
The LCA Problem Revisited

Michael A.Bender & Martin Farach-Colton

Presented by: Dvir Halevi

2

Agenda

 Definitions

 Reduction from LCA to RMQ

 Trivial algorithms for RMQ

 ST algorithm for RMQ

 A faster algorithm for a private RMQ case

 General Solution for RMQ

3

Definitions – Least Common Ancestor

 LCAT(u,v) – given nodes u,v in T, returns the node

furthest from the root that is an ancestor of both u
and v.

u

v

Trivial solution: 3()On

4

Definitions – Range Minimum Query

 Given array A of length n.

 RMQA(i,j) – returns the index of the smallest element in

the subarray A[i..j].

0 1634 137 19 10 121 2

RMQ(3,7) = 4

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

5

Definitions – Complexity Notation

 Suppose an algorithm has:

 Preprocessing time –

 Query time –

 Notation for the overall complexity of an algorithm:

()f n

(), ()f n g n 

()g n

6

 Definitions

 Reduction from LCA to RMQ

 Trivial algorithms for RMQ

 ST algorithm for RMQ

 A faster algorithm for a private RMQ case

 General Solution for RMQ

7

Reduction from LCA to RMQ

 In order to solve LCA queries, we will reduce the problem
to RMQ.

 Lemma:

If there is an solution for RMQ, then
there is an

Solution for LCA.

(), ()f n g n 
(2 1) (), (2 1) (1)f n On g n O     

8

Reduction - proof

 Observation:

The LCA of nodes u and v is the shallowest node
encountered between the visits to u and to v during a
depth first search traversal of T.

3

4

5
1

672

Euler tour:

4 1 7 1 3 5 6 5 33 1231

2

3

4

6

9

10

8

5
7

11

12

0

LCAT(1,5) = 3

Shallowest node

9

Reduction (cont.)

 Remarks:
 Euler tour size: 2n-1
 We will use the first occurrence of i,j for the sake of

concreteness (any occurrence will suffice).
 Shallowest node must be the LCA, otherwise

contradiction to a DFS run.

3

4

5
1

672

Euler tour:

4 1 7 1 3 5 6 5 33 1231

2

3

4

6

9

10

8

5
7

11

12

0

LCA(1,5) = 3

Shallowest node

10

Reduction (cont.)

 On an input tree T, we build 3 arrays.

 Euler[1,..,2n-1] – The nodes visited in an Euler tour of T.

Euler[i] is the label of the i-th node visited in the tour.

 Level[1,..2n-1] – The level of the nodes we got in the tour.

Level[i] is the level of node Euler[i].

(level is defined to be the distance from the root)

 Representative[1,..n] – Representative[i] will hold the index of

the first occurrence of node i in Euler[].

Representative[v] = argmin{ [] }i Euler i v

Mark: Euler – E, Representative – R, Level – L

11

Reduction (cont.)

 Example:

7

1

6

3 5
10 8

92

4

E: 1 6 3 6 5 6 1 2 1 9 10 9 4 7 4 9 8 9 1

L: 0 1 2 1 2 1 0 1 0 1 2 1 2 3 2 1 2 1 0

R: 1 8 3 13 5 2 14 17 10 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

12

Reduction (cont.)

 To compute LCAT(x,y):

 All nodes in the Euler tour between the first visits to x
and y are E[R[x],..,R[y]] (assume R[x] < R[y])

 The shallowest node in this subtour is at index
RMQL(R[x],R[y]), since L[i] stores the level of the node
at E[i].

 RMQ will return the index, thus we output the node at
E[RMQL(R[x],R[y])] as LCAT(x,y).

13

Reduction (cont.)

 Example:

7

1

6

3 5
10 8

92

4
LCAT(10,7)

R[10]R[7]

E[11,…,14]

RMQL(10,7) = 12

LCAT(10,7) = E[12]=9

E: 1 6 3 6 5 6 1 2 1 9 10 9 4 7 4 9 8 9 1

L: 0 1 2 1 2 1 0 1 0 1 2 1 2 3 2 1 2 1 0

R: 1 8 3 13 5 2 14 17 10 11

14

Reduction (cont.)

 Preprocessing Complexity:

 L,R,E – Each is built in time, during the DFS run.

 Preprocessing L for RMQ -

 Query Complexity:

 RMQ query on L –

 Array references –

 Overall:

 Reduction proof is complete.

 We will only deal with RMQ solutions from this point on.

(2 1) (), (2 1) (1)f n On g n O     

(2 1)f n

(2 1)g n

(1)O

()On

15

 Definitions

 Reduction from LCA to RMQ

 Trivial algorithms for RMQ

 ST algorithm for RMQ

 A faster algorithm for a private RMQ case

 General Solution for RMQ

16

RMQ

 Solution 1:

Given an array A of size n, compute the RQM for every pair
of indices and store in a table - 3(), (1)On O 

2(), (1)On O 

 Solution 2:

To calculate RMQ(i,j) use the already known value of
RMQ(i,j-1) .

Complexity reduced to -

17

 Definitions

 Reduction from LCA to RMQ

 Trivial algorithms for RMQ

 ST algorithm for RMQ

 A faster algorithm for a private RMQ case

 General Solution for RMQ

18

ST RMQ

 Preprocess sub arrays of length

 M(i,j) = index of min value in the sub array starting at index

i having length

10 167 2634 2 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

M(3,0)=3

M(3,1)=3

M(3,2)=5

2k

2j

19

ST RMQ

 Idea: precompute each query whose length is a power of n.

For every i between 1 and n and every j between 1 and

find the minimum element in the block starting at i and
having length .

 More precisely we build table M.

 Table M therefore has size O(nlogn).

logn  

2j

.. 2 1
[,] argmin { []}jk i i

Mi j Arrayk
  



20

ST RMQ

 Building M – using dynamic programming we can build M in

O(nlogn) time.

j-1

j-1

 A[M[i,j-1]] A[M[i 2 1, 1]] M[i,j-1]
[,]

Otherwise M[i 2 1, 1]

j
Mi j

j

    

   

10 167 2634 9 2 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

M(3,1)=3 M(5,1)=6

M(3,2)=6

21

ST RMQ

 Using these blocks to compute arbitrary M[i,j]

 Select two blocks that entirely cover the subrange [i..j]

 Let (is the largest block that fits [i..j])

 Compute RMQ(i,j):

log()k j i    2k

       

 












k,12jM Otherwise

ki,M k,12jMAk,iMA
)j,i(RMQ

k

k

a1

i j

2k elements

2k elements

22

ST RMQ

 Query time is O(1).

 This algorithm is known as Sparse Table(ST)
algorithm for RMQ, with complexity:

 Our target: get rid of the log(n) factor from the
preprocessing.

(log), (1)On n O 

23

 Definitions

 Reduction from LCA to RMQ

 Trivial algorithms for RMQ

 ST algorithm for RMQ

 A faster algorithm for a private RMQ case

 General Solution for RMQ

24

Faster RMQ

 Use a table-lookup technique to precompute answers on
small subarrays, thus removing the log factor from the
preprocessing.

 Partition A into blocks of size .
log

2
n2

log
n
n

A

...blocks
n log

2n

log
2
n log

2
n log

2
n

25

Faster RMQ

 A’[1,..,] – A’[i] is the minimum element in the i-th block of A.

A

...blocks
n log

2n

log
2
n

A’[0] A’[2n/logn]A’[i]

… ...
B[0] B[2n/logn]B[i]

 B[1,..,] – B’[i] is the position (index) in which value A’[i] occurs.
2

log
n
n

2
log

n
n

26

 Example:

10 337 2634 9 2 1225 22

0 21 93 4 5 6 7 8 10 11 12 13 14 15

24 43 5 11 19 27

n=16

A[] :

10 25 22 7 34 9 … blocks
n log

2n
= 8

10 7 9

0 21A’[]

: … 0 3 5

0 21B[] :

…

27

Faster RMQ

 Recall RMQ queries return the position of the
minimum.

 LCA to RMQ reduction uses the position of the
minimum, rather than the minimum itself.

 Use array B to keep track of where minimas in A’

came from.

28

Faster RMQ

 Preprocess A’ for RMQ using ST algorithm.

 ST’s preprocessing time – O(nlogn).

 A’s size –

 ST’s preprocessing on A’:

 ST(A’) =

2
log

n
n

2 2
log() ()

log log
n n

On
n n



(), (1)On O

29

Faster RMQ

 Having preprocessed A’ for RMQ, how to answer RMQ(i,j)
queries on A?

 i and j might be in the same block -> preprocess every block.

 i < j on different blocks, answer the query as follows:

1. Compute minima from i to end of its block.

2. Compute minima of all blocks in between i’s and j’s blocks.

3. Compute minima from the beginning of j’s block to j.

 Return the index of the minimum of these 3 values.

30

Faster RMQ

 i < j on different blocks, answer the query as follows:

1. Compute minima from i to end of its block.

2. Compute minima of all blocks in between i’s and j’s blocks.

3. Compute minima from the beginning of j’s block to j.

 2 – Takes O(1) time by RMQ on A’.

 1 & 3 – Have to answer in-block RMQ queries

 We need in-block queries whether i and j are in the same block
or not.

31

Faster RMQ

 First Attempt: preprocess every block.

Per block :

All blocks –

 Second attempt: recall the LCA to RMQ reduction

 RMQ was performed on array L.

 What can we use to our advantage?

log log
log (log loglog)

2 2
n n

O n n  
 

2
log

n
n (loglog)On n

1 restriction

32

Faster RMQ

 Observation:

Let two arrays X & Y such that

Then

 There are normalized blocks.

 X[i] Y[i] C i  
, (,) (,)X Yi j RMQ i j RMQ i j 

3 46 55 4 5 64 5

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

0 13 22 1 2 31 2

B[0] B[2]B[1] B[9]B[3] B[4] B[5] B[6] B[7] B[8]

+1 -1 -1-1 +1 +1 -1+1 +1

()O n

log
1

22 ()
n

O n
  
  

33

Faster RMQ

 Preprocess:

 Create tables of size to answer all in block
queries. Overall .

 For each block in A compute which normalized block table it
should use –

 Preprocess A’ using ST -

 Query:

 Query on A’ –

 Query on in-blocks –

 Overall RMQ complexity -

()O n 2(log)O n
 2log ()O n n On

()On

(1)O
(1)O

(), (1)On O

()On

34

 Definitions

 Reduction from LCA to RMQ

 Trivial algorithms for RMQ

 ST algorithm for RMQ

 A faster algorithm for a private RMQ case

 General Solution for RMQ

35

General O(n) RMQ

 Reduction from RMQ to LCA

 General RMQ is solved by reducing RMQ to LCA, then
reducing LCA to RMQ.

 Lemma:

If there is a solution for LCA, then there is a

solution to RMQ.

 Proof: build a Cartesian tree of the array, activate LCA on it.

1

(), (1)On O
(), (1)On O

36

General O(n) RMQ

 Cartesian tree of an array A:

 Root – minimum element of the array. Root node is

labeled with the position of the minimum.

 Root’s left & right children: the recursively constructed

Cartesian tress of the left & right subarrays, respectively.

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

37

General O(n) RMQ

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

4

0

2

1 3

5 7

6

9

8

38

Build Cartesian tree in O(n)

 Move from left to right in the array

 Suppose Ci is the Cartesian tree of A[1,..,i]

 Node i+1 (v) has to belong in the rightmost path of Ci

 Climb the rightmost path, find the first node (u) smaller than v

 Make v the right son of u, and previous right subtree of u left son

of v.

u
v

x

...

u

v

x

...

39

Build Cartesian tree in O(n)

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

0

10

40

Build Cartesian tree in O(n)

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

0

1

10

25

41

Build Cartesian tree in O(n)

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

0

2

1

10

22

25

42

Build Cartesian tree in O(n)

3410 16267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

0

2

1 33

73434

10

22

25 34

43

Build Cartesian tree in O(n)

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

4

0

2

1 3

10

22

25 34

7

44

Build Cartesian tree in O(n)

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

4

0

2

1 3

5 7

6

9

8

45

General O(n) RMQ

 How to answer RMQ queries on A?

 Build Cartesian tree C of array A.

 RMQA(i,j) = LCAC(i,j)

 Proof:

 let k = LCAC(i,j).

 In the recursive description of a Cartesian tree k is the first
element to split i and j.

 k is between i,j since it splits them and is minimal because it
is the first element to do so.

46

General O(n) RMQ

 Build Complexity:

 Every node enters the rightmost path once. Once it

leaves, will never return.

 O(n).

47

General O(n) RMQ

10 1634 267 19 9 1225 22

A[0] A[2]A[1] A[9]A[3] A[4] A[5] A[6] A[7] A[8]

4

0

2

1 3

5 7

6

9

8

