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Mechanism Design
• What is mechanism design?
• It can be seen as reverse game theory
• Main goal: design the rules of a game so as to

• avoid strategic behavior by the players
• and more generally, to enforce a certain behavior for the players or 

other desirable properties

• Applied to problems where a “social choice” needs to be 
made
• i.e., an aggregation of individual preferences to a  single joint 

decision

• strategic behavior = declaring false preferences in order to 
gain a higher utility
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Examples
• Elections
• Parliamentary elections, committee elections, council 

elections, etc
• A set of voters
• A set of candidates
• Each voter expresses preferences according to the 

election rules
• E.g., by specifying his single top choice, or by specifying his first 

few choices, or by submitting a full ranking of the candidates

• Social choice: can be a single candidate (single-winner 
election) or a set of candidates (multi-winner election) or 
a ranking of the candidates
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Examples
• Auctions
• An auctioneer with some items for sale
• A set of bidders express preferences (offers) over items
• Or combinations of items

• Preferences are submitted either through a valuation 
function, or according to some bidding language

• Social choice: allocation of items to the bidders
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Examples
• Government policy making and referenda
• A municipality is considering implementing a public 

project
• Q1: Should we build a new road, a library or a tennis 

court?
• Q2: If we build a library where shall we build it?
• Citizens can express their preferences in an online survey 

or a referendum
• Social choice: the decision of the municipality on what 

and where to implement
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Specifying preferences
• In all the examples, the players need to submit their 

preferences in some form
• Representation of preferences can be done by
• A valuation function (specifying a value for each possible 

outcome)
• A ranking (an ordering on possible outcomes)
• An approval set (which outcomes are approved) 

• Possible conflict between increased expressiveness vs 
complexity of decision problem
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Single-item Auctions
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Set of players
N = {1, 2, …, n}

1 indivisible good

Auctions
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Auctions
• A means of conducting transactions since antiquity
• First references of auctions date back to ancient Athens 

and Babylon
• Modern applications:

• Art works
• Stamps
• Flowers (Netherlands)
• Spectrum licences
• Other govermental licences
• Pollution rights
• Google ads
• eBay
• Bonds
• ... 9



Auctions
• Earlier, the most popular types of auctions were
• The English auction

• The price keeps increasing in small increments
• Gradually bidders drop out till there is only one winner left

• The Dutch auction
• The price starts at +∞ (i.e., at some very high price) and keeps 

decreasing
• Until there exists someone willing to offer the current price

• There exist also many variants regarding their practical 
implementation

• These correspond to ascending or descending price 
trajectories
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Sealed bid auctions

• Sealed bid: We think of every bidder submitting his bid in an 
envelope, without other players seeing it
- It does not really have to be an envelope, bids can be submitted 

electronically
- The main assumption is that it is submitted in a way that other 

bidders cannot see it

• After collecting the bids, the auctioneer needs to decide:
- Who wins the item?
• Easy! Should be the guy with the highest bid 
• Yes in most cases, but not always

- How much should the winner pay?
• Not so clear

11



Sealed bid auctions

Why do we view auctions as games?
• We assume every player has a valuation vi for obtaining the 

good
• Available strategies: each bidder is asked to submit a bid bi

• bi Î [0, ∞)
• Infinite number of strategies

• The submitted bid bi may differ from the real value vi of 
bidder i
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First price auction

Auction rules
•Let b = (b1, b2,..., bn) the vector of all the offers
•Winner: The bidder with the highest offer

• In case of ties: We assume the winner is the bidder with the lowest 
index (not important for the analysis)

• E.g. if there is a tie among bidder 2 and bidder 4, the winner is 
bidder 2

•Winner’s payment: the bid declared by the winner
•Utility function of bidder i, 
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ui(b) =
vi – bi , if i is the winner

0, otherwise



Incentives in the first price auction
Analysis of first price auctions
•There are too many Nash equilibria
•Can we predict bidding behavior? Is some equilibrium more 
likely to occur?
•Hard to tell what exactly will happen in practice but we can 
still make some conclusions for first price auctions
Observation: Suppose that v1 ≥ v2 ≥ v3 ... ≥ vn. Then the profile
(v2, v2, v3, ..., vn) is a Nash equilibrium

Corollary: The first price auction provides incentives to 
bidders to hide their true value
•This is highly undesirable when v1 - v2 is large 
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Auction mechanisms
We would like to explore alternative payment rules with better 
properties

Definition: For the single-item setting, an auction mechanism 
receives as input the bidding vector b = (b1, b2,..., bn) and 
consists of
• an allocation algorithm (who wins the item)
• a payment algorithm (how much does the winner pay)

Most mechanisms satisfy individual rationality:
• Non-winners do not pay anything
• If the winner is bidder i, her payment will not exceed bi (it is guaranteed 

that no-one will pay more than what she declared) 15



Auction mechanisms
Aligning Incentives
•Ideally, we would like mechanisms that do not provide 
incentives for strategic behavior
•How do we even define this mathematically?

An attempt:
Definition: A mechanism is called truthful (or strategyproof, or 
incentive compatible) if for every bidder i, and for every profile 
b-i of the other bidders, it is a dominant strategy for i to declare 
her real value vi, i.e., it holds that

ui(vi, b-i) ≥ ui(b’, b-i) for every b’ ≠ vi
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Auction mechanisms

• In a truthful mechanism, every rational agent knows what to 
play, independently of what the other bidders are doing

• It is a win-win situation:
• The auctioneer knows that players should not strategize
• The bidders also know that they should not spend time 

on trying to find a different strategy
• Very powerful property for a mechanism
• Fact: The first-price mechanism is not truthful

Are there truthful mechanisms?
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The 2nd price mechanism
(Vickrey auction)

[Vickrey ’61]
•Allocation algorithm: same as before, the bidder with the 
highest offer
• In case of ties: we assume the winner is the bidder with 

the lowest index
•Payment algorithm: the winner pays the 2nd highest bid
•Hence, the auctioneer offers a discount to the winner

Observation: the payment does not depend on the winner’s 
bid!

• The bid of each player determines if he wins or not, but not what he 
will pay

18



The 2nd price mechanism
(Vickrey auction)

[Vickrey ’61] (Nobel prize in economics, 1996)
•Theorem: The 2nd price auction is a truthful mechanism
Proof sketch:
•Fix a bidder i, and let b-i be an arbitrary bidding profile for the 
rest of the players
•Let b* = maxj≠i bj

•Consider now all possible cases for the final utility of bidder i, 
if he plays vi

- vi <  b*

- vi >  b*

- vi =  b*

- In all these different cases, we can prove that bidder i does not 
become better off by deviating to another strategy 19



Optimization objectives
What do we want to optimize in an auction?

Usual objectives: 
• Social welfare (the total welfare produced for the involved 

entities) 
• Revenue (the payment received by the auctioneer)

We will focus first on social welfare
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Optimization objectives
What do we want to optimize in an auction?

Definition: The utilitarian social welfare produced by a bidding 
vector b is SW(b) =  Σi ui(b)
•The summation includes the auctioneer’s utility (= the auctioneer’s 
payment)
•The auctioneer’s payment cancels out with the winner’s payment

ØFor the single-item setting, SW(b) = the value of the winner 
for the item
ØAn auction is welfare maximizing if it produces an allocation 
with optimal social welfare when bidders are truthful
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Vickrey auction: an ideal auction format

Summing up:

Theorem: The 2nd price auction is
• truthful [incentive guarantees]
• welfare maximizing [economic performance guarantees]
• implementable in polynomial time [computational 

performance guarantees]

Even though the valuations are private information to the bidders, the 
Vickrey auction solves the welfare maximization problem as if the 
valuations were known
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Generalizations to single-parameter 
environments

23



Single-parameter mechanisms

• In many cases, we do not have a single item to sell, but 
multiple items

• But still, the valuation of a bidder could be determined by a 
single number (e.g., value per unit)

• Note: the valuation function may depend on various other 
parameters, but we assume only a single parameter is 
private information to the bidder
- The other parameters may be publicly known information

• We can treat all these settings in a unified manner
• Our focus: Direct revelation mechanisms

- The mechanism asks each bidder to submit the 
parameter that completely determines her valuation 
function 24



Examples of single-parameter 
environments

• Single-item auctions:
• One item for sale
• each bidder is asked to submit his value for acquiring the item

• k-item unit-demand auctions
• k identical items for sale 
• each bidder submits his value per unit and can win at most one unit

• Knapsack auctions
• k identical items, each bidder has a value for obtaining a certain number 

of units
• Single-minded auctions

• a set of (non-identical) items for sale
• each bidder is interested in acquiring a specific subset of items (known to 

the mechanism)
• Each bidder submits his value for the set she desires 25



Examples of single-parameter 
environments

• Sponsored search auctions
• multiple advertising slots available, arranged from top to bottom
• each bidder interested in acquiring as high a slot as possible
• each bidder submits his value per click

• Public project mechanisms
• deciding whether to build a public project (e.g., a park) 
• each bidder submits his value for having the project built  

26

In all these settings, we can have multiple winners in the 
auction



Some Notation
•Suppose we have n players
•Let vi be the parameter that is private information to player i

- Usually vi corresponds to value per unit, or in general maximum 
willingness to pay per unit received

- Or vi can be the value derived by the bidder when she is a winner (e.g., 
in public project problems)

General form of direct-revelation mechanisms for single-parameter 
problems:
•Input: The bidding vector b = (b1,…, bn) by the players

- each bi may differ from vi

•Allocation rule: Choose an allocation x(b) = (x1(b), x2(b),…, xn(b))
- xi(b) = number of units received by pl. i or generally the allocation to i 

•Payment rule: p(b) = (p1(b), p2(b),…, pn(b))
- pi(b) = payment for bidder i 27



Some Notation
•We will use (x, p) to refer to a mechanism with allocation function 
x, and payment function p
•Final utility of bidder i in a mechanism M = (x, p):

- ui(b) = vi xi(b) - pi(b)
- Quasi-linear form of utility functions

•For simplicity, we often write (x1, x2,…, xn) instead of (x1(b), 
x2(b),…, xn(b))
•We focus on mechanisms that satisfy Individual Rationality:

- If a bidder i is a non-winner (xi(b) = 0), then pi(b) = 0
- For winners, the payment rule satisfies pi(b) Î [0, bi xi(b)] for every 

bidding vector b and every i
- The auctioneer can never ask a bidder for a payment higher than her 

declared total value for what she won
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Examples of single-parameter 
environments

Describing the feasible allocations
•Single-item auctions:

• xi Î {0, 1} for every i, and Σi xi = 1
•k-item unit-demand auctions

• k identical items for sale 
• xi Î {0, 1}, Σi xi <= k

•Knapsack auctions
• k identical items for sale 
• For each bidder, demand wi

• xi Î {0, 1} for every i, Σi wi xi <= k
•Public project mechanisms

• Deciding whether to build a public project (e.g., a park) 
• Only 2 feasible allocations: (0, 0, ..., 0) or (1, 1, ..., 1) 
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Allocation rules and truthful mechanisms

• Can we understand how to derive truthful mechanisms?
• Actually, we can rephrase this as:

• Suppose we are given an allocation rule x
• Can we tell if x can be combined with a pricing rule p, so that (x, p) is a 

truthful mechanism?
• This would allow us to focus only on designing the allocation 

algorithm appropriately
• Consider the single-item auction

• Allocation rule 1: Give the item to the highest bidder
• Allocation rule 2: Give the item to the 2nd highest bidder

• For rule 1, we have seen how to turn it into a truthful 
mechanism (Vickrey auction)

• For rule 2? 
• We have not seen how to do this, but we have also not proved that it 

cannot be done
30



Allocation rules and truthful mechanisms

• Consider a mechanism with allocation rule x
• Fix a player i, and fix a profile b-i for the other players
• Allocation to player i at a profile b = (z, b-i) is given by xi(b) 
• Keeping b-i fixed, we can view the allocation to player i as a 

function of his bid
• xi = xi(z, b-i), if bidder i bids z

• Definition: An allocation rule is monotone if for every bidder i, 
and every profile b-i, the allocation xi(z, b-i) to i is non-decreasing 
in z

• I.e., bidding higher can only get you more stuff
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Monotonicity of allocation rules
Examples
• Back to the single-item auction
• The allocation rule that gives the item to the highest bidder is 

monotone
• If a bidder wins at profile b, she continues to be a winner if she raises her 

own bid (keeping b-i fixed)
• If she was not a winner at b, then by raising her bid, she will either 

remain a non-winner or she will become a winner 
• The allocation rule that gives the item to the 2nd highest bidder 

is not monotone
• If I am a winner and raise my bid, I may become the highest bidder and 

will stop being a winner
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Myerson’s lemma
[Myerson ’81]
•Theorem: For every single-parameter environment, 

- An allocation rule x can be turned into a truthful mechanism if and only 
if it is monotone

- If x is monotone, then there is a unique payment rule p, so that (x, p) is a 
truthful mechanism
- Subject to the constraint that if bi = 0, then pi = 0

•One of the classic results in mechanism design
•In fact, in many cases we can also compute the payments by a 
simple formula
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Myerson’s lemma and payment formula
• For the payment rule, we need to look for each bidder at the 

allocation function xi(z, b-i)
• For the single-item truthful auction:
• Fix b-i and let b* = maxj≠i bj

34
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1

xi(z) Facts: 
• For any fixed b-i, the allocation 

function is piecewise linear 
with 1 jump

• The Vickrey payment is 
precisely the value at which 
the jump happens

• The jump changes the 
allocation from 0 to 1 unit



Myerson’s lemma and payment formula
For most scenarios of interest
• The allocation is piecewise linear with multiple jumps
• The jump determines how many extra units the bidder wins
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w1

xi(z)
• Suppose bidder i bids bi
• Look at the jumps of xi(z, b-i) in 

the interval [0, bi]
• Suppose we have k jumps
• Jump at z1 = w1
• Jump at z2 = w2 – w1
• Jump at z3 = w3 – w2
• ...
• Jump at zk = wk – wk-1

z2 z3

w2

w3



Myerson’s lemma and payment formula
For most scenarios of interest
• The allocation is piecewise linear with multiple jumps
• The jump determines how many extra units the bidder wins
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w1

xi(z)

Payment formula
•For each bidder i at a profile b, 
find all the jump points within [0, 
bi]
•pi(b) = Σj zj × [jump at zj]

= Σj zj × [wj – wj-1]
•The formula can also be 
generalized for monotone but not 
piecewise linear functions 

z2 z3

w2

w3



Applying Myerson’s lemma
• Single-item auctions
• The allocation rule of giving the item to the highest bidder is 

monotone
• The payment rule of Myerson gives us precisely the Vickrey

auction 
- Non-winners pay nothing: If a bidder i is not a winner, there is no jump 

within [0, bi] in the function xi(z, b-i)
- The winner pays (2nd highest bid) × [jump at 2nd highest bid] = 2nd highest 

bid

• Corollary: The Vickrey auction is the only truthful mechanism for 
single-item auctions, when the winner is the highest bidder
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Sponsored Search Auctions
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What is sponsored search?
Advertising slots
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What is sponsored search?
Advertising slots
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How does it work?

• For a fixed search term (e.g. ipod)
– n advertisers
– k slots (typically k << n)
– An auction is run for every single search
– Each advertiser (bidder) is interested in getting himself 

displayed in one of the slots
• And usually they prefer a slot as high up as possible

– Same auction is also run for related keywords (e.g. “buy 
ipod”, “cheap ipod”, “ipod purchase”, …)

• The advertiser can determine for which phrases to participate
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How does it work?
– Bidders submit an initial budget which they can refresh weekly 

or monthly
– Bidders also submit an initial bid which they can adjust as 

often as they wish  
– The auction selects the winners to be displayed
– Different charging models exist: Pay Per Click, Pay Per 

Impression, Pay Per Transaction
– Currently, most popular is Pay Per Click
– A bidder is charged only if someone clicks on the bidder’s ad
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The Actors
• The Search engine:

– Wants to make as much revenue as possible
– At the same time, wants to make sure users receive meaningful 

ads and bidders do not feel that they were overcharged
– Big percentage of Google’s revenue has been due to these 

auctions!

• The Bidders:
– Want to occupy a high slot and pay as little as possible

• The Searchers:
– Want to find the most relevant ads with respect to what they are 

looking for
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Analyzing sponsored search 
auctions

• We will focus on the bidders’ side
• Model parameters for each bidder i

– Private information: vi = maximum amount willing to pay per click 
= value/happiness derived from a click (private information)

– Each bidder i submits a bid bi for willingness to pay per click (bi
may differ from vi)

– We will ignore the budget parameter 
• In many cases, it is large enough and cannot affect the game

– Hence, we have a single-parameter problem
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Analyzing sponsored search 
auctions

• We will focus on the bidders’ side
• Model parameters for each slot j

– αj = Click-through rate (CTR) of slot j  = probability that a user will 
click on slot j

– Assume it is independent of who occupies slot j
• We can generalize to the case where the rates are weighted 

by a quality score of the advertiser who takes each slot
– The search engines update regularly the click-through rates and 

statistics show that 
α1 ≥ α2 ≥ α3 ≥ ... ≥ αk

– Users tend to click on higher slots
• Validation also by eye-tracking experiments
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Analyzing sponsored search 
auctions

• How shall we allocate the k slots to the n bidders?
• Most natural allocation rule: for i=1 to k, give to the i-th 

highest bidder the i-th best slot in terms of CTR
– Remaining n-k bidders do not win anything

• For convenience, assume that b1 ≥ b2 ≥ b3 ≥ ... ≥ bn

• Expected value of a winning bidder i: αivi

• Is this rule monotone?
• Yes, bidding higher can only get you a better slot
• Hence we can apply Myerson’s formula to find the 

payment rule
• For each bidder i, xi(bi, b-i) Î {0, αk, αk-1, ..., α1}



Myerson’s lemma for sponsored 
search auctions

•Let’s analyze the highest bidder with bid b1

•Suppose we have 3 slots and n>3 bidders
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α3

xi(z)

• Look at the jumps of xi in the 
interval [0, b1]

• Jump at b4 = α3
• Jump at b3 = α2 – α3
• Jump at b2 = α1 – α2
Total payment:
b4α3 + b3 (α2 – α3) + b2 (α1 – α2) 

b3 b2

α2

α1



Myerson’s lemma for sponsored 
search auctions

•More generally, for the i-th highest bidder, there will be k-i+1 
jumps

•This would have been the payment if bidders cared for 
impressions and not for clicks
•Under pay-per-click, no actual payment takes place at the end of 
every auction, unless there is a click by a user
•Need to scale so that expected per-click payment is pi(b)
•Proposed per-click payment to bidder in i-th slot: pi(b)/αi

•By Myerson, no other payment can achieve truthfulness with the 
same allocation rule 48
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Sponsored search auctions in practice

• In practice most engines do not use the payment of 
Myerson’s lemma

• But they use the same allocation rule
• The Generalized Second Price Mechanism (GSP) - initial 

version:
– The search engine ranks the bids in decreasing order: 

b1 ³ b2 ³ … ³ bn

– The i-th highest bidder takes the i-th best slot
– Every time there is a click on slot i, bidder i pays bi+1
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The Generalized Second Price 
Mechanism (GSP)

• A better version:
– The search engine keeps a quality score qi for each bidder i

• Yahoo, Bing (till a few years ago): qi is the click-through rate of i 
(probability of a user clicking on an ad of bidder i)

• Google: qi depends on click-through rate, relevance of text and 
other factors

– The search engine ranking is in decreasing order of qi ´ bi
q1´b1 ³ q2´b2 ³ … ³ qn´bn

– The first k bidders of the ranking are displayed in the k slots
– Every time there is a click on slot i, bidder i pays minimum 

bid required to keep his position, i.e. (qi+1´bi+1)/ qi
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The Generalized Second Price 
Mechanism (GSP)

• Myerson’s lemma implies GSP cannot be truthful
– Otherwise, its payment rule would coincide with the Myerson formula

• GSP was employed probably by accident
– As an attempt to use something simple that looked close to truthful

• Nevertheless...
– For a long period, revenue from GSP was 95% of Google’s revenue
– Still nowadays an important percentage of search engines’ revenue
– Theoretical analysis: the Nash equilibria of GSP have revenue at least 

as high as the revenue of truthful bidding
– Further connections also exist between GSP outcomes and the 

outcome of the truthful mechanism


