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Definitions – Least Common Ancestor

 LCAT(u,v) – given nodes u,v in T, returns the node 

furthest from the root that is an ancestor of both u 
and v.

u

v

Trivial solution: 3( )On
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Definitions – Range Minimum Query

 Given array A of length n.

 RMQA(i,j) – returns the index of the smallest element in 

the subarray A[i..j]. 

0 1634 137 19 10 121 2

RMQ(3,7) = 4

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]
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Definitions – Complexity Notation

 Suppose an algorithm has:

 Preprocessing time –

 Query time –

 Notation for the overall complexity of an algorithm:

( )f n

( ), ( )f n g n 

( )g n
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Reduction from LCA to RMQ

 In order to solve LCA queries, we will reduce the problem 
to RMQ.

 Lemma:

If there is an solution for RMQ, then 
there is an 

Solution for LCA.

( ), ( )f n g n 
(2 1) ( ), (2 1) (1)f n On g n O     
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Reduction - proof

 Observation:

The LCA of nodes u and v is the shallowest node 
encountered between the visits to u and to v during a 
depth first search traversal of T.

3

4
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LCAT(1,5) = 3

Shallowest node



9

Reduction (cont.)

 Remarks:
 Euler tour size: 2n-1
 We will use the first occurrence of i,j for the sake of 

concreteness (any occurrence will suffice).
 Shallowest node must be the LCA, otherwise 

contradiction to a DFS run.
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Reduction (cont.)

 On an input tree T, we build 3 arrays.

 Euler[1,..,2n-1] – The nodes visited in an Euler tour of T. 

Euler[i] is the label of the i-th node visited in the tour.

 Level[1,..2n-1] – The level of the nodes we got in the tour. 

Level[i]  is the level of node Euler[i].

(level is defined to be the distance from the root)

 Representative[1,..n] – Representative[i] will hold the index of 

the first occurrence of node i in Euler[].

Representative[v] = argmin{ [ ] }i Euler i v

Mark: Euler – E, Representative – R, Level – L
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Reduction (cont.)

 Example:

7

1

6

3 5
10 8

92

4

E:   1  6  3  6  5  6  1  2  1  9  10 9  4  7  4  9  8  9  1

L:   0  1  2  1  2  1  0  1  0  1  2   1  2  3  2  1  2  1  0

R:   1  8  3  13  5  2  14  17  10  11

1      2     3      4      5      6     7      8      9     10    11    12    13    14    15    16   17     18    19
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Reduction (cont.)

 To compute LCAT(x,y): 

 All nodes in the Euler tour between the first visits to x 
and y are E[R[x],..,R[y]] (assume R[x] < R[y])

 The shallowest node in this subtour is at index 
RMQL(R[x],R[y]), since L[i] stores the level of the node 
at E[i].

 RMQ will return the index, thus we output the node at 
E[RMQL(R[x],R[y])] as LCAT(x,y).
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Reduction (cont.)

 Example:

7

1

6

3 5
10 8

92

4
LCAT(10,7)

R[10]R[7]

E[11,…,14]

RMQL(10,7) = 12

LCAT(10,7) = E[12]=9

E:   1  6  3  6  5  6  1  2  1  9  10  9  4  7  4  9  8  9  1

L:   0  1  2  1  2  1  0  1  0  1  2    1  2  3  2  1  2  1  0

R:   1  8  3  13  5  2  14  17  10  11
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Reduction (cont.)

 Preprocessing Complexity:

 L,R,E – Each is built in         time, during the DFS run.

 Preprocessing L for RMQ -

 Query Complexity:

 RMQ query on L –

 Array references –

 Overall: 

 Reduction proof is complete.

 We will only deal with RMQ solutions from this point on.

(2 1) ( ), (2 1) (1)f n On g n O     

(2 1)f n

(2 1)g n

(1)O

( )On
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RMQ

 Solution 1:

Given an array A of size n, compute the RQM for every pair 
of indices and store in a table - 3( ), (1)On O 

2( ), (1)On O 

 Solution 2: 

To calculate RMQ(i,j) use the already known value of  
RMQ(i,j-1) . 

Complexity reduced to -
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ST RMQ

 Preprocess sub arrays of length 

 M(i,j) = index of min value in the sub array starting at index 

i having length 

10 167 2634 2 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

M(3,0)=3

M(3,1)=3

M(3,2)=5

2k

2j
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ST RMQ

 Idea: precompute each query whose length is a power of n.

For every i between 1 and n and every j between 1 and 

find the minimum element in the block starting at i and 
having length     .

 More precisely we build table  M.

 Table M therefore has size O(nlogn).

logn  

2j

.. 2 1
[ , ] argmin { [ ]}jk i i

Mi j Arrayk
  


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ST RMQ

 Building M – using dynamic programming we can build M in 

O(nlogn) time.

j-1

j-1

 A[M[i,j-1]] A[M[i 2 1, 1]]          M[i,j-1]
[ , ]     

Otherwise                                               M[i 2 1, 1]

j
Mi j

j

    

   

10 167 2634 9 2 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

M(3,1)=3 M(5,1)=6

M(3,2)=6
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ST RMQ

 Using these blocks to compute arbitrary M[i,j]

 Select two blocks that entirely cover the subrange [i..j]

 Let                         (    is the largest block that fits [i..j])

 Compute RMQ(i,j):

log( )k j i    2k

       

 












k,12jM                                          Otherwise

ki,M           k,12jMAk,iMA
)j,i(RMQ

k

k

a1 ... ...

i j

2k elements

2k elements
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ST RMQ

 Query time is O(1).

 This algorithm is known as Sparse Table(ST) 
algorithm for RMQ, with complexity:

 Our target: get rid of the log(n) factor from the 
preprocessing.

( log ), (1)On n O 
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Faster RMQ

 Use a table-lookup technique to precompute answers on 
small subarrays, thus removing the log factor from the 
preprocessing.

 Partition A into         blocks of size         .
log

2
n2

log
n
n

A

... ... .........blocks
n log

2n

log
2
n log

2
n log

2
n
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Faster RMQ

 A’[1,..,        ] – A’[i] is the minimum element in the i-th block of A.

A

... ... .........blocks
n log

2n

log
2
n

A’[0] A’[2n/logn]A’[i]

…           ...
B[0] B[2n/logn]B[i]

 B[1,..,        ] – B’[i] is the position (index) in which value A’[i] occurs.
2

log
n
n

2
log

n
n
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 Example:

10 337 2634 9 2 1225 22

0 21 93 4 5 6 7 8 10 11 12 13 14 15

24 43 5 11 19 27

n=16

A[] :

10 25 22 7 34 9 … blocks
n log

2n
= 8

10 7 9

0 21A’[] 

: … 0 3 5

0 21B[] : 

…
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Faster RMQ

 Recall RMQ queries return the position of the 
minimum.

 LCA to RMQ reduction uses the position of the 
minimum, rather than the minimum itself.

 Use array B to keep track of where minimas in A’

came from.
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Faster RMQ

 Preprocess A’ for RMQ using ST algorithm.

 ST’s preprocessing time – O(nlogn).

 A’s size –

 ST’s preprocessing on A’:

 ST(A’) = 

2
log

n
n

2 2
log( ) ( )

log log
n n

On
n n



( ), (1)On O
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Faster RMQ

 Having preprocessed A’ for RMQ, how to answer RMQ(i,j) 
queries on A?

 i and j might be in the same block -> preprocess every block.

 i < j on different blocks, answer the query as follows:

1. Compute minima from i to end of its block.

2. Compute minima of all blocks in between i’s and j’s blocks.

3. Compute minima from the beginning of j’s block to j.

 Return the index of the minimum of these 3 values.
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Faster RMQ

 i < j on different blocks, answer the query as follows:

1. Compute minima from i to end of its block.

2. Compute minima of all blocks in between i’s and j’s blocks.

3. Compute minima from the beginning of j’s block to j.

 2 – Takes O(1) time by RMQ on A’.

 1 & 3 – Have to answer in-block RMQ queries

 We need in-block queries whether i and j are in the same block 
or not.
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Faster RMQ

 First Attempt: preprocess every block.

Per block : 

All        blocks –

 Second attempt: recall the LCA to RMQ reduction

 RMQ was performed on array L.

 What can we use to our advantage?

log log
log (log loglog )

2 2
n n

O n n  
 

2
log

n
n ( loglog )On n

1 restriction



32

Faster RMQ

 Observation:

Let two arrays X & Y such that

Then 

 There are          normalized blocks.

 X[i] Y[i] C  i  
,  ( , ) ( , )X Yi j RMQ i j RMQ i j 

3 46 55 4 5 64 5

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

0 13 22 1 2 31 2

B[0] B[2]B[1] B[9]B[3] B[4] B[5] B[6] B[7] B[8]

+1 -1 -1-1 +1 +1 -1+1 +1

( )O n

log
1

22 ( )
n

O n
  
  
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Faster RMQ

 Preprocess:

 Create            tables of size               to answer all in block 
queries.  Overall                            .

 For each block in A compute which normalized block table it 
should use –

 Preprocess A’ using ST -

 Query:

 Query on A’ –

 Query on in-blocks –

 Overall RMQ complexity -

( )O n 2(log )O n
 2log ( )O n n On

( )On

(1)O
(1)O

( ), (1)On O

( )On
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General O(n) RMQ

 Reduction from RMQ to LCA

 General RMQ is solved by reducing RMQ to LCA, then 
reducing LCA to      RMQ.

 Lemma:

If there is a                solution for LCA, then there is a  

solution to RMQ. 

 Proof: build a Cartesian tree of the array, activate LCA on it.

1

( ), (1)On O
( ), (1)On O
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General O(n) RMQ

 Cartesian tree of an array A:

 Root – minimum element of the array. Root node is 

labeled with the position of the minimum.

 Root’s left & right children: the recursively constructed 

Cartesian tress of the left & right subarrays, respectively.

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]
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General O(n) RMQ

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

4

0

2

1 3

5 7

6

9

8
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Build Cartesian tree in O(n)

 Move from left to right in the array

 Suppose Ci is the Cartesian tree of A[1,..,i] 

 Node i+1 (v) has to belong in the rightmost path of Ci

 Climb the rightmost path, find the first node (u) smaller than v

 Make v the right son of u, and previous right subtree of u left son 

of v.

u
v

x

...

u

v

x

...
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Build Cartesian tree in O(n)

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

0

10
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Build Cartesian tree in O(n)

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

0

1

10

25
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Build Cartesian tree in O(n)

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

0

2

1

10

22

25
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Build Cartesian tree in O(n)

3410 16267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

0

2

1 33

73434

10

22

25 34
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Build Cartesian tree in O(n)

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

4

0

2

1 3

10

22

25 34

7
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Build Cartesian tree in O(n)

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

4

0

2

1 3

5 7

6

9

8
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General O(n) RMQ

 How to answer RMQ queries on A?

 Build Cartesian tree C of array A.

 RMQA(i,j) = LCAC(i,j)

 Proof:

 let k = LCAC(i,j).

 In the recursive description of a Cartesian tree k is the first 
element to split i and j.

 k is between i,j since it splits them and is minimal because it 
is the first element to do so.
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General O(n) RMQ

 Build Complexity:

 Every node enters the rightmost path once. Once it 

leaves, will never return.

 O(n).
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General O(n) RMQ

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

4

0

2

1 3

5 7

6

9

8


