥ =

I NTM with ¥ | oracle: NTM(x) guesses a y and asks M7 ;
oracle whether (x,y) ¢ R.

Oracles & Optimization Problems
00000000000000000e00000

Basic Theorems

Basic Theorems

Proof (cont.)

If L e Zf, we must show the existence or R.

Le¥X? =3I NTM MK, K e ¥? |, which decides L.

Kex? =35en?,:(ze K< 3Iw: (z2,w) €S)

We must describe a relation R (we know: x € L < accepting
comp of M¥(x))

Query Steps: "yes'— z; has a certificate w; st (z;, w;) € S.
So, R(x) ="(x,y) € R iffyrecords an accepting computation
of M?on x , together with a certificate w; for each yes query
z; in the computation.”

We must show {x;y : (x,y) € R} € N?_,.

Oracles & Optimization Problems
000000000000000000e0000

Basic Theorems

Basic Theorems

Let L be a language , and i > 1. L € N? iff there is a polynomially
balanced relation R such that the language {x;y : (x,y) € R} is in
¥? | and

L= {x: Yy, lyl < I} st (o) € R)

Let L be a language , and i > 1. L € X? iff there is a polynomially
balanced, polynomially-time decicable (i 4 1)-ary relation R such
that:

L= {x:3y1Yy23y3...Qy;,s.t. : (x,y1, ..., ¥i) € R}

where the itf quantifier @ is V, if i is even, and 3, if / is odd.

Oracles & Optimization Problems
0000000000000000000e000

Basic Theorems

Basic Theorems

If for some i > 1, ¥ = NP, then for all j > i

P_AP _ AP _ 5P
):J._I'IJ._AJ._Z,.

Or, the polynomial hierarchy collapses to the it" level.

Proof

It suffices to show that: ¥ =N? = 3% =%

let Le X7, = 3ReN?: L={x]Ty:(x,y) € R}

Since M? =¥ = Rex?

(x,y)ER&3z:(x,y,z) €S, SeN? |

Thus, x € L& Jy;z: (x,y,z) € S, S € N?_;, which means
LexP

Oracles & Optimization Problems
00000000000000000000e00

Basic Theorems

Basic Theorems

If P=NP, or even NP=coNP, the Polynomial Hierarchy collapses
to the first level.

Oracles & Optimization Problems
00000000000000000000e00

Basic Theorems

Basic Theorems

If P=NP, or even NP=coNP, the Polynomial Hierarchy collapses
to the first level.

Given expression ¢, with Boolean variables partitioned into i sets
X;,is ¢ satisfied by the overall truth assignment of the expression:

IXiVXo3X5.....QXid

, where Q is 3 if / is odd, and V if /i is even.

For all i > 1 QSAT; is X?-complete.

Oracles & Optimization Problems
000000000000000000000e0

Basic Theorems

Basic Theorems

If there is a PH-complete problem, then the polynomial hierarchy
collapses to some finite level.

Proof

Let L is PH-complete.

Since Le PH, 3/ >0:Le X’

But any L' € Zf_i_l reduces to L. Since PH is closed under

reductions, we imply that L' € ¥, so X7 =¥7 ..

Oracles & Optimization Problems
000000000000000000000e0

Basic Theorems

Basic Theorems

If there is a PH-complete problem, then the polynomial hierarchy
collapses to some finite level.

Proof

Let L is PH-complete.

Since Le PH, 3/ >0:Le X’

But any L' € Zf_i_l reduces to L. Since PH is closed under

reductions, we imply that L' € ¥, so X7 =¥7 ..

PH C PSPACE J

PHZ PSPACE (). If it was, then PH has complete
problems, so it collapses to some finite level.

Oracles & Optimization Problems
0000000000000000000000e

Basic Theorems

Relativized Results

Let's see how the inclusion of the Polynomial Hierarchy to
Polynomial Space, and the inclusions of each level of PH to the
next relativizes:

PHA =£ PSPACE" relative to some oracle A C ¥*.
(Yao 1985, Héstad 1986)

Pra[PH” £ PSPACE"]| = 1

(Cai 1986, Babai 1987)

(Vi e N) =P ¢ Zfﬁ relative to some oracle A C ¥*.
(Yao 1985, Hastad 1986)

Pral(vi e N) 2P ¢ £P/] =1

(Rossman-Servedio-Tan, 2015)

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000000000 00000000000000000

Contents

Randomized Computation Non-Uniform Complexity
©00000000000000000000000000000000000 00000000000000000

Examples of Randomized Algorithms

Warmup: Randomized Quicksort

Deterministic Quicksort

Input: A list L of integers;
If n <1 then return L.

Else {

let i=1;

let L; be the sublist of L whose elements are < a;;
let L, be the sublist of L whose elements are = a;;
let L3 be the sublist of L whose elements are > a;;
Recursively Quicksort L; and Ls;

return L =L;L,L3;

Randomized Computation Non-Uniform Complexity
©00000000000000000000000000000000000 00000000000000000

Examples of Randomized Algorithms

Warmup: Randomized Quicksort

Quicksort
Input: A list L of integers;
If n <1 then return L.
Else {

let L; be the sublist of L whose elements are < a;;
let L, be the sublist of L whose elements are = a;;
let L3 be the sublist of L whose elements are > a;;
Recursively Quicksort L; and Ls;

return L =L;L,L3;

Randomized Computation Non-Uniform Complexity
0®0000000000000000000000000000000000 00000000000000000

Examples of Randomized Algorithms

Warmup: Randomized Quicksort

Let T4 the max number of comparisons for the Deterministic
Quicksort:

Tg(n) > Tg(n—1)+ O (n)
U
Ta(n) = Q(n?)

Randomized Computation Non-Uniform Complexity
0®0000000000000000000000000000000000 00000000000000000

Examples of Randomized Algorithms

Warmup: Randomized Quicksort

Let T4 the max number of comparisons for the Deterministic
Quicksort:

Tg(n) > Tg(n—1)+ O (n)
I
Ty(n) = Q(n?)
Let T, the expected number of comparisons for the

Randomized Quicksort:
n—1

T, > 2 S[T0) ~ Ton—1-)] +O(n)

j=0
I
T.(n) = O(nlogn)

Randomized Computation Non-Uniform Complexity
00®000000000000000000000000000000000 00000000000000000

Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

1. Two polynomials are equal if they have the same coefficients
for corresponding powers of their variable.

2 A polynomial is identically zero if all its coefficients are equal
to the additive identity element.

3. How we can test if a polynomial is identically zero?

Randomized Computation Non-Uniform Complexity
00®000000000000000000000000000000000 00000000000000000

Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

1. Two polynomials are equal if they have the same coefficients
for corresponding powers of their variable.

2 A polynomial is identically zero if all its coefficients are equal
to the additive identity element.

3. How we can test if a polynomial is identically zero?

4 We can choose uniformly at random ry, ..., r, from a set
SCF.

5. We are wrong with a probability at most:

Let Q(x1,...,%n) € F[x1,...,xn] be a multivariate polynomial of
total degree d. Fix any finite set S C I, and let i, ..., r, be
chosen indepedently and uniformly at random from S. Then:

Pr[Q(ri,...,rm) =0|Q(x1,...,xp) # 0] < ﬁ

Randomized Computation Non-Uniform Complexity
00080000000 0000000000000000000000000 00000000000000000

Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

Proof:
(By Induction on n)

For n =1: Pr[Q(r) = 0|Q(x) # 0] < d/|S|

For n:
k
Q(x1,y ..., xn) = Zx{Q,-(xz, 2o 220
i=0
where k < d is the largest exponent of x; in Q.

deg(Qx) < d — k = Pr[Qk(r2,...,) =0] < (d — k)/|S|
Suppose that Qx(r2,...,r,) # 0. Then:

k
q(xa) = Q(xa,r2, - 1) = _ X Qi(r2, ., 1)
i=0

deg(q(x1)) = k, and g(x1) - 0!

Randomized Computation Non-Uniform Complexity
00008000000 0000000000000000000000000 00000000000000000

Examples of Randomized Algorithms

Warmup: Polynomial Identity Testing

Proof (cont'd):
The base case now implies that:

Prlg(rn) = Q(r1,...,m) =0] < k/|S|

Thus, we have shown the following two equalities:

d—k

Pr[Qk(r2,...,m) =10] < W

k
Pr[Qk(rl, 250004 r,,) = O|Qk(r2, coog I‘n) 75 0] S E
Using the following identity: Pr[€1] < Pr[&1|E5] + Pr[&,] we

obtain that the requested probability is no more than the sum of
the above, which proves our theorem! [

Randomized Computation

Non-Uniform Complexity
0000080000000 00000000000000000000000

00000000000000000
Computational Model

Probabilistic Turing Machines

A Probabilistic Turing Machine is a TM as we know it, but
with access to a “random source”, that is an extra (read-only)
tape containing random-bits!
Randomization on:

(one or two-sided)

A Probabilistic Turing Machine is a TM with two transition functions
00, 01. On input x, we choose in each step with probability 1/2 to apply
the transition function dg or d1, indepedently of all previous choices.

We denote by M(x) the random variable corresponding to the
output of M at the end of the process.

For a function T : N — N, we say that M runs in T (|x]|)-time if it
halts on x within T(|x|) steps (regardless of the random choices it
makes).

Randomized Computation Non-Uniform Complexity
000000®00000000000000000000000000000 00000000000000000

Complexity Classes

BPP Class

For T: N — N, let BPTIME[T(n)] the class of languages L such
that there exists a PTM which halts in O (T(|x|)) time on input x,
and Pr[M(x) = L(x)] > 2/3.
We define:
BPP = | | BPTIME[n]
ceN

The class BPP represents our notion of efficient (randomized)
computation!

We can also define BPP using certificates:

Randomized Computation Non-Uniform Complexity
0000000800000 00000000000000000000000 00000000000000000
Complexity Classes

BPP Class

A language L € BPP if there exists a poly-time TM M and a
polynomial p € poly(n), such that for every x € {0,1}*:

2

Prre{O,l}P(")[M(Xa r) = L(x)] > =

P C BPP
BPP C EXP
The “P vs BPP" question.

Randomized Computation Non-Uniform Complexity
00000000e000000000000000000000000000 00000000000000000

Quantifier Characterizations

Quantifier Characterizations

Proper formalism (Zachos et al.):

Let R:{0,1}* x {0,1}* — {0,1} be a predicate, and ¢ a rational
number, such that € € (0, 3). We denote by (3ty, |y| = k)R(x,)
the following predicate:

“There exist at least (% + s) - 2K strings y of length m
for which R(x,y) holds.”

We call 3% the overwhelming majority quantifier.

3T means that the fraction r of the possible certificates of a
certain length satisfy the predicate for the certain input.

Randomized Computation Non-Uniform Complexity
000000000®00000000000000000000000000 00000000000000000

Quantifier Characterizations

Quantifier Characterizations

We denote as C = (Q1/@2), where @1, Q> € {3,V,3}, the class
C of languages L satisfying:

x € L= Qiy R(x,y)
X¢ L= sz _'R(X7y)

P =(v/v)

NP = (3/V)

coNP = (V/3)

BPP = (37/3%) = coBPP

Randomized Computation

Non-Uniform Complexity
0000000000e0000000000000000000000000 00000000000000000
Quantifier Characterizations

RP Class

In the same way, we can define classes that contain problems
with one-sided error:

The class RTIME[T (n)] contains every language L for which there
exists a PTM M running in O (T(|x])) time such that:

x€L=PrM(x)=1]> 2
x¢L=PrM(x)=0]=1
We define
RP = | J RTIME[]
ceN

Similarly we define the class coRP.

Randomized Computation Non-Uniform Complexity
00000000000®000000000000000000000000 00000000000000000

Quantifier Characterizations

Quantifier Characterizations

RP C NP, since every accepting “branch” is a certificate!
RP C BPP, coRP C BPP

RP = (31/v)

Randomized Computation Non-Uniform Complexity
00000000000®000000000000000000000000 00000000000000000

Quantifier Characterizations

Quantifier Characterizations

RP C NP, since every accepting “branch” is a certificate!
RP C BPP, coRP C BPP

RP = (3*/V) C (3/¥) = NP

Randomized Computation Non-Uniform Complexity
00000000000®000000000000000000000000 00000000000000000

Quantifier Characterizations

Quantifier Characterizations

RP C NP, since every accepting “branch” is a certificate!
RP C BPP, coRP C BPP

RP = (3" V) C (3/¥) = NP
coRP = (V/31) C (V/3) = coNP

Randomized Computation Non-Uniform Complexity
00000000000®000000000000000000000000 00000000000000000

Quantifier Characterizations

Quantifier Characterizations

RP C NP, since every accepting “branch” is a certificate!
RP C BPP, coRP C BPP

RP = (3" V) C (3/¥) = NP
coRP = (V/31) C (V/3) = coNP

BPP = (3t/3%) = (3tv/vat) = (vat/31V) }

Randomized Computation

Non-Uniform Complexity
000000000000800000000000000000000000

00000000000000000
Quantifier Characterizations

Quantifier Characterizations

Proof:

Let L € BPP. Then, by definition, there exists a
polynomial-time computable predicate @ and a polynomial g
such that for all x’s of length n:

x € L= Iy Q(x,y)
X ¢ L= EI—’—y _'Q(Xay)

© Vy3Tz R(x,y,z) = 3T CVy V,cc R(x,y,2)
i Vz3ty R(x,y,z) = VC3Ty A,cc R(x,y,2)

By the above Lemma: x € L = 37z Q(x,z) =

Vydtz Q(x,y ®z) = ITCVy [3(z € C) Q(x,y ® z)], where
C denotes (as in the Swapping's Lemma formulation) a set of
q(n) strings, each of length q(n).

Randomized Computation Non-Uniform Complexity
0000000000000 80000000000000000000000 00000000000000000

Quantifier Characterizations

Quantifier Characterizations

Proof (cont'd):

On the other hand, x ¢ L = 3ty = Q(x,z) =

Vz3Ty = Q(x,y ® z) = VCITy [V(z € C) =Q(x,y ® 2)].
Now, we only have to assure that the appeared predicates
dze C Q(x,y®z) and Vz € C ~Q(x,y & z) are computable
in polynomial time

Recall that in Swapping Lemma’s formulation we demanded
|C| < p(n) and that for each v € C: |v| = p(n). This means
that we seek if a string of polynomial length exists, or if the
predicate holds for all such strings in a set with polynomial
cardinality, procedure which can be surely done in polynomial
time.

Randomized Computation Non-Uniform Complexity
000000000000008000000000000000000000 00000000000000000

Quantifier Characterizations

Quantifier Characterizations

Proof (cont'd):

Conversely, if L € (3TV/V3T), for each string w, |w| = 2p(n),
we have w = wiwy, |wi| = |wa| = p(n). Then:

x € L= 3tyWz R(x,y,z) = Itw R(x, w1, wa)

x ¢ L=Vy3tz R(x,y,z) = Itw =R(x, w1, wp)

So, L € BPP. O

The above characterization is decisive, in the sense that if we
replace 37 with 3, the two predicates are still complementary
(i.e. R1 = —R»), so they still define a complexity class.

In the above characterization of BPP, if we replace 3% with
3, we obtain very easily a well-known result:

BPP C 2N N& J

Randomized Computation Non-Uniform Complexity

000000000000000e00000000000000000000
BPP and PH

BPP and PH

BPP C 52N M&

0000000000000 0000

Proof (Lautemann)

Because coBPP = BPP,we prove only BPP C >,P.

Let L € BPP (L is accepted by “clear majority”).

For |x| = n, let A(x) C {0,1}P(") be the set of accepting
computations.

We have:

x € L= |A(x)| > 2p(n) (1-2%)
x ¢ L= |A(x)| < 2°(n) (=)
Let U be the set of all bit strings of length p(n).

For a,b € U, let a® b be the XOR:
adb=c&cdb=a, so “®b" is 1-1.

Randomized Computation Non-Uniform Complexity
00000000000000008C000000000000000000 00000000000000000

BPP and PH

BPP and PH

Proof (cont.)

Forte U, A(x)®t={adt:ac A(x)} (translation of A(x) by
t). We imply that: |A(x) & t| = |A(x)|

If x € L, consider a random (drawing p?(n) bits) sequence of
translations: t1, ta, .., ty(n) € U.

For b € U, these translations cover b, if b € A(x) @ tj, j < p(n).
beA(x)@tj e bt € Alx) = Prb ¢ A(x) @ tj]=2

Pr[b is not covered by any t;]=2""P(")

Pr[3 point that is not covered]< 2~ "P(")| (| = 2~ (n=1)p(n)

Randomized Computation Non-Uniform Complexity
00000000000000000eO000000000000000000 00000000000000000

BPP and PH

BPP and PH

Proof (cont.)
So, T = (t1, .., tp(n)) has a positive probability that it covers all of

u.

If x ¢ L,|A(x)| is exp small,and (for large n) there's not T that
cover all U.

(x € L) & (3T that cover all U)

So,

L= {x|3(T € {0, 1}""M)Y(b € U)A(j < p(n)) : b tj € A(x)}

which is precisely the form of languages in X5P.

The last existential quantifier (3(j < p(n))...) affects only
polynomially many possibilities,so it doesn't “count” (can by
tested in polynomial time by trying all t;’s).

Randomized Computation Non-Uniform Complexity
000000000000000000eO0000000000000000 00000000000000000

BPP and PH

/PP Class

And now something completely different:
What is the random variable was the running time and not
the output?

Randomized Computation Non-Uniform Complexity
000000000000000000eO0000000000000000 00000000000000000

BPP and PH

/PP Class

And now something completely different:

What is the random variable was the running time and not
the output?

We say that M has expected running time T(n) if the
expectation E[Ty(,)] is at most T(|x|) for every x € {0,1}*.
(TM(X) is the running time of M on input x, and it is a

)

The class ZTIME[T (n)] contains all languages L for which there
exists a machine M that runs in an expected time O (T(|x|)) such
that for every input x € {0,1}*, whenever M halts on x, the
output M(x) it produces is exactly L(x). We define:

ZPP = | | ZTIME[n]
ceN

Randomized Computation Non-Uniform Complexity
0000000000000000000e0000000000000000 00000000000000000

BPP and PH

/PP Class

The output of a ZPP machine is always correct!
The problem is that we aren’t sure about the running time.
We can easily see that ZPP = RP N coRP.

The next Hasse diagram summarizes the previous inclusions:
(Recall that AYS = ¥5 N N5 = NPNP 0 coNPNP)

Randomized Computation Non-Uniform Complexity
000000000000000000008000000000000000 00000000000000000

BPP and PH

PSPACE

T

AP

7N

coNP NP

BPP

/ \
coRP RP
\ /

ZTP

P

Randomized Computation Non-Uniform Complexity
000000000000000000000eO0000000000000 00000000000000000

BPP and PH

PSPACE

(3v/v3) N (v3/3V)

Randomized Computation Non-Uniform Complexity
0000000000000000000000e0000000000000 00000000000000000

Error Reduction

Error Reduction for BPP

Let L C {0,1}* be a language and suppose that there exists a
poly-time PTM M such that for every x € {0,1}*:

PHM(x) = L()] = 2 + [~

Then, for every constant d > 0, 3 poly-time PTM M’ such that for
every x € {0,1}*:

Pr[M'(x) = L(x)] > 1 — 2"

Randomized Computation Non-Uniform Complexity
00000000000000000000000e000000000000 00000000000000000
Error Reduction

Proof: The machine M’ does the following:

Run M(x) for every input x for k = 8|x|>**? times,
and obtain outputs y1,y»,...,¥k € {0,1}.

If the majority of these outputs is 1, return 1
Otherwise, return O.

We define the r.v. X; for every i € [k] to be 1 if y; = L(x) and 0
otherwise.
X1, X2, ..., X, are indepedent Boolean r.v.’s, with:

1
E[X;]=Pr[Xi=1] >p= 5 + |x|¢
Applying a Chernoff Bound we obtain:

8|X|2c+d

Pr < 27’

: 2 _ 11
|ZXI — Pk’ > 5pk] < e_%Pk — e 4lx22
i=1

Randomized Computation
Error Reduction

00@00000000000

Intermission: Chernoff Bounds

exponentially

Randomized Computation

Non-Uniform Complexity
0000000000000000000000000e0000000000

00000000000000000
Error Reduction

Intermission: Chernoff Bounds

- _ P
P> < N
Pr Ex,_(lm)u _[(1+5)I+5]

- . _5 7
Pr 5% < (10| < wa]

Other useful form is:

Pr [I > Xi—ul > cu] < 2~ min{e?/4.c/2}
i=1

This probability is bounded by 2~ (1),

Randomized Computation

Non-Uniform Complexity
000000000000000000000000008000000000

00000000000000000
Error Reduction

Error Reduction for BPP

From the above we can obtain the following interesting
corollary:

For ¢ > 0, let BPPy /5, ,—c denote the class of languages L for
which there is a polynomial-time PTM M satisfying
Pr[M(x) = L(x)] > 1/2 + |x| ¢ for every x € {0,1}*.Then:

BPPy/,,, - = BPP

Obviously, 37 = 3

B I B
1/24e = Ja/3 = 374 = F0.00 = I e

2/3

Randomized Computation Non-Uniform Complexity
000000000000000000000000000800000000 00000000000000000

Error Reduction

Semantic vs. Syntactic Classes

Every NPTM defines some language in NP:

x € L & #accepting paths #£ 0

We can get an effective enumeration of all NPTMs, each
deciding an NP language.

But not every NPTM decides a language in RP:

e.g., the NPTM that has exactly one accepting path.

In this case, there is no way to tell whether the machine will
always halt with the certified output. We call these classes

So we have:

Syntactic Classes (like P, NP)
Semantic Classes (like RP, BPP, NP N coNP, TFNP)

Randomized Computation Non-Uniform Complexity
000000000000000000000000000080000000 00000000000000000

Error Reduction

Complete Problems for BPP?

Any syntactic class has a “free” complete problem:
{{M,x): MeM & M(x) = "yes"}

where M is the class of TMs of the variant that defines the class

In semantic classes, this complete language is usually
undecidable (Rice's Theorem).

The defining property of BPTIME machines is semantic!
If finally P = BPP, then BPP will have complete problems!!

For the same reason, in semantic classes we cannot prove
Hierarchy Theorems using Diagonalization.

Randomized Computation Non-Uniform Complexity
000000000000000000000000000008000000 00000000000000000

Error Reduction

The Class PP

A language L € PP if there exists an NPTM M, such that for
every x € {0,1}*: x € L if and only if more than half of the
computations of M on input x accept.

Or, equivalently:

A language L € PP if there exists a poly-time TM M and a
polynomial p € poly(n), such that for every x € {0,1}*:

xeELs ‘{y e {0,1}PID - M(x,y) = 1}’ > = . 2p(xD)

N

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000e00000 00000000000000000

Error Reduction

The Class PP

The defining property of PP is , any NPTM can
define a language in PP.

Due to the lack of a gap between the two cases, we cannot
amplify the probability with polynomially many repetitions, as
in the case of BPP.

PP is closed under complement.

A breakthrough result of R. Beigel, N. Reingold and D.
Spielman is that PP is closed under intersection!

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000e00000 00000000000000000

Error Reduction

The Class PP

The defining property of PP is , any NPTM can
define a language in PP.

Due to the lack of a gap between the two cases, we cannot
amplify the probability with polynomially many repetitions, as
in the case of BPP.

PP is closed under complement.

A breakthrough result of R. Beigel, N. Reingold and D.
Spielman is that PP is closed under intersection!

The syntactic definition of PP gives the possibility for
complete problems:

Consider the problem MAJSAT:

Given a Boolean Expression, is it true that the majority of the
2" truth assignments to its variables (that is, at least 271 + 1
of them) satisfy it?

Randomized Computation Non-Uniform Complexity
0000000000000000000000000000000e80000 00000000000000000

Error Reduction

The Class PP

MAJSAT is PP-complete! J

MAJSAT is not likely in NP, since the (obvious) certificate is
not very succinct!

Randomized Computation Non-Uniform Complexity
0000000000000000000000000000000e80000 00000000000000000

Error Reduction

The Class PP

MAJSAT is PP-complete! J

MAJSAT is not likely in NP, since the (obvious) certificate is
not very succinct!

NP C PP C PSPACE J

Non-Uniform Complexity

Randomized Computation
00000000000000000

000000000000 0000000000000000000e0000

Error Reduction

The Class PP

MAJSAT is PP-complete! J

MAJSAT is not likely in NP, since the (obvious) certificate is
not very succinct!

NP C PP C PSPACE J

Proof:

It is easy to see that PP C PSPACE:

We can simulate any PP machine by enumerating all strings y of
length p(n) and verify whether PP machine accepts. The
PSPACE machine accepts if and only if there are more than
2P(M=1 such y's (by using a counter).

Randomized Computation Non-Uniform Complexity
00000000000000000000000000000000e000 00000000000000000

Error Reduction

The Class PP

Proof (cont'd):
Now, for NP C PP, let A€ NP. That is, 3p € poly(n) and a
poly-time and balanced predicate R such that:

xeA < By lyl=p(x)): R(x,y)

Consider the following TM:

M accepts input (x, by), with |b| =1 and |y| = p(|x|), if
and only if R(x,y) =1 or b=1.

If x € A, then 3 at least one y s.t. R(x,y).
Thus, Pr[M(x) accepts] > 1/2 + 2= (p(n+1),
If x ¢ A, then Pr[M(x) accepts] = 1/2.

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000000e00 00000000000000000

Error Reduction

Other Results

If NP C BPP, then NP = RP. J

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000000e00 00000000000000000

Error Reduction

Other Results

If NP C BPP, then NP = RP. J

Proof:

RP is closed under <%, -reducibility.
It suffices to show that if SAT € BPP, then SAT € RP.

Recall that SAT has the property:

d(X1y ..., Xn): ¢ € SAT < (Plxy=0 € SAT V ¢|x,=1 € SAT).
SAT € BPP: 3 PTM M computing SAT with error probability
bounded by 2-1¢l,

We can use the self-reducibility of SAT to produce a truth
assignment for ¢ as follows:

Randomized Computation Non-Uniform Complexity
0000000000000000000000000000000000e0 00000000000000000

Error Reduction

Other Results

Proof (cont'd):

Input: A Boolean formula ¢ with n variables

If M(¢) =0 then reject ¢;

Fori=1 to n

— If M(¢|xi=an,...x;_1=a; 1,x=0) = 1 then let a; =0

— Elself M(¢|x=ay,...x; 1=a;_1,x=1) = 1 then let o; =1
— Else reject ¢ and halt;

If ¢|x,=a1,..x»=a, = 1 then accept F

Else reject F

Randomized Computation Non-Uniform Complexity
0000000000000000000000000000000000e0 00000000000000000

Error Reduction

Other Results

Proof (cont'd):

Input: A Boolean formula ¢ with n variables

If M(¢) =0 then reject ¢;

Fori=1 to n

— If M(¢|xi=an,...x;_1=a; 1,x=0) = 1 then let a; =0

— Elself M(¢|x=ay,...x; 1=a;_1,x=1) = 1 then let o; =1

— Else reject ¢ and halt;

If ¢|x,=a1,..x»=a, = 1 then accept F

Else reject F
Note that M; accepts ¢ only if a t.a. t(x;) = «; is found.
Therefore, M; never makes mistakes if ¢ ¢ SAT.
If <j|>¢‘e SAT, then M rejects ¢ on each iteration of the loop w.p.
27191
So, Pr[M; accepting x] = (1 — 27!¢1)", which is greater than 1/2 if
| >n>1. 0O

Randomized Computation Non-Uniform Complexity
00000000000000000000000000000000000e 00000000000000000

Error Reduction

Relativized Results

Relative to a random oracle A, PA = BPP”. That is,

Prac(o1}:[P* = BPP =1

Also,
BPPA C NP#, relative to a random oracle A.
There exists an A such that: PA # RPA.
There exists an A such that: RPA # coRP#
There exists an A such that: RPA # NPA.

Randomized Computation Non-Uniform Complexity
00000000000000000000000000000000000e 00000000000000000

Error Reduction

Relativized Results

Relative to a random oracle A, PA = BPP”. That is,

Prac(o1}:[P* = BPP =1

Also,
BPPA C NP#, relative to a random oracle A.
There exists an A such that: PA # RPA.
There exists an A such that: RPA # coRP#
There exists an A such that: RPA # NPA.

There exists an A such that:

P# £ RP# # NP# ¢ BPPA

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000000000 00000000000000000

Contents

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000000000 €0000000000000000

Boolean Circuits

Boolean Circuits

A Boolean Circuit is a natural model of nonuniform
computation, a generalization of hardware computational
methods.

A non-uniform computational model allows us to use a
different “algorithm” to be used for every input size, in
contrast to the standard (or uniform) Turing Machine model,
where the same T.M. is used on (infinitely many) input sizes.

Each circuit can be used for a fixed input size, which limits or
model.

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000000000 0®000000000000000

Boolean Circuits

For every n € N an n-input, single output Boolean Circuit C is a
directed acyclic graph with n sources and one sink.
All nonsource vertices are called gates and are labeled with one of A
(and), V (or) or = (not).
The vertices labeled with A and V have fan-in (i.e. number or
incoming edges) 2.
The vertices labeled with — have fan-in 1.
The size of C, denoted by |C|, is the number of vertices in it.

For every vertex v of C, we assign a value as follows: for some input
x € {0,1}", if v is the i-th input vertex then val(v) = x;, and
otherwise val(v) is defined recursively by applying v's logical
operation on the values of the vertices connected to v.

The output C(x) is the value of the output vertex.

The depth of C is the length of the longest directed path from an
input node to the output node.

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000000000 00®00000000000000

Boolean Circuits

To overcome the fixed input length size, we need to allow
families (or sequences) of circuits to be used:

Let T : N — N be a function. A T(n)-size circuit family is a
sequence {Cp}pen of Boolean circuits, where C, has n inputs and
a single output, and its size |C,| < T(n) for every n.

These infinite families of circuits are defined arbitrarily: There
is no pre-defined connection between the circuits, and also we
haven't any "guarantee” that we can construct them
efficiently.

Like each new computational model, we can define a
complexity class on it by imposing some restriction on a
complexity measure:

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000000000 000®0000000000000

Boolean Circuits

We say that a language L is in SIZE(T(n)) if there is a T(n)-size
circuit family {Cp}nen, such that Vx € {0,1}":

xele G(x)=1

P /poly is the class of languages that are decidable by polynomial
size circuits families. That is,

P /ooty =) SIZE(n°)

ceN

For every functions T, T’ : N — N with 2 > T'(n) > 10T(n) > n,

SIZE(T(n)) C SIZE(T'(n))

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000000000 0000®000000000000

TMs taking advice

Turing Machines that take advice

Let T,a: N — N. The class of languages decidable by T (n)-time
Turing Machines with a(n) bits of advice, denoted

DTIME (T (n)/a(n))

containts every language L such that there exists a sequence
{an}nen of strings, with a, € {0,1}2(") and a Turing Machine M
satisfying:

x€Le M(x,a,) =1

for every x € {0,1}", where on input (x, a,) the machine M runs
for at most O(T(n)) steps.

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000000000 00000®00000000000

TMs taking advice

Turing Machines that take advice

Piooly = |J DTIME(n®/n?)
c,deN

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000000000 00000®00000000000

TMs taking advice

Turing Machines that take advice

Piooly = |J DTIME(n®/n?)
c,deN

Proof: (C) Let L € Ppqy. Then, 3{Cy}nen : Cx = L(x).
We can use C, 's encoding as an advice string for each n.

Non-Uniform Complexity

Randomized Computation
00000®00000000000

0000000000000 O000O00O0O0O000O0000000000000

TMs taking advice

Turing Machines that take advice

Piooly = |J DTIME(n®/n?)
c,deN

Proof: (C) Let L € Ppqy. Then, 3{Cy}nen : Cx = L(x).

We can use C, 's encoding as an advice string for each n.

(D) Let L € DTIME(n¢/n9). Then, since CVP is P-complete, we
construct for every n a circuit D, such that, for

x € {0,1}", a, € {0,1}2("):

Dn(x,an) = M(x, an)

Then, let Cp(x) = Dn(x, an) (We hard-wire the advice string!)
Since a(n) = n9, the circuits have polynomial size. .

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000000000 000000®0000000000

Relationship among Complexity Classes

PG I:)/ poly

For “C", recall that CVP is P-complete.
But why proper inclusion?
Consider the following language:

U = {1"|n’s binary expression encodes a pair < M,x > s.t. M(x) |}

It is easy to see that U € P 4y, but....

IFNP C P oy, then PH = X5,

IfEXP C P /poly, then EXP = £5.

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000000000 0000000®000000000

Relationship among Complexity Classes

Uniform Families of Circuits

We saw that P pq)y contains an undecidable language.

The root of this problem lies in the “weak” definition of such
families, since it suffices that 3 a circuit family for L.

We haven't a way (or an algorithm) to construct such a family.

So, may be useful to restric or attention to families we can
construct efficiently:

A circuit family {C,}pen is P-uniform if there is a polynomial-time
T.M. that on input 1" outputs the description of the circuit C,.

But...

A language L is computable by a P-uniform circuit family iff L € P.J

Randomized Computation Non-Uniform Complexity

0000000000000 00000000000000000000000 00000000 e®00000000

Relationship among Complexity Classes

BPP C P /,qy J
Proof: Recall that if L € BPP, then 3 PTM M such that:

Pr,cqo,1ypovtn [M(x, r) # L(x)] < 27"
Then, taking the union bound:

Priax e {0,1}": M(x,r) LX) =Pr | | M(x,r)#L(x)| <
x€{0,1}"
< > PrMr) AL <2442 =1
xe{0,1}n
So, 3r, € {0,1}PM(" st ¥x{0,1}" M(x,r) = L(x).
Using {r»}nen as advice string, we have the non-uniform machine.
O

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000000000 000000000e0000000

Relationship among Complexity Classes

The following are equivalent:
1 Ae P/poly-

2 There exists a sparse set S such that A <f S.

Every sparse set has polynomial-size circuits.

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000000000 0000000000®000000

Relationship among Complexity Classes

For a finite Boolean Function f : {0,1}" — {0, 1}, we define the
(circuit) complexity of f as the size of the smallest Boolean Circuit
computing f (that is, C(x) = f(x),Vx € {0,1}").

The minimum S such that there is a circuit C of size S such that:

Pr[C(x) = f(x)] > % +%

is called the (average-case) hardness of f.

Randomized Computation

Non-Uniform Complexity
000000000000000000000000000000000000

00000000000e00000
Relationship among Complexity Classes

Hierarchies for Semantic Classes with advice

We have argued why we can't obtain Hierarchies for semantic
measures using classical diagonalization techniques. But using
small advice we can have the following results:

Fora,be R, withl < a< b:

BPTIME(n?)/1 ¢ BPTIME(n®)/1

For any 1 < a € R there is a real b > a such that:

RTIME(n®)/1 ¢ RTIME(n?)/ log(n)*/??

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000000000 000000000000®0000

The Quest for Lower Bounds

Circuit Lower Bounds

The significance of proving lower bounds for this
computational model is related to the famous "P vs NP"
problem, since:

NP \ P poy # 0 = P # NP

But...after decades of efforts, The best lower bound for an
NP language is 5n — o(n), proved very recently (2005).

There are better lower bounds for some special cases, i.e.
some restricted classes of circuits, such as: bounded depth
circuits, monotone circuits, and bounded depth circuits with
"counting” gates.

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000000000 00000000000008000

The Quest for Lower Bounds

Let PAR : {0,1}" — {0,1} be the parity function, which outputs
the modulo 2 sum of an n-bit input. That is:

PAR(x1, ..., X Zx, mod 2)

For all constant d, PAR has no polynomial-size circuit of depth d.

The above result (improved by Hastad and Yao) gives a
relatively tight lower bound of exp (Q(n'/(?=1)), on the size
of n-input PAR circuits of depth d.

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000000000 00000000000000e00

The Quest for Lower Bounds

For x,y € {0,1}", we denote x =< y if every bit that is 1 in x is
also 1in y. A function f : {0,1}" — {0,1} is monotone if
f(x) < f(y) for every x < y.

A Boolean Circuit is monotone if it contains only AND and OR
gates, and no NOT gates. Such a circuit can only compute
monotone functions.

Denote by CLIQUE , : {0, 1}(;) — {0, 1} the function that on
input an adjacency matrix of an n-vertex graph G outputs 1 iff G
contains an k-clique. There exists some constant € > 0 such that
for every k < n/4, there is no monotone circuit of size less than
2eVk that computes CLIQUE .

Randomized Computation Non-Uniform Complexity
000000000000000000000000000000000000 000000000000000e0

The Quest for Lower Bounds

So, we proved a significant lower bound (29(”1/8))

The significance of the above theorem lies on the fact that
there was some alleged connection between monotone and
non-monotone circuit complexity (e.g. that they would be
polynomially related). Unfortunately, Eva Tardos proved in
1988 that the gap between the two complexities is
exponential.

Where is the problem finally?
Today, we know that a result for a lower bound using such

techniques would imply the inversion of strong one-way
functions:

Randomized Computation

Non-Uniform Complexity
000000000000000000000000000000000000

0000000000000000e
Epilogue: What's Wrong?

*Natural Proofs [Razborov, Rudich 1994]

Let P be the predicate:

"A Boolean function f : {0,1}" — {0, 1} doesn’t have n¢-sized
circuits for some ¢ > 1."

P(f) =0,Vf € SIZE(n®) for a ¢ > 1. We call this n°-usefulness.

A predicate P is natural if:

There is an algorithm M € E such that for a function
g:{0,1}" = {0,1}: M(g) = P(g).

For a random function g: Pr[P(g) =1] > 1

If strong one-way functions exist, then there exists a constant ¢ € N such
that there is no n°-useful natural predicate P.

Interactive Proofs
000

Contents

Interactive Proofs
©00

Introduction

Introduction

“Maybe Fermat had a proof! But an important party was
certainly missing to make the proof complete: the
verifier. Each time rumor gets around that a student
somewhere proved P = NP, people ask “Has Karp seen
the proof?” (they hardly even ask the student’s name).
Perhaps the verifier is most important that the prover.”
(from [BM88])

The notion of a mathematical proof is related to the
certificate definition of NP.

We enrich this scenario by introducing interaction in the
basic scheme:

The person (or TM) who verifies the proof asks the person
who provides the proof a series of " queries”, before he is
convinced, and if he is, he provide the certificate.

Interactive Proofs
0®000000000000000000000000000000000000000
Introduction

Introduction

The first person will be called Verifier, and the second
Prover.

In our model of computation, Prover and Verifier are
interacting Turing Machines.

We will categorize the various proof systems created by using:
various TMs (nondeterministic, probabilistic etc)

the information exchanged (private/public coins etc)
the number of TMs (IPs, MIPs,...)

Interactive Proofs
00®00000000000000000000000000000000000000

Introduction

Warmup: Interactive Proofs with deterministic Verifier

We say that a language L has a k-round deterministic interactive
proof system if there is a deterministic Turing Machine V that on
input x, a1, g, ..., a; runs in time polynomial in |x|, and can have
a k-round interaction with any TM P such that:

x e L=3P: (V,P)(x) =1 (Completeness)

x¢ L=VYP: (V,P)(x) =0 (Soundness)
The class dIP contains all languages that have a k-round

deterministic interactive proof system, where p is polynomial in the
input length.

(V, P)(x) denotes the output of V at the end of the
interaction with P on input x, and «; the exchanged strings.
The above definition does not place limits on the
computational power of the Prover!

Interactive Proofs
00080000000 000000000000000000000000000000

Introduction

Warmup: Interactive Proofs with deterministic Verifier

But...
dIP = NP J

Proof: Trivially, NP C dIP. v
Let L € dIP:

A certificate is a transcript («g, ..., ak) causing V to accept,

ie. V(x,o1,...,0k) =1

We can efficiently check if V(x) = a1, V(x,a1,a2) = a3

etc...

If x € L such a transcript exists!

Conversely, if a transcript exists, we can define define a proper
P to satisfy: P(x,a1) = ap, P(x, a1, az, a3) = a4 etc., so
that (V,P)(x) =1, so x € L.

So L e NP!'[J

Interactive Proofs
0000®000000000000000000000000000000000000

The class IP

Probabilistic Verifier: The Class IP

We saw that if the verifier is a simple deterministic TM, then
the interactive proof system is described precisely by the class
NP.

Now, we let the verifier be probabilistic, i.e. the verifier's
queries will be computed using a probabilistic TM:

For an integer k > 1 (that may depend on the input length), a
language L is in IP[k] if there is a probabilistic polynomial-time
T.M. V that can have a k-round interaction with a T.M. P such
that:

xe€L=3P: Pr[(V,P)(x

x¢ L=VYP: Pr[(V,P)(x

Completeness)

W= WIN
—

Soundness)

Interactive Proofs
0000080000000 0000000000000000000000000000

The class IP

Probabilistic Verifier: The Class IP

We also define:

IP =] IP[n]

ceN

The “output” (V, P)(x) is a random variable.
We'll see that IP is a very large class! (2 PH)

As usual, we can replace the completeness parameter 2/3 with
1 — 2= and the soundness parameter 1/3 by 2=, without
changing the class for any fixed constant s > 0.

We can also replace the completeness constant 2/3 with 1
(), without changing the class, but
replacing the soundness constant 1/3 with 0, is equivalent
with a deterministic verifier, so class IP collapses to NP.

Interactive Proofs
0000008000000 0000000000000000000000000000

The class IP

Interactive Proof for Graph Non-lIsomorphism

Two graphs G; and G are isomorphic, if there exists a
permutation 7 of the labels of the nodes of Gy, such that
m(G1) = Gy. If G and G, are isomorphic, we write G = Gp.

GI: Given two graphs Gy, Gy, decide if they are isomorphic.

GNI: Given two graphs Gi, G, decide if they are not
isomorphic.

Obviously, GI € NP and GNI € coNP.

This proof system relies on the Verifier's access to a private
random source which cannot be seen by the Prover, so we
confirm the crucial role the private coins play.

Interactive Proofs
0000000800000 0000000000000000000000000000

The class IP

Interactive Proof for Graph Non-lIsomorphism

Verifier: Picks i € {1,2} uniformly at random.

Then, it permutes randomly the vertices of G; to get a
new graph H. Is sends H to the Prover.

Prover: ldentifies which of G;, G, was used to produce H.
Let G; be the graph. Sends j to V.

Verifier: Accept if i = j. Reject otherwise.

Interactive Proofs
0000000800000 0000000000000000000000000000

The class IP

Interactive Proof for Graph Non-lIsomorphism

Verifier: Picks i € {1,2} uniformly at random.

Then, it permutes randomly the vertices of G; to get a
new graph H. Is sends H to the Prover.

Prover: ldentifies which of G;, G, was used to produce H.
Let G; be the graph. Sends j to V.

Verifier: Accept if i = j. Reject otherwise.

If G; 2 Gy, then the powerfull prover can (nondeterministivally)
guess which one of the two graphs is isomprphic to H, and so the
Verifier accepts with probability 1.

If Gi = Gy, the prover can't distinguish the two graphs, since a
random permutation of G; looks exactly like a random permutation
of Gy. So, the best he can do is guess randomly one, and the
Verifier accepts with probability (at most) 1/2, which can be
reduced by additional repetitions.

Interactive Proofs
00000000®00000000000000000000000000000000

Arthur-Merlin Games

Babai's Arthur-Merlin Games

An Arhur-Merlin Game is a pair of interactive TMs A and M, and
a predicate R such that:

On input x, exactly 2q(|x|) messages of length m(|x|) are
exchanged, g, m € poly(|x|).

A goes first, and at iteration 1 < i < g(|x|) chooses u.a.r. a
string r; of length m(|x]|).

M's reply in the ith iteration is y; = M(x,r1,...,r;) (M's
strategy).

For every M’, a conversation between A and M’ on input x
IS rLy1r2y2 -+ fo(|x))Ya(x)-

The set of all conversations is denoted by CONVM',
\CONVXM'| — 2a(IxI)m(Ix])

Interactive Proofs
000000000®0000000000000000000000000000000

Arthur-Merlin Games

Babai's Arthur-Merlin Games

The predicate R maps the input x and a conversation to a
Boolean value.

The set of accepting conversations is denoted by AcchtM,
and is the set:

{n-rg3yi---ygs.t.nyi--rgyg € CONVMAR(rys - ryyg) = 1}

A language L has an Arthur-Merlin proof system if:

There exists a strategy for M, such that for all x € L:
R,M
?SEV—XM > 2 (Completeness)
For every strategy for M, and for every x ¢ L: ACCEM 1
y gy . ry : Convm < 3

(Soundness)

Interactive Proofs
0000000000e000000000000000000000000000000

Arthur-Merlin Games

Definitions

So, with respect to the previous IP definition:

For every k, the complexity class AM[k] is defined as a subset to
IP[k] obtained when we restrict the verifier's messages to be
random bits, and not allowing it to use any other random bits that
are not contained in these messages.

We denote AM = AM|2].

Interactive Proofs
0000000000e000000000000000000000000000000

Arthur-Merlin Games

Definitions

So, with respect to the previous IP definition:

For every k, the complexity class AM[k] is defined as a subset to
IP[k] obtained when we restrict the verifier's messages to be
random bits, and not allowing it to use any other random bits that
are not contained in these messages.

We denote AM = AM|2].

Merlin — Prover
Arthur — Verifier

Interactive Proofs
0000000000e000000000000000000000000000000

Arthur-Merlin Games

Definitions

So, with respect to the previous IP definition:

For every k, the complexity class AM[k] is defined as a subset to
IP[k] obtained when we restrict the verifier's messages to be
random bits, and not allowing it to use any other random bits that
are not contained in these messages.

We denote AM = AM|2].

Merlin — Prover

Arthur — Verifier

Also, the class MA consists of all languages L, where there's an
interactive proof for L in which the prover first sending a message,
and then the verifier is "tossing coins” and computing its decision
by doing a deterministic polynomial-time computation involving the
input, the message and the random output.

Interactive Proofs
00000000000®00000000000000000000000000000

Arthur-Merlin Games

Public vs. Private Coins

GNI € AM[2]

For every p € poly(n):

IP (p(n)) = AM(p(n) + 2)

So,
IP[poly] = AM[poly]

Interactive Proofs
00000000000080000000000000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

MA C AM

MA[1] = NP, AM[1] = BPP

AM could be intuitively approached as the probabilistic
version of NP (usually denoted as AM = BP-NP).
AM C M5 and MA C 5 N 5.

NPBPP Cc MA, MABPP — MA, AMBPP — AM and
AMAZP AMNPOCONP AM

If we consider the complexity classes AM([k] (the languages
that have Arthur-Merlin proof systems of a bounded number
of rounds, they form an hierarchy:

AM[0] C AM[1] C --- C AM[K] C AM[k + 1] C

Are these inclusions proper ? 7 7

Interactive Proofs
0000000000000 8000000000000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

%3

//\AM

P - BPP

N

coNP —— coMA ns

Interactive Proofs
00000000000000e00000000000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Proper formalism (Zachos et al.):

Let R:{0,1}* x {0,1}* — {0,1} be a predicate, and ¢ a rational
number, such that € € (0, 3). We denote by (3ty, |y| = k)R(x, y)
the following predicate:

“There exist at least (% + s) -2k strings y of length m
for which R(x,y) holds.”

We call 3% the overwhelming majority quantifier.

3T means that the fraction r of the possible certificates of a
certain length satisfy the predicate for the certain input.

Obviously, 37 = 3172 o — 33/3 = 3§F/4 =090 = af_z—p(w

Interactive Proofs
000000000000000e0000000000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

We denote as C = (Q1/@2), where Q1, Q> € {3,V,31}, the class
C of languages L satisfying:

x€Ll= Qiy R(x,y)
x ¢ L= Qy - R(x,y)

So: P = (V/V), NP = (3/V), coNP = (V/3)
BPP = (3/3%), RP = (3* V), coRP = (V/3%)

Interactive Proofs
000000000000000e0000000000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

We denote as C = (Q1/@2), where Q1, Q> € {3,V,31}, the class
C of languages L satisfying:

x€Ll= Qiy R(x,y)
x ¢ L= Qy - R(x,y)

So: P = (V/V), NP = (3/V), coNP = (V/3)
BPP = (3/3%), RP = (3* V), coRP = (V/3%)

Arthur-Merlin Games
AM = BP - NP = (EI+EI/EI+V)
MA = N - BPP = (EIEI+/VEI+)

Similarly: AMA = (37331 /3TV3T) etc.

Interactive Proofs
00000000000000008000000000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

© MA = (3v/va)
i AM = (V3/31V)

Proof:

Lemma
o BPP = (E|+/E|+) = (E|+V/VE|+) = (VE|+/E|+V) (1) (8PP-Theorem)
o (IV/VIT) C (V3/3TV) (2)

i) MA = A - BPP = (33+ v3+) & (33tv/wat) C (3v/vat)
(the last inclusion holds by quantifier contraction). Also,

(3v/v3at) C (331 /v3T) = MA.

ii) Similarly,

AM = BP - NP = (373/31V) = (V3T3/3tW) C (v3/3V).
Also, (V3/31V) C (3t3/3TV) = AM.

Interactive Proofs
00000000000000008000000000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

© MA = (3v/va)
i AM = (V3/31V)

Proof:

Lemma
o BPP = (E|+/E|+) = (E|+V/VE|+) = (VE|+/E|+V) (1) (8PP-Theorem)
o (IV/VIT) C (V3/3TV) (2)

i) MA = A - BPP = (33+ v3+) & (33tv/wat) C (3v/va+)
(the last inclusion holds by quantifier contraction). Also,

(3v/v3at) C (331 /v3T) = MA.

ii) Similarly,

AM = BP - NP = (373/31V) = (V3T3/3tW) C (v3/3V).
Also, (V3/31V) C (3t3/3TV) = AM.

Interactive Proofs
00000000000000008000000000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

© MA = (3v/va)
i AM = (V3/31V)

Proof:

Lemma
o BPP = (E|+/E|+) = (E|+V/VE|+) = (VE|+/E|+V) (1) (8PP-Theorem)
o (IV/VIT) C (V3/3TV) (2)

i) MA = A - BPP = (33+ v3+) & (33tv/wwat) C (3v/vah)
(the last inclusion holds by quantifier contraction). Also,

(3v/v3at) C (331 /v3T) = MA.

ii) Similarly,

AM = BP - NP = (373/31V) = (V3T3/3tW) C (v3/3V).
Also, (V3/31V) C (3t3/3TV) = AM.

Interactive Proofs
00000000000000008000000000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

© MA = (3v/va)
i AM = (V3/31V)

Proof:

Lemma
o BPP = (E|+/E|+) = (E|+V/VE|+) = (VE|+/E|+V) (1) (8PP-Theorem)
o (IV/VIT) C (V3/3TV) (2)

i) MA = A - BPP = (33+ v3+) & (33tv/wat) C (3v/vat)
(the last inclusion holds by quantifier contraction). Also,

(3v/v3at) C (331 /v3T) = MA.

ii) Similarly,

AM = BP - NP = (373/31V) = (V3T3/3tW) C (v3/3V).
Also, (V3/31V) C (3t3/3TV) = AM.

Interactive Proofs
00000000000000000e00000000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

MA C AM J

Proof:
Obvious from (2): (IV/v3T) C (v3/31V). O

. AMCI?
i MACYENM?

Proof:

i) AM = (V3/31V) C (v3/3v) = N§

i) MA = (3v/v3T) C (3v/v3) = 5, and
MACAM = MACT5. So, MAC XS NN O

Interactive Proofs
000000000000000000e0000000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

For t(n) > 2:
AM[2t(n)] = AM[t(n)]

For every k > 2:

AM = AM[k] = MA[k + 1]

Example

(1) 2)
MAM = (33+3/va+Y) C (33+v3/WWaty) C (Iva/vaty) C
C (V33/3tW) C (v3/31V) = AM

Interactive Proofs
000000000000000000e0000000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

For t(n) > 2:
AM[2t(n)] = AM[t(n)]

For every k > 2:

AM = AM[k] = MA[k + 1]

Example

(1) 2)
MAM = (33+3/va+Y) C (33+v3/WWaty) C (Iva/vaty) C
C (V33/3tW) C (v3/31V) = AM

Interactive Proofs
000000000000000000e0000000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

For t(n) > 2:
AM[2t(n)] = AM[t(n)]

For every k > 2:

AM = AM[k] = MA[k + 1]

Example

(1) 2)
MAM = (33+3/va+Y) C (33+V3/WWatY) C (Iv3/va+y) C
C (V33/3tW) C (v3/31V) = AM

Interactive Proofs
000000000000000000e0000000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

For t(n) > 2:
AM[2t(n)] = AM[t(n)]

For every k > 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (33+3/v3+V) e @3tva/WatY) C(3/ V) C
C(3/ V)C(v3/atV) =AM

Interactive Proofs
000000000000000000e0000000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

For t(n) > 2:
AM[2t(n)] = AM[t(n)]

For every k > 2:

AM = AM[k] = MA[k + 1]

Example

MAM = (33+3/v3+V) e @3tva/watv)c(3/ V) C
S(/)S(/3")=AM

Interactive Proofs
000000000000000000e0000000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

For t(n) > 2:
AM[2t(n)] = AM[t(n)]

For every k > 2:

AM = AM[k] = MA[k + 1]

Example

(1) 2)
MAM = (33+3/va+Y) C (33+v3/WWaty) C (Iva/vaty) C
C (V33/3tW) C (v3/31V) = AM

Interactive Proofs
0000000000000000000e000000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

Proof:

The general case is implied by the generalization of
BPP-Theorem (1) & (2):

(Q137Q2/Q337Q4) = (Q137VQ2/Q3V3"Qa) =
(Q1V37Q2/Q337VQ4) (1)

(Q13vQ2/Q3Y37Q4) C (Q1V3Q2/Q337VQ4) (2')
Using the above we can easily see that the Arthur-Merlin
Hierarchy collapses at the second level. (Try it!) O

Interactive Proofs
00000000000000000000800000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

If coNP C AM (that is, if GI is NP-complete), then the
Polynomial Hierarchy collapses at the second level, and
PH =% =AM.

Proof: Our hypothesis states: (V/3) C (V3/31V)
Then:
Hyp. (2)
Y2 = (Iv/v3) C (Iv3/VITY) C (VII/IWY) = (V3/31Y) =
AM C (¥3/3¥) = M2, O

Interactive Proofs
00000000000000000000800000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

If coNP C AM (that is, if GI is NP-complete), then the
Polynomial Hierarchy collapses at the second level, and
PH =% =AM.

Proof: Our hypothesis states: (V/3) C (V3/31V)
Then:
Hyp. (2)
Y2 = (Iv/VI) C (IV3/VITY) C (VAI/IHWY) = (V3/31Y) =
AM C (¥3/3v) = M2, O

Interactive Proofs
00000000000000000000800000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

If coNP C AM (that is, if GI is NP-complete), then the
Polynomial Hierarchy collapses at the second level, and
PH =% =AM.

Proof: Our hypothesis states: (V/3) C (V3/31V)
Then:
Hyp. (2)
T2 = (3v/¥3) C (IV3/VITY) C (VI3/IHWY) = (V3/3HY) =
AM C (¥3/3v) = M2. O

Interactive Proofs
00000000000000000000800000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

If coNP C AM (that is, if GI is NP-complete), then the
Polynomial Hierarchy collapses at the second level, and
PH =% =AM.

Proof: Our hypothesis states: (V/3) C (V3/31V)
Then:
Hyp. (2)
T2 = (3v/¥3) C (AVANITY) C (v /3t)=(V /3t)=
AM C (¥3/3v) = M2. O

Interactive Proofs
00000000000000000000800000000000000000000

Arthur-Merlin Games

Properties of Arthur-Merlin Games

If coNP C AM (that is, if GI is NP-complete), then the
Polynomial Hierarchy collapses at the second level, and
PH =% =AM.

Proof: Our hypothesis states: (V/3) C (V3/31V)
Then:
Hyp. (2)
Y2 = (Iv/v3) C (Iv3/VITY) C (VII/IWY) = (V3/31Y) =
AM C (¥3/3¥) = M2, O

Interactive Proofs
000000000000000000000eOO00000000000000000

Arthur-Merlin Games

Measure One Results

PA £ NP#, for almost all oracles A.
PA = BPP#, for almost all oracles A.
NPA = AM?#, for almost all oracles A.

almostC = {L|PrA€{o71}* [L € CA} = 1}

i almostP = BPP [BG81]
i almostNP = AM [NW94]
i almostPH = PH

Interactive Proofs
0000000000000000000000eO00000000000000000

Arthur-Merlin Games

Measure One Results

For almost every pair of oracles B, C:
i BPP =PBNnPC
i almostNP = NP2 N NP¢

Indicative Open Questions
o Does exist an oracle separating AM from almostNP?
o Is almostNP contained in some finite level of
Polynomial-Time Hierarchy?

o Motivated by [BHZ]: If coNP C almostNP, does it follow
that PH collapses?

Interactive Proofs
00000000000000000000000e00000000000000000

Arithmetization

The power of Interactive Proofs

As we saw, Interaction alone does not gives us computational
capabilities beyond NP.

Also, Randomization alone does not give us significant power
(we know that BPP C 2’2’, and many researchers believe that
P = BPP, which holds under some plausible assumptions).

How much power could we get by their combination?
We know that for fixed k € N, IP[k] collapses to

IP[k] = AM = BP - NP

a class that is “close” to NP (under similar assumptions, the
non-deterministic analogue of P vs. BPP is NP vs. AM.)

If we let k be a polynomial in the size of the input, how much
more power could we get?

Interactive Proofs
000000000000000000000000e0000000000000000

Shamir’s Theorem

The power of Interactive Proofs

Surprisingly:

Theorem (L.F.K.N. & Shamir)
IP = PSPACE J

Interactive Proofs
0000000000000000000000000e000000000000000

Shamir’s Theorem

The power of Interactive Proofs

IP C PSPACE J

Interactive Proofs
0000000000000000000000000e000000000000000

Shamir’s Theorem

The power of Interactive Proofs

IP C PSPACE J
Proof:
If the Prover is an NP, or even a PSPACE machine, the
lemma holds.

But what if we have an omnipotent prover?

On any input, the Prover chooses its messages in order to
maximize the probability of V's acceptance!

We consider prover as an , by assuming wlog that his
responses are one bit at a time.

Th protocol has polynomially many rounds (say N=n¢), which
bounds the messages and the random bits used.

So, the protocol is described by a computation tree T:

Interactive Proofs
00000000000000000000000000800000000000000

Shamir’s Theorem

The power of Interactive Proofs

Proof(cont'd):
Vertices of T are V's configurations.
(queries to the random tape)
(queries to the prover)
For each fixed P, the tree Tp can be pruned to obtain only
random branches.
Let Prop:[E | F] the conditional probability given that the
prover always behaves optimally.
The acceptance condition is my = 1.
For y; € {0,1}" and z € {0,1} let:

i
Ri=/\mi=y
j=1

i

Si= M=

Interactive Proofs
00000000000000000000000000080000000000000

Shamir’s Theorem

The power of Interactive Proofs

Proof(cont'd):

Propt[mN =1 | Ri—1 A S,'_l] =

Z max Propt[mN =1 | R; A 5,'] . Propt[R; | Ri_1 A 5,',1]
i

Prope[Ri | Ri—1 A Si—1] is PSPACE-computable, by simulating
V.

Prope[my = 1| Ri A Si] can be calculated by DFS on T.

The probability of acceptance is

Propt[mN = 1] = Propt[mN =1 | Ro A 50]

The prover can calculate its optimal move at any point in the
protocol in PSPACE by calculating Prope[my = 1| Ri A 5]
for z;{0,1} and choosing its answer to be the value that gives
the maximum. O

Interactive Proofs
00000000000000000000000000008000000000000

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

PSPACE C IP J

For simplicity, we will construct an Interactive Proof for
UNSAT (a coNP-complete problem), showing that:

coNP C IP J

Let N be a prime.

We will translate a formula ¢ with m clauses and n variables
Xi,...,Xp to a polynomial p over the field (modN) (where
N > 2".3™) in the following way:

Interactive Proofs
00000000000000000000000000000800000000000

Shamir’s Theorem

Arithmetization

Arithmetic generalization of a CNF Boolean Formula.

T — 1

F — 0
-x — 1—x
N — X

VvV = <+

Example
(3 Vx5 Vx17) A(xs V x9) A (—x3 V xq)
1
(x3 4+ (1 —x5) +x17) - (x5 +x9) - ((1 — x3) + (1 — xa))

Each literal is of degree 1, so the polynomial p is of degree at
most m.
Also, 0 < p < 3™.

Interactive Proofs
00000000000000000000000000000080000000000

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N°© — checks proof

Interactive Proofs
00000000000000000000000000000080000000000

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N°© — checks proof

q1(x) =Y p(x, x2, - . . Xn) — checks if g1(0) + q1(1) =0

Interactive Proofs
00000000000000000000000000000080000000000

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover Verifier
Sends primality proof for N°© — checks proof

q1(x) =Y p(x, x2, - . . Xn) — checks if g1(0) + q1(1) =0

<— sendsnp€{0,....,N—1}

Interactive Proofs

000000000000 000000000000000000e0000000000

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N

g1(x) = p(x, %, . ..

qZ(X) — Zp(rl,X,X3, s

Xn)

Xn)

[A

Verifier
checks proof

checks if g1(0) + g1(1) =0
sends p € {0,..., N —1}

checks if q2(0) 4 g2(1) = qa(r1)

Interactive Proofs

000000000000 000000000000000000e0000000000

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover

Sends primality proof for N

g1(x) = p(x, %, . ..

qZ(X) — Zp(rl,X,X3, s

Xn)

Xn)

[

Verifier
checks proof

checks if g1(0) + g1(1) =0
sends p € {0,..., N —1}
checks if q2(0) 4 g2(1) = qa(r1)

sends n € {0,...,N —1}

Interactive Proofs

000000000000 000000000000000000e0000000000

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover
Sends primality proof for N

g1(x) = > p(x, %2, ... Xp)

qZ(X) - Zp(rlaan& .. -Xn)

qn(X) — p(rla e rn—laX)

[

Verifier
checks proof

checks if g1(0) + g1(1) =0
sends p € {0,..., N —1}
checks if q2(0) 4 g2(1) = qa(r1)

sends n € {0,...,N —1}

checks if n(0) + gn(1) = gn—1(rn-1)

Interactive Proofs

000000000000 000000000000000000e0000000000

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover
Sends primality proof for N

g1(x) = > p(x, %2, ... Xp)

qZ(X) - Zp(rlaan& .. -Xn)

qn(X) — p(rla e rn—laX)

[

Verifier
checks proof

checks if g1(0) + g1(1) =0
sends p € {0,..., N —1}
checks if q2(0) 4 g2(1) = qa(r1)

sends n € {0,...,N —1}

checks if gn(0) + gn(1) = gn—1(rn—1)
picks r, € {0,..., N — 1}

Interactive Proofs

000000000000 000000000000000000e0000000000

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

Prover
Sends primality proof for N

g1(x) = > p(x, %2, ... Xp)

qZ(X) - Zp(rlaan& .. -Xn)

qn(X) — p(rla e rn—laX)

[

Verifier
checks proof

checks if g1(0) + g1(1) =0
sends p € {0,..., N —1}
checks if q2(0) 4 g2(1) = qa(r1)

sends n € {0,...,N —1}

checks if n(0) + gn(1) = gn—1(rn-1)
picks r, € {0,..., N — 1}
checks if gn(rn) = p(r1,. .., 1)

Interactive Proofs
000000000000000000000000000000080C00000000

Shamir’s Theorem

Warmup: Interactive Proof for UNSAT

If ¢ is unsatisfiable,then

Z Z Z p(x1,...,xn) =0 (modN)

x1€{0,1} xo€{0,1} xp€{0,1}

and the protocol will succeed.

Also, the arithmetization can be done in polynomial time, and
if we take N = 29("+M) then the elements in the field can be
represented by O(n + m) bits, and thus an evaluation of p in
any point of {0,..., N — 1} can be computed in polynomial
time.

We have to show that if ¢ is satisfiable, then the verifier will
reject with high probability.

If ¢ is satisfiable, then

leé{o,l} ZXQE{O,].} S anG{O,l} p(X17 e 7X'7) #0 (mOdN)

Interactive Proofs
00000000000000000000000000000000e00000000

Shamir’s Theorem

So, p1(01) + p1(1) # 0, so if the prover send p; we 're done.
If the prover send g1 # p1, then the polynomials will agree on
at most m places. So, Pr[pi(r) # qi(n)] > 1 — .

If indeed p1(r1) # g1(r1) and the prover sends p, = g, then
the verifier will reject since g2(0) + g2(1) = p1(r1) # q1(n).
Thus, the prover must send g» # p>.

We continue in a similar way: If g; # p;, then with probability
at least 1 — %, rj is such that g;i(r;) # pi(ri).

Then, the prover must send gj11 # pjr1 in order for the
verifier not to reject.

At the end, if the verifier has not rejected before the last
check, Pr[p, #qn] > 1—(n—1)F.

If so, with probability at least 1 — 7 the verifier will reject
since, gn(x) and p(r, ..., rm—1, x) differ on at least that
fraction of points.

The total probability that the verifier will accept if at most 7.

Interactive Proofs
000000000000000000000000000000000Ce0000000

Shamir’s Theorem

Arithmetization of QBF

I — >
v —]I
Example
VX1§|X2[(X1 VAN X2) \ E|X3()_(2 VAN X3)]
!

H Z (X1-X2)+ Z (1—X2)~X3

x1€{0,1} x»€{0,1} x3€{0,1}

A closed QBF is true if and only if tha value of its arithmetic form
IS non-zero.

Interactive Proofs
000000000000000000000000000000000C0e000000

Shamir’s Theorem

Arithmetization of QBF

If a QBF is true, its value could be quite large:

Let A be a closed QBF of size n. Then, the value of its arithmetic
form cannot exceed O (22").

Since such numbers cannot be handled by the protocol, we
reduce them modulo some -smaller- prime p:

Let A be a closed QBF of size n. Then, there exists a prime p of
length polynomial in n, such that its arithmetization

A" = 0(modp) < A is true.

Interactive Proofs
00000000000000000000000000000000000800000

Shamir’s Theorem

Arithmetization of QBF

A QBF with all the variables quantified is called closed, and
can be evaluated to either True or False.

An open QBF with k > 0 free variables can be interpreted as
a boolean function {0,1}* — {0, 1}.

Now, consider the language of all true quantified boolean
formulas:

TQBF = {®|® is a true quantified Boolean formula}

It is known that TQBF is a PSPACE-complete language!

So, if we have a interactive proof protocol recognizing TQBF,
then we have a protocol for every PSPACE language.

Interactive Proofs
000000000000000000000000000000000000e0000

Shamir’s Theorem

Protocol for TQBF

Given a quantified formula
V = Vxy3xVx3 - - - Ixp (X1, .., Xn)

we use arithmetization to construct the polynomial Py. Then,
Y € TQBF if and only if

I >, I - D> Pslbr,....ba) #0

b1e{0,1}* bre{0,1}* b3e{0,1}* bne{0,1}*

Interactive Proofs
0000000000000000000000000000000000000e000

PCPs

Epilogue: Probabilistically Checkable Proofs

But if we put a proof instead of a Prover?

Interactive Proofs
0000000000000000000000000000000000000e000

PCPs

Epilogue: Probabilistically Checkable Proofs

But if we put a proof instead of a Prover?

The alleged proof is a string, and the (probabilistic)
verification procedure is given direct (oracle) access to the
proof.

The verification procedure can access only few locations in the
proof!

We parameterize these Interactive Proof Systems by two
complexity measures:

Query Complexity

Randomness Complexity
The effective proof length of a PCP system is upper-bounded
by g(n) - 2" (in the non-adaptive case).
(How long can be in the adaptive case?)

Interactive Proofs
00000000000000000000000000000000000000e00

PCPs

PCP Definitions

PCP Verifiers Let L be a language and g, r : N — N. We say that

L has an (r(n), g(n))-PCP verifier if there is a probabilistic

polynomial-time algorithm V' (the verifier) satisfying:
Efficiency: On input x € {0,1}* and given random oracle access to
a string ™ € {0,1}* of length at most g(n) - 2"(") (which we call the
proof), V uses at most r(n) random coins and makes at most g(n)
non-adaptive queries to locations of 7. Then, it accepts or rejects.
Let V™(x) denote the random variable representing V's output on
input x and with random access to 7.

Completeness: If x € L, then 37 € {0,1}* : Pr[V7(x) =1] =1

Soundness: If x ¢ L, then Vr € {0,1}* : Pr[V™(x) =1] < %
We say that a language L is in PCP[r(n), q(n)] if L has a
(O(r(n)), O(q(n)))-PCP verifier.

Interactive Proofs
000000000000000000000000000000000000000e0

PCPs

Main Results

Obviously:

PCP[0,0] = ?
PCP[0, poly] = ?
PCP|[poly,0] = ?

Interactive Proofs
000000000000000000000000000000000000000e0

PCPs

Main Results

Obviously:

PCP[0,0] = P
PCP[0, poly] = ?
PCP|[poly,0] = ?

Interactive Proofs
000000000000000000000000000000000000000e0

PCPs

Main Results

Obviously:

PCP[0,0] = P
PCP[0, poly] = NP
PCP|[poly,0] = ?

Interactive Proofs
000000000000000000000000000000000000000e0

PCPs

Main Results

Obviously:

PCP[0,0] = P
PCP[0, poly] = NP
PCP|poly,0] = coRP

Interactive Proofs
000000000000000000000000000000000000000e0

PCPs

Main Results

Obviously:

PCP[0,0] = P
PCP[0, poly] = NP
PCP|poly,0] = coRP

A suprising result from Arora, Lund, Motwani, Safra, Sudan,
Szegedy states that:

The PCP Theorem
NP = PCPJ[log n, 1] }

Interactive Proofs
00e

PCPs

Main Results

The restriction that the proof length is at most g2 is
inconsequential, since such a verifier can look on at most this
number of locations.

We have that PCP[r(n), g(n)] € NTIME[2°((M)g(n)], since
a NTM could guess the proof in 29("(")g(n) time, and verify
it deterministically by running the verifier for all 20(r(n)
possible choices of its random coin tosses. If the verifier
accepts for all these possible tosses, then the NTM accepts.

	Introduction
	Algorithms & Complexity
	Why Complexity?
	Problems....

	Turing Machines
	Definitions
	Properties of Turing Machines
	NTMs

	Undecidability
	Diagonalization
	Simulation
	Undecidability

	Complexity Classes
	Complexity Classes
	Introduction
	Constructible Functions
	Complexity Classes
	Relations among Complexity Classes
	Certificates & Quantifiers
	Space Computation

	
	Oracles & Optimization Problems
	Oracle Classes
	The Complexity of Optimization Problems
	The Polynomial Hierarchy
	Basic Theorems

	
	Randomized Computation
	Examples of Randomized Algorithms
	Computational Model
	Complexity Classes
	Quantifier Characterizations
	BPP and PH
	Error Reduction

	Non-Uniform Complexity
	Boolean Circuits
	TMs taking advice
	Relationship among Complexity Classes
	The Quest for Lower Bounds
	Epilogue: What's Wrong?

	
	Interactive Proofs
	Introduction
	The class IP
	Arthur-Merlin Games
	Arithmetization
	Shamir's Theorem
	PCPs

