!'_ The LCA Problem Revisited

Michael A.Bender & Martin Farach-Colton

Presented by: Dvir Halevi

i Agenda

= Definitions

= Reduction from LCA to RMQ

= Trivial algorithms for RMQ

= ST algorithm for RMQ

= A faster algorithm for a private RMQ case
= General Solution for RMQ

Definitions — Least Common Ancestor

s LCA(u,v) — given nodes u,v in T, returns the node
furthest from the root that is an ancestor of both u
and v.

Trivial solution: O(1°)

ﬁ Definitions — Range Minimum Query

= Given array A of length n.

s RMQ,(i,j) — returns the index of the smallest element in
the subarray A[i..j].

i Definitions — Complexity Notation

= Suppose an algorithm has:

= Preprocessing time — T(N)
= Query time — g(n)

= Notation for the overall complexity of an algorithm:

<t(n),g(n)>

+

= Definitions

= Reduction from LCA to RMQ

= Trivial algorithms for RMQ

= ST algorithm for RMQ

= A faster algorithm for a private RMQ case
= General Solution for RMQ

i Reduction from LCA to RMQ

= In order to solve LCA queries, we will reduce the problem
to RMQ.

= Lemma:
Ifthere isan < T(N),9(N)> solution for RMQ, then
thereisan <t (Z']—]) +Q(n), g(2n-1)+O() >
Solution for LCA.

i Reduction - proof

= Observation:

The LCA of nodes u and v is the shallowest node
encountered between the visits to u and to v during a
depth first search traversal of T.

Shallowest node
Euler tour: l

3 2 31 4 1 7 1 3 5 6 5 3

N J
Y

LCA,(1,5) = 3

i Reduction (cont.)

Shallowest node

Euler tour: l
3 2 31 4 1 7 1 3 5 6 5
_ J
Y
LCA(1,5) = 3

= Remarks:
= Euler tour size: 2n-1

= We will use the first occurrence of i,j for the sake of
concreteness (any occurrence will suffice).

= Shallowest node must be the LCA, otherwise
contradiction to a DFS run.

3

i Reduction (cont.)

= On aninput tree T, we build 3 arrays.

s Euler
Euler

= Level
Level

[1,..,2n-1] — The nodes visited in an Euler tour of T.
i] is the label of the i-th node visited in the tour.

1,..2n-1] — The level of the nodes we got in the tour.
i] is the level of node Euler[i].

(level is defined to be the distance from the root)

Representative[1,..n] — Representative[i] will hold the index of

the first occurrence of node i in Euler(].

Representative[v] = argrrini{EuIerI]] =V}

Mark

: Euler — E, Representative — R, Level — L

10

‘L Reduction (cont.)

= Example:

/
2\

\
V

XN

i1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

E: 16365612191094749891
L: 01212101012 12321210
R: 183135214 17 10 11

i Reduction (cont.)

= To compute LCA(X,Y):

= All nodes in the Euler tour between the first visits to x
and y are E[R[x],..,R[Yy]] (assume R[x] < R[y])

= T he shallowest node in this subtour is at index

RMQ, (R[x],R[Y]), since L[i] stores the level of the node
at E[i].

= RMQ will return the index, thus we output the node at
E[RMQ.(R[x],RLy])] as LCA(X,y).

12

‘L Reduction (cont.)

_——
/7 N\

= Example:

LCA(10,7)

E[11,...,14]

/\

E: 163656121910947
101212101012 12321210
R: 1831352141710 11 YF:/MQL(NJ)ZH

I

R[7] R[10]

LCA-(10,7) = E[12]=9

49891

13

i Reduction (cont.)

Preprocessing Complexity:

= L,R,E — Each is built in O(N) time, during the DFS run.
= Preprocessing L for RMQ - f(Z]—])

Query Complexity:

= RMQ query on L — 9(2n-1)

= Array references — Q1)

overall: < f(2n—1)+Q(n),g(2n—-1)+0O1) >

Reduction proof is complete.
We will only deal with RMQ solutions from this point on.

14

+

= Definitions

= Reduction from LCA to RMQ

= Trivial algorithms for RMQ

= ST algorithm for RMQ

= A faster algorithm for a private RMQ case
= General Solution for RMQ

15

i RMQ

= Solution 1:

Given an array A of size n, compute the RQM for every pair
of indices and store in a table - <Q(1°),01) >

= Solution 2:

To calculate RMQ(i,j) use the already known value of
RMQ(i,j-1) .
Complexity reduced to - <O(1t),O0) >

16

+

= Definitions

= Reduction from LCA to RMQ

= Trivial algorithms for RMQ

= ST algorithm for RMQ

= A faster algorithm for a private RMQ case
= General Solution for RMQ

17

‘L ST RMQ

= Preprocess sub arrays of length A
= M(i,j) = index of min value in the sub array starting at index

| having length 2)

M(3,0)=3
\(: J
Y
M(3,1)=3

\ J
Y
M(3,2)=5 .

i ST RMQ

= Idea: precompute each query whose length is a power of n.
For every i between 1 and n and every j between 1 and | logn|

find the minimum element in the block starting at i and
having length 2.

= More precisely we build table M.

M, J]=agmn, ;. AATKI};

= Table M therefore has size O(nlogn).

19

‘L ST RMQ

= Building M — using dynamic programming we can build M in
O(nlogn) time.

A[O] A[l] A[2] A[3] A[4] A[S5] A[6] A[7] A[8] A[9]

M(3,1)=3 M(5,1)=6

(. J
Y

M(3,2)=6
AMIFII<AMI+2* -1 Mij]
Qtenvise Mi+2 1, j-1

M, J]=+

20

i ST RMQ

= Using these blocks to compute arbitrary M[i,j]
= Select two blocks that entirely cover the subrange [i..j]
« Let k=|log(j—i) |(2is the largest block that fits [i..j])

= Compute RMQ(i,j):

AMik[<AMj—2+1K] Mik
RMQ, J) =+

Otherwise I\/[j —2¢+], k]
.

Y Y
v 21

i ST RMQ

= Query time is O(1).
= This algorithm is known as Sparse Table(ST)
algorithm for RMQ, with complexity:

<Qnlagn), 1) >

= Our target: get rid of the log(n) factor from the
preprocessing.

22

+

= Definitions

= Reduction from LCA to RMQ

= Trivial algorithms for RMQ

= ST algorithm for RMQ

s A faster algorithm for a private RMQ case
= General Solution for RMQ

23

‘L Faster RMQ

= Use a table-lookup technigue to precompute answers on
small subarrays, thus removing the log factor from the

preprocessing. | n
= Partition A into Iogn blocks of size —3— (I‘J

2N plock 1
fogn P1OCH I - [- S

ogn agn agn
2 2 2

24

‘L Faster RMQ

= A1,.., a 1 — A’[i] is the minimum element in the i-th block of A.

n
= B[1,., Togn

] — B'[i] is the position (index) in which value A’[i] occurs.

2

B[O] B[1] B[2n/logn] 25

= Example:
n=16

2n
lon

block= g

26

i Faster RMQ

= Recall RMQ queries return the position of the
minimum.

= LCA to RMQ reduction uses the position of the
minimum, rather than the minimum itself.

= Use array B to keep track of where minimas in A’
came from.

27

i Faster RMQ

= Preprocess A’ for RMQ using ST algorithm.
= ST’s preprocessing time — O(nlogn).

s A's size — Togn
= ST’s preprocessing on A'’: Iogn (U(mgn) =Q(n)

. ST(A) = (AN),OD))

28

i Faster RMQ

1.

2.

3.

Having preprocessed A’ for RMQ, how to answer RMQ(i,j)
queries on A?

i and j might be in the same block -> preprocess every block.

| < j on different blocks, answer the query as follows:

Compute minima from i to end of its block.

Compute minima from the beginning of j’s block to j.

Return the index of the minimum of these 3 values.

Compute minima of all blocks in between i’s and j's blocks.

29

i Faster RMQ

= i < jon different blocks, answer the query as follows:

1. Compute minima from i to end of its block.

2. Compute minima of all blocks in between i’s and j’s blocks.
3. Compute minima from the beginning of j’s block to j.

= 2 — Takes O(1) time by RMQ on A’.
= 1 & 3 — Have to answer in-block RMQ queries

= We need in-block queries whether i and j are in the same block
or not.

30

i Faster RMQ

First Attempt: preprocess every block.
Per block : Iog%ﬂog(k]g%]):O(Iognloglogn)
N

Al Togr blocks — (Xnkg |(gn)

= Second attempt: recall the LCA to RMQ reduction
= RMQ was performed on array L.
= What can we use to our advantage?

ﬂ restriction

31

‘L Faster RMQ

= Observation:
Let two arrays X & Y such that A X]I]=Y][i]+C

Then A, j RMQ (i, j) =RV, j)
Aloi All‘ A|2‘ A|3‘ A|4‘A|5‘ A|6‘ A|7‘ A|8‘ Ar‘
BIO‘ Bll‘ Biz‘ B|3‘ B|4‘B|5‘ B|6‘ B|7‘ B[8] B|9‘

— —

27 _qu)

= There are Q(N) normalized blocks.

32

i Faster RMQ

= Preprocess:

= Create O(y/N)tables of size)ng(f) N)to answer all in block
=Un).

queries. Overall O/nlog?n

= For each block in A compute which normalized block table it
should use — (Q(n)

= Preprocess A’ using ST - O(n)

= Query:
« Query on A" — Q1)
= Query on in-blocks — CX:D

= Overall RMQ complexity - |(O(n),O(D))

+

= Definitions

= Reduction from LCA to RMQ

= Trivial algorithms for RMQ

= ST algorithm for RMQ

= A faster algorithm for a private RMQ case
= General Solution for RMQ

34

i General O(n) RMQ

Reduction from RMQ to LCA

o General RMQ is solved by reducing RMQ to LCA, then
reducing LCA to _1RMQ

= Lemma:
If there is a <CXn),CXZI)> solution for LCA, then there is a

(AN),Ad) solution to RMQ.

= Proof: build a Cartesian tree of the array, activate LCA on it.

35

‘L General O(n) RMQ

= (Cartesian tree of an array A:

= Root — minimum element of the array. Root node is
labeled with the position of the minimum.

= Root’s left & right children: the recursively constructed
Cartesian tress of the left & right subarrays, respectively.

36

eral O(n) RMQ

i Gen

37

i Build Cartesian tree in O(n)

= Move from left to right in the array

s Suppose C is the Cartesian tree of A[1,..,i]

= Node i+1 (v) has to belong in the rightmost path of C

= Climb the rightmost path, find the first node (u) smaller than v

= Make v the right son of u, and previous right subtree of u left son
of v.

38

i Build Cartesian tree in O(n)

A[O] A[1] A[2] A[3] A[4] A[5] A[6] A[7] Al8] A[9]

10

39

i Build Cartesian tree in O(n)

40

i Build Cartesian tree in O(n)

22

41

i Build Cartesian tree in O(n)

42

i Build Cartesian tree in O(n)

@)

10

22

43

i Build Cartesian tree in O(n)

44

i General O(n) RMQ

= How to answer RMQ queries on A?

= Build Cartesian tree C of array A.
= RMQx(iJ) = LCALi,))

= Proof:
= let k = LCA(i,j).
= In the recursive description of a Cartesian tree k is the first
element to split i and j.

= k is between i,j since it splits them and is minimal because it
is the first element to do so.

45

i General O(n) RMQ

= Build Complexity:

= Every node enters the rightmost path once. Once it
leaves, will never return.

r O(n)

46

i General O(n) RMQ

All] A[Z2] A[3] A[4] A[5] A[6] A[7] A[8] A[9]

N Y,
l N
(4)

