The LCA Problem Revisited

Michael A.Bender \& Martin Farach-Colton

Presented by: Dvir Halevi

Agenda

- Definitions
- Reduction from LCA to RMQ
- Trivial algorithms for RMQ
- ST algorithm for RMQ
- A faster algorithm for a private RMQ case
- General Solution for RMQ

Definitions - Least Common Ancestor

- $\operatorname{LCA}_{T}(u, v)$ - given nodes u, v in T, returns the node furthest from the root that is an ancestor of both u and v .

Trivial solution: $O\left(n^{3}\right)$

Definitions - Range Minimum Query

- Given array A of length n .
- $\mathrm{RMQ}_{\mathrm{A}}(\mathrm{i}, \mathrm{j})$ - returns the index of the smallest element in the subarray $A[i . . j]$.

Definitions - Complexity Notation

- Suppose an algorithm has:
- Preprocessing time - $\quad f(n)$
- Query time - $\quad g(n)$
- Notation for the overall complexity of an algorithm:

$$
<f(n), g(n)>
$$

- Definitions
- Reduction from LCA to RMQ
- Trivial algorithms for RMQ
- ST algorithm for RMQ
- A faster algorithm for a private RMQ case
- General Solution for RMQ

Reduction from LCA to RMQ

- In order to solve LCA queries, we will reduce the problem to RMQ.
- Lemma:

If there is an $<f(n), g(n)>$ solution for $R M Q$, then there is an $<f(2 n-1)+O(n), g(2 n-1)+O(1)>$
Solution for LCA.

Reduction - proof

- Observation:

The LCA of nodes u and v is the shallowest node encountered between the visits to u and to v during a depth first search traversal of T .

Reduction (cont.)

- Remarks:
- Euler tour size: 2n-1
- We will use the first occurrence of i, j for the sake of concreteness (any occurrence will suffice).
- Shallowest node must be the LCA, otherwise contradiction to a DFS run.

Reduction (cont.)

- On an input tree T, we build 3 arrays.
- Euler[1,..,2n-1] - The nodes visited in an Euler tour of T. Euler $[i]$ is the label of the i-th node visited in the tour.
- Level[$[1, . .2 n-1]$ - The level of the nodes we got in the tour. Level[i] is the level of node Euler[i]. (level is defined to be the distance from the root)
- Representative[1,..n] - Representative[i] will hold the index of the first occurrence of node i in Euler[].
Representative $[\mathrm{v}]=\operatorname{argmin}_{i}\{$ Euler $[i]=v\}$

Mark: Euler - E, Representative - R, Level - L

Reduction (cont.)

- Example:

Reduction (cont.)

- To compute $\operatorname{LCA}_{T}(\mathrm{x}, \mathrm{y})$:
- All nodes in the Euler tour between the first visits to x and y are $E[R[x], . ., R[y]]$ (assume $R[x]<R[y]$)
- The shallowest node in this subtour is at index $R M Q_{L}(R[x], R[y])$, since $L[i]$ stores the level of the node at $\mathrm{E}[\mathrm{i}$.
- RMQ will return the index, thus we output the node at $E\left[R M Q_{L}(R[x], R[y])\right]$ as $\operatorname{LCA}_{T}(x, y)$.

Reduction (cont.)

- Example:
$\operatorname{LCA}_{\mathrm{T}}(10,7)$

$\operatorname{LCA}_{T}(10,7)=\mathrm{E}[12]=9$
人
$\mathrm{L}: \begin{array}{lllllllllllllllll}0 & 1 & 2 & 1 & 2 & 1 & 0 & 1 & 0 & 1 & 2 & 2 & 3 & 2 & 1 & 2 & 1\end{array} 0$ R: $\begin{array}{lllllllllllll}1 & 8 & 3 & 13 & 5 & 2 & 14 & 17 & 10 & 11 & \operatorname{RMQ}_{L}(10,7)=12\end{array}$ $\mathrm{R}[7] \quad \mathrm{R}[10]$

Reduction (cont.)

- Preprocessing Complexity:
- L,R,E - Each is built in $O(n)$ time, during the DFS run.
- Preprocessing L for RMQ - $f(2 n-1)$
- Query Complexity:
- RMQ query on L-g(2n-1)
- Array references - $O(1)$
- Overall: $<f(2 n-1)+O(n), g(2 n-1)+O(1)>$
- Reduction proof is complete.
- We will only deal with RMQ solutions from this point on.
- Definitions
- Reduction from LCA to RMQ
- Trivial algorithms for RMQ
- ST algorithm for RMQ
- A faster algorithm for a private RMQ case
- General Solution for RMQ

RMQ

- Solution 1:

Given an array A of size n, compute the RQM for every pair of indices and store in a table - $\left\langle O\left(n^{3}\right), O(1)>\right.$

- Solution 2:

To calculate RMQ(i,j) use the already known value of RMQ(i,j-1) .
Complexity reduced to - $<O\left(n^{2}\right), Q(1)>$

- Definitions
- Reduction from LCA to RMQ
- Trivial algorithms for RMQ
- ST algorithm for RMQ
- A faster algorithm for a private RMQ case
- General Solution for RMQ

ST RMQ

- Preprocess sub arrays of length 2^{k}
- $M(i, j)=$ index of min value in the sub array starting at index i having length 2^{j}

ST RMQ

- Idea: precompute each query whose length is a power of n. For every i between 1 and n and every j between 1 and $\lfloor\log n\rfloor$ find the minimum element in the block starting at i and having length 2^{j}.
- More precisely we build table M.

$$
M i, j]=\operatorname{argmin}_{k-i . i+2 j-1}\{\operatorname{Array}[k]\}
$$

- Table M therefore has size O(nlogn).

ST RMQ

- Building M - using dynamic programming we can build M in O(nlogn) time.

$$
\begin{aligned}
& \begin{array}{|l|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{A}[0] & \mathrm{A}[1] & \mathrm{A}[2] & \mathrm{A}[3] & \mathrm{A}[4] \mathrm{A}[5] & \mathrm{A}[6] & \mathrm{A}[7] & \mathrm{A}[8] & \mathrm{A}[9] \\
\hline 10 & 25 & 22 & 7 & 34 & 9 & 2 & 12 & 26 & 16 \\
\hline
\end{array} \underbrace{9} \mathbf{l l l} \\
& M(3,1)=3 \quad M(5,1)=6 \\
& M(3,2)=6 \\
& M[i, j]=\left\{\begin{array}{lc}
\left.\mathrm{A}[\mathrm{Mi}, \mathrm{j}-1]] \leq \mathrm{A}\left[\mathrm{Mi}+2^{\mathrm{j}-1}-1, j-1\right]\right] & \mathrm{Mi}, \mathrm{j}-1] \\
\text { Oherwise } & \left.\mathrm{Mi}+2^{\mathrm{j}-1}-1, j-1\right]
\end{array}\right.
\end{aligned}
$$

ST RMQ

- Using these blocks to compute arbitrary M[i,j]
- Select two blocks that entirely cover the subrange [i..j]
- Let $k=\lfloor\log (j-i)\rfloor\left(2^{k}\right.$ is the largest block that fits $\left.[i . . j]\right)$
- Compute RMQ(i,j):
$R M Q, j)= \begin{cases}A[M i, k\rfloor] \leq A\left\lfloor M\left\lfloor j-2^{k}+1, k \|\right.\right. & M[i, k] \\ \text { Otherwise } & M\left[j-2^{k}+1, k\right]\end{cases}$

ST RMQ

- Query time is $\mathrm{O}(1)$.
- This algorithm is known as Sparse Table(ST) algorithm for RMQ, with complexity:

$$
<Q(n \log n), O(1)>
$$

- Our target: get rid of the $\log (\mathrm{n})$ factor from the preprocessing.
- Definitions
- Reduction from LCA to RMQ
- Trivial algorithms for RMQ
- ST algorithm for RMQ
- A faster algorithm for a private RMQ case
- General Solution for RMQ

Faster RMQ

- Use a table-lookup technique to precompute answers on small subarrays, thus removing the log factor from the preprocessing.
- Partition A into $\frac{2 n}{\log n}$ blocks of size $\frac{\log n}{2}$.

Faster RMQ

- $\mathrm{A}^{\prime}\left[1, . ., \frac{2 n}{\log n}\right]-\mathrm{A}^{\prime}[\mathrm{i}]$ is the minimum element in the i-th block of A .
- $\mathrm{B}\left[1, . ., \frac{2 n}{\log n}\right]-\mathrm{B}^{\prime}[\mathrm{i}]$ is the position (index) in which value $\mathrm{A}^{\prime}[\mathrm{i}]$ occurs.

- Example:

$$
n=16
$$

A[] | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | 25 | 22 | 7 | 34 | 9 | 2 | 12 | 26 | 33 | 24 | 43 | 5 | 11 | 19 | 27 |

Faster RMQ

- Recall RMQ queries return the position of the minimum.
- LCA to RMQ reduction uses the position of the minimum, rather than the minimum itself.
- Use array B to keep track of where minimas in A' came from.

Faster RMQ

- Preprocess A' for RMQ using ST algorithm.
- ST's preprocessing time - O(nlogn).
- A's size $-\frac{2 n}{\log n}$
- ST's preprocessing on $\mathrm{A}^{\prime}: \frac{2 n}{\log n} \log \left(\frac{2 n}{\log n}\right)=O(n)$
- $\mathrm{ST}\left(\mathrm{A}^{\prime}\right)=\langle O(n), O(1)\rangle$

Faster RMQ

- Having preprocessed A^{\prime} for RMQ, how to answer RMQ(i,j) queries on A ?
- i and j might be in the same block -> preprocess every block.
- i < j on different blocks, answer the query as follows:

1. Compute minima from ito end of its block.
2. Compute minima of all blocks in between i's and j's blocks.
3. Compute minima from the beginning of j's block to j.

- Return the index of the minimum of these 3 values.

Faster RMQ

- i < j on different blocks, answer the query as follows:

1. Compute minima from i to end of its block.
2. Compute minima of all blocks in between i's and j's blocks.
3. Compute minima from the beginning of j 's block to j.

- 2 - Takes O(1) time by RMQ on A^{\prime}.
- $1 \& 3$ - Have to answer in-block RMQ queries
- We need in-block queries whether i and j are in the same block or not.

Faster RMQ

- First Attempt: preprocess every block.

Per block: $\quad \frac{\log n}{2} \log \left(\frac{\log n}{2}\right)=O(\log n \log \log n)$
All $\frac{2 n}{\log n}$ blocks - $O(n \log \log n)$

- Second attempt: recall the LCA to RMQ reduction
- RMQ was performed on array L.
- What can we use to our advantage?
± 1 restriction

Faster RMQ

- Observation:

Let two arrays X \& Y such that $\forall i \mathrm{X}[\mathrm{i}]=\mathrm{Y}[\mathrm{i}]+\mathrm{C}$ Then $\forall i, j R M Q_{X}(i, j)=R M Q_{i}(i, j)$

- There are $O(\sqrt{n})$ normalized blocks.

Faster RMQ

- Preprocess:
- Create $O(\sqrt{n})$ tables of size $O\left(\log ^{2} n\right)$ to answer all in block queries. Overall $O\left(\sqrt{n} \log ^{2} n\right)=O(n)$.
- For each block in A compute which normalized block table it should use - $O(n)$
- Preprocess A' using ST - $O(n)$
- Query:
- Query on A' - $O(1)$
- Query on in-blocks - $O(1)$
- Overall RMQ complexity - $\langle(n), Q(1)\rangle$
- Definitions
- Reduction from LCA to RMQ
- Trivial algorithms for RMQ
- ST algorithm for RMQ
- A faster algorithm for a private RMQ case
- General Solution for RMQ

General O(n) RMQ

- Reduction from RMQ to LCA
- General RMQ is solved by reducing RMQ to LCA, then reducing LCA to ± 1 RMQ.
- Lemma:

If there is a $\langle O(n), Q(1)\rangle$ solution for LCA, then there is a $\langle O(n), O(1)\rangle$ solution to RMQ.

- Proof: build a Cartesian tree of the array, activate LCA on it.

General O(n) RMQ

A [0]	A [1]	A[2]	A[3]	A [4]	A[5]	A 6	A [7	A [8]	A [9
10	25	22	34	7	19	9	12	26	16

- Cartesian tree of an array A:
- Root - minimum element of the array. Root node is labeled with the position of the minimum.
- Root's left \& right children: the recursively constructed Cartesian tress of the left \& right subarrays, respectively.

General O(n) RMQ

$A[0]$	$A[1]$	$A[2$	$A[3]$	$A[4]$	$A[6]$		$A[7]$	$A[8]$	$A[9$
10	25	22	34	7	19	9	12	26	16

Build Cartesian tree in O(n)

- Move from left to right in the array
- Suppose C_{i} is the Cartesian tree of $\mathrm{A}[1, . ., \mathrm{i}]$
- Node $\mathrm{i}+1(\mathrm{v})$ has to belong in the rightmost path of C_{i}
- Climb the rightmost path, find the first node (u) smaller than v
- Make v the right son of u, and previous right subtree of u left son of v.

Build Cartesian tree in $\mathrm{O}(\mathrm{n})$

A[0]

	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]	A[8]	A[9]
10	25	22	34	7	19	9	12	26	16

Build Cartesian tree in $\mathrm{O}(\mathrm{n})$

A [0]	A [1]	A [2]	A [3]	A [4]	A[5]	A[6]	A[7]	A[8]	A [9]
10	25	22	34	7	19	9	12	26	16

Build Cartesian tree in $\mathrm{O}(\mathrm{n})$

A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]	A[8]	A[9]
10	25	22	34	7	19	9	12	26	16

Build Cartesian tree in $\mathrm{O}(\mathrm{n})$

A [0]	A[1]	A [2]	A [3]	A [4]	A [5]	A [6]	A[7]	A [8]	A [9]
10	25	22	34	7	19	9	12	26	16

Build Cartesian tree in $\mathrm{O}(\mathrm{n})$

A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]	A[8]	A[9]
10	25	22	34	7	19	9	12	26	16

Build Cartesian tree in $\mathrm{O}(\mathrm{n})$

A [0]	A[1]	A [2]	A [3]	A [4]	A [5]	A [6]	A[7]	A [8]	A [9]
10	25	22	34	7	19	9	12	26	16

General O(n) RMQ

- How to answer RMQ queries on A?
- Build Cartesian tree C of array A.
- $\mathrm{RMQ}_{\mathrm{A}}(\mathrm{i}, \mathrm{j})=\operatorname{LCA}(\mathrm{i}, \mathrm{j})$
- Proof:
- let $k=L C A_{C}(i, j)$.
- In the recursive description of a Cartesian tree k is the first element to split i and j .
- k is between i, j since it splits them and is minimal because it is the first element to do so.

General O(n) RMQ

- Build Complexity:
- Every node enters the rightmost path once. Once it leaves, will never return.
- O(n).

General O(n) RMQ

