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Allocation rules and truthful mechanisms

• We recall first some definitions we saw in previous lectures 
• Consider a mechanism with allocation rule x

• Definition: An allocation rule is monotone if for every i, and every 
profile b-i, the allocation xi(z, b-i) to i is non-decreasing in z 
- i.e., bidding higher can only get you more stuff

[Myerson ’81]
• Theorem: For every single-parameter environment, 

- An allocation rule x can be turned into a truthful mechanism if and only if 
it is monotone

- If x is monotone, then there is a unique payment rule p, so that (x, p) is a 
truthful mechanism

2



Myerson’s lemma and payment formula
• For the payment rule, we need to look for each bidder at the 
allocation function xi(z, b-i)
• For the single-item truthful auction:
• Fix b-i and let b* = maxj≠i bj
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zb*0
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xi(z) Facts: 
• For any fixed b-i, the allocation 

function is piecewise linear 
with 1 jump

• The Vickrey payment is 
precisely the value at which 
the jump happens

• The jump changes the 
allocation from 0 to 1 unit



Myerson’s lemma and payment formula
For most scenarios of interest
•The allocation is piecewise linear with multiple jumps
•The jump determines how many extra units the bidder wins
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xi(z)
• Suppose bidder i bids bi
• Look at the jumps of xi(z, b-i) in 

the interval [0, bi]
• Suppose we have k jumps
• Jump at z1 = w1
• Jump at z2 = w2 – w1
• Jump at z3 = w3 – w2
• ...
• Jump at zk = wk – wk-1

z2 z3

w2

w3



Myerson’s lemma and payment formula
For most scenarios of interest
•The allocation is piecewise linear with multiple jumps
•The jump determines how many extra units the bidder wins
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Payment formula
• For each bidder i at a profile b, 
find all the jump points within 
[0, bi]
• pi(b) = Σj zj × [jump at zj]

= Σj zj × [wj – wj-1]
• The formula can also be 
generalized for monotone but not 
piecewise linear functions 

z2 z3
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Sponsored Search Auctions
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What is sponsored search?
Advertising slots
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What is sponsored search?
Advertising slots
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How does it work?

• For a fixed search term (e.g. ipod)
– n advertisers
– k slots (typically k << n)
– An auction is run for every single search
– Each advertiser (bidder) is interested in getting himself 

displayed in one of the slots
• And usually they prefer a slot as high up as possible

– Same auction is also run for related keywords (e.g. “buy 
ipod”, “cheap ipod”, “ipod purchase”, …)

• The advertiser can determine for which phrases to participate
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How does it work?
– Bidders submit an initial budget which they can refresh weekly 

or monthly
– Bidders also submit an initial bid which they can adjust as 

often as they wish  
– The auction selects the winners to be displayed
– Different charging models exist: Pay Per Click, Pay Per 

Impression, Pay Per Transaction
– Currently, most popular is Pay Per Click
– A bidder is charged only if someone clicks on the bidder’s ad
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The Actors
• The Search engine:

– Wants to make as much revenue as possible
– At the same time, wants to make sure users receive meaningful 

ads and bidders do not feel that they were overcharged
– Big percentage of Google’s revenue has been due to these 

auctions!

• The Bidders:
– Want to occupy a high slot and pay as little as possible

• The Searchers:
– Want to find the most relevant ads with respect to what they are 

looking for
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Analyzing sponsored search 
auctions

• We will focus on the bidders’ side
• Model parameters for each bidder i

– Private information: vi = maximum amount willing to pay per click 
= value/happiness derived from a click (private information)

– Each bidder i submits a bid bi for willingness to pay per click (bi
may differ from vi)

– We will ignore the budget parameter 
• In many cases, it is large enough and cannot affect the game

– Hence, we have a single-parameter problem
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Analyzing sponsored search 
auctions

• We will focus on the bidders’ side
• Model parameters for each slot j

– αj = Click-through rate (CTR) of slot j  = probability that a user will 
click on slot j

– Assume it is independent of who occupies slot j
• We can generalize to the case where the rates are weighted 

by a quality score of the advertiser who takes each slot
– The search engines update regularly the CTRs and statistics show 

that 
α1 ≥ α2 ≥ α3 ≥ ... ≥ αk

– Users tend to click on higher slots
• Validation also by eye-tracking experiments
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Analyzing sponsored search 
auctions

• How shall we allocate the k slots to the n bidders?
• Most natural allocation rule: for i=1 to k, give to the i-th 

highest bidder the i-th best slot in terms of CTR
– Remaining n-k bidders do not win anything

• For convenience, assume that b1 ≥ b2 ≥ b3 ≥ ... ≥ bn

• Expected value of a winning bidder i: αivi

• Is this rule monotone?
• Yes, bidding higher can only get you a better slot
• Hence we can apply Myerson’s formula to find the 

payment rule
• For each bidder i, let xi(bi, b-i) Î {0, αk, αk-1, ..., α1}



Myerson’s lemma for sponsored 
search auctions

•Let’s analyze the highest bidder with bid b1

•Suppose we have 3 slots and n>3 bidders
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zb40

α3

xi(z)

• Look at the jumps of xi in the 
interval [0, b1]

• Jump at b4 = α3
• Jump at b3 = α2 – α3
• Jump at b2 = α1 – α2
Total payment:
b4α3 + b3 (α2 – α3) + b2 (α1 – α2) 

b3 b2

α2

α1



Myerson’s lemma for sponsored 
search auctions

•More generally, for the i-th highest bidder, there will be k-i+1 
jumps

•Under pay-per-click, no actual payment takes place at the end of 
every auction, unless there is a click by a user
•Need to scale so that expected per-click payment is pi(b)
•Proposed per-click payment to bidder in i-th slot: pi(b)/αi

•By Myerson, no other payment can achieve truthfulness with the 
same allocation rule 
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Sponsored search auctions in practice

• In practice most engines do not use the payment of 
Myerson’s lemma

• But they use the same allocation rule
• The Generalized Second Price Mechanism (GSP) - initial 

version:
– The search engine ranks the bids in decreasing order: 

b1 ³ b2 ³ … ³ bn

– The i-th highest bidder takes the i-th best slot
– Every time there is a click on slot i, bidder i pays bi+1

– There is also a reserve price (opening bid), initially the 
same for every keyword ($0.1), later became keyword-
dependent 
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The Generalized Second Price 
Mechanism (GSP)

• A better version:
– The search engine keeps a quality score qi for each bidder i

• Yahoo, Bing (till a few years ago): qi is the click-through rate of i 
(probability of a user clicking on an ad of bidder i)

• Google: qi depends on click-through rate, relevance of text and 
other factors

– The search engine ranking is in decreasing order of qi ´ bi
q1´b1 ³ q2´b2 ³ … ³ qn´bn

– The first k bidders of the ranking are displayed in the k slots
– Every time there is a click on slot i, bidder i pays the 

minimum bid required to keep his position, i.e. (qi+1´bi+1)/qi
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The Generalized Second Price 
Mechanism (GSP)

• Myerson’s lemma implies GSP cannot be truthful
– Otherwise, its payment rule would coincide with the Myerson formula

• The deployment of GSP was probably just an educated guess
– As an attempt to generalize the Vickrey auction and use something 

simple that looked close to truthful!
• Nevertheless...

– For a long period, revenue from GSP was 95% of Google’s revenue
– Still nowadays an important percentage of search engines’ revenue

• Theoretical analysis of GSP: later in this lecture



Multi-unit auctions
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Multi-unit Auctions

Auctions for selling multiple identical units of a single 
good 

In practice:
• US Treasury notes, bonds 

• UK electricity auctions (output of generators)

• Spectrum licences

• Various online sales
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Multi-unit Auctions

Online sites offering multi-unit auctions

• US
− www.onlineauction.com

• UK
− uk.ebid.net

• Greece
− www.ricardo.gr
− Actually not any more…

• …
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http://uk.ebid.net
http://www.ricardo.gr/


Some Notation
• n bidders

• k available units of an indivisible good

• Bidder i has valuation function vi : {0, 1,…, k} ® R
§ vi(j) = value of bidder i for obtaining j units

• Representation with marginal valuations:
§ mi(j) = vi(j) – vi(j-1) = additional value for obtaining the j-th 

unit, if already given j-1 units

§ (mi(1), mi(2),…, mi(k)): vector of marginal values 
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Some Valuation Classes
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• In the multi-unit setting, a valuation vi is submodular iff
" x ≤ y,   vi(x + 1) - vi(x) ≥ vi(y + 1) – vi(y) 

• Hence: mi(1) ≥ mi(2) ≥ … ≥ mi(k) (decreasing marginal values)

• A valuation vi is subadditive iff
" x, y,   vi(x + y)  ≤ vi(x) + vi(y)

• In many multi-unit auctions, bidders are asked to submit a 
submodular valuation

- Makes sense due to the saturation of getting more and more 
units

• Valuation compression: Even if bidders are not submodular, 
they would still have to express their preferences by a 
submodular function



A Bidding Format for Multi-unit Auctions
• Used in various multi-unit auctions 

[Krishna ’02, Ch. 12-13, Milgrom ’04, Ch. 7]

1. The auctioneer asks each bidder to submit a vector of 
decreasing marginal bids
• bi = (bi(1), bi(2),…, bi(k))
• bi(1) ≥ bi(2) ≥ … ≥ bi(k)

2. The bids are ranked in decreasing order and the k highest   
win the units 

Simplified format in some cases: Uniform bidding, i.e.,  ask for a 
bid per unit + number of units demanded
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Example
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b1 = (45, 42, 31, 22, 15)

b2 = (35, 27, 20, 12, 7)

b3 = (40, 33, 24, 14, 9)



Example
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# units

…

45

bids

42
40

35

33

31

winning bids losing bids

(45, 42, 31, 22, 15)

(35, 27, 20, 12, 7)

(40, 33, 24, 14, 9)

supply

How should we charge the winners?

…

0



Pricing Rules
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1. Multi-unit Vickrey auction (VCG) [Vickrey ’61]
− Each bidder pays the externality he causes to the others

− Generalization of single-item 2nd price auction

− Good theoretical properties, truthful, but barely used in 
practice

2. Discriminatory Price Auction (DPA)
− Bidders pay their bids for the units won

− Generalization of 1st price auction

− Not truthful, but widely used in practice



Pricing Rules (cont’d)
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3. Uniform Price Auction (UPA) [Friedman 1960]
− Same price for every unit

− Interval of prices to pick from: 
[highest losing bid,  lowest winning bid]

− This lecture: price = highest losing bid

− For 1 unit, same as Vickrey auction

− For ≥ 2 units, not truthful, but widely used in practice 
(following the campaign of Miller and Friedman in the 90’s)



Example Revisited
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# units

…

45

bids

42
40

35

33

31

winning bids losing bids

(45, 42, 31, 22, 15)

(35, 27, 20, 12, 7)

(40, 33, 24, 14, 9)

supply

Interval of candidate prices for UPA = [31, 33]
Uniform price = 31

…

0



Uniform Price vs Discriminatory?
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• Debate still going on for treasury auctions

• DPA is thought to raise more revenue (no formal justification 
though) 

• UPA eliminates complaints arising from price discrimination 
(identical goods should cost the same!)



Equilibrium analysis of 
non-truthful mechanisms

32
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Non-truthful mechanisms
• As already seen, there are plenty of settings where the 

mechanism employed is not truthful
– Sponsored search
– Auctions for government bonds
– Some types of auctions for telecom/spectrum licences (e.g., core-

selecting auctions)

• Why?
– Low revenue often achieved by truthful auctions, e.g., by VCG 
– Complexity: Social welfare maximization may turn out too difficult 

to solve (which is a required step in VCG-based mechanisms)

• [Ausubel, Milgrom ’06]: The lovely but lonely Vickrey 
auction
– Chapter 1 in the book “Combinatorial Auctions”
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Non-truthful mechanisms
• How do we evaluate non-truthful mechanisms? 

– If the bidders are non-truthful, can we argue about the social 
welfare generated?

• We can think of the equilibria as the most likely outcomes 
to occur
– If these games are played frequently, players may end up at an 

equilibrium by adjusting gradually their strategies
– Thus, we can take the social welfare or revenue achieved at an 

equilibrium as an evaluation metric
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PoA in auctions
• Consider an auction where vi = actual valuation function 

of bidder i
– It can be either single or multi-parameter

• Let b be a pure Nash equilibrium with resulting allocation: 
(x1,…, xn)  = (x1(b),…, xn(b))

• Social Welfare at b: SW(b) = S vi(xi)
• OPT = Optimal welfare (as determined by the valuations)

PoA = supb OPT/SW(b)

Where the supremum can be either over all 
pure or over all mixed equilibria 
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PoA in sponsored search auctions
• PoA can become unbounded in worst case
• [Lahaie ’06 ]: PoA ≤ (min1≤i≤k-1 min{αi+1/αi, 1 – (αi+2/αi+1)} )-1

– For pure equilibria, when we have k≥2 slots
– Where recall αi is the CTR of slot i, and assume αk+1 = 0

• For arbitrary auctions, the ratios of the CTRs can become 
arbitrarily high

• In some cases, the click data fit well with an exponential 
decay model (geometric CTRs): αi ∝ 1/δi for a constant δ
– [Feng, Bhargava, Pennock ’07]: δ = 1.428 using various empirical 

datasets
– In these cases, PoA ≤ (min{1/δ, 1-1/δ})-1

– Hence, low inefficiency under geometric CTRs
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PoA in sponsored search auctions
• One can also study PoA under restrictions on the set of 

equilibria under consideration
• E.g., some “bad” equilibria arise when some players 

overbid and at the same time some high-valued players 
underbid

• The no-overbidding assumption: Focus on equilibria 
where bi ≤ vi
– Such bidders are also referred to as conservative bidders 
– Initiated in [Christodoulou, Kovacs, Schapira ’08], and assumed in 

several follow up works

• Can PoA be better under no-overbidding?
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PoA in sponsored search auctions
• [Paes Leme, Tardos ’10]: Under no-overbidding

– PoA ≤ 1.618 (= 1 + φ) for pure equilibria
– PoA ≤ 4 for mixed equilibria

• [Lucier, Paes Leme ’11, Caragiannis et al. ’11, ’15]:
Currently best known:
– PoA ≤ 1.28 for pure equilibria
– PoA ≤ 2.31 for mixed equilibria

• For lower bounds, it is known that PoA ≥ 1.259
• Main conclusion: For conservative bidders, selfish 

behavior does not lead to socially bad outcomes
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Revenue in sponsored search 
auctions

• Could we have analogous guarantees for revenue instead 
of social welfare?
– Harder problem… 

• But, some comparisons can be drawn between the use of 
GSP and VCG

• [Varian ’05, Edelman, Ostrovsky, Schwarz ’07]: Focus on the 
class of “locally envy-free equilibria”
– As a plausible class of equilibria that may arise
– Analyzed for the simple version of GSP, without the personalized 

quality score qi

– But their results can be stated for the more general setting as well
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Revenue in sponsored search 
auctions

• For convenience, rename the bidders so that the bidder 
occupying slot j has value vj and pays price pj
– i.e., pj = bid of bidder in slot j+1

• Definition: The profile b = (b1, b2,…, bn) is a locally envy-
free equilibrium, if for a bidder at slot s, we have

αs (vs – ps) ≥ αj (vs – pj) for every other slot j
• This means no bidder is willing to swap her slot and price 

with those of another bidder
• In fact, it suffices to check only the neighboring slots

– Look only at slot s-1 and s+1 for the bidder at slot s
– Thus the name “locally envy-free”
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Revenue in sponsored search 
auctions

• Main theorem in [Varian ’05, Edelman, Ostrovsky, 
Schwarz ’07]: 
(i) There exists a no-overbidding locally envy-free equilibrium 

where allocation + payments coincide with the VCG outcome
(ii) The revenue at any locally envy-free equilibrium ≥ VCG revenue 

(at truthful profile) 

• Can be seen as a justification of why GSP is a better choice 
than VCG for sponsored search auctions

• Although GSP was probably employed by accident, it was 
a rather good choice!
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PoA in multi-unit auctions
• A PoA analysis can be carried out for any other non-

truthful auction
• For multi-unit auctions, PoA can be affected by the 

phenomenon of “demand reduction”
– [Ausubel, Cramton ’96]: Bidders may have incentives to hide their 

demand for items in order to achieve a better price



Example of Demand Reduction in UPA

43

OPT = 3, SW(b) = 13/6 ⇒ PoA ≥ 18/13 for UPA
• Revealing the true profile for bidder 1 results in a relatively 
high price
• Demand reduction discussed further in [Ausubel, Cramton ’96]

(1, 1, 1)

(2/3, 0, 0)

(1/2, 0, 0)

Real profile

(1, 0, 0)

(2/3, 0, 0)

(1/2, 0, 0)

Equilibrium profile



PoA for pure equilibria
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Theorem:
For the Discriminatory Price Auction (DPA), and arbitrary
monotone valuations for the bidders, PoA = 1
• No need to assume no-overbidding
• All pure Nash equilibria (when they exist) are efficient
• Generalizes what holds for the single-item 1st price auction (recall your first 
homework!)
• Existence of pure equilibria guaranteed under appropriate tie-breaking rules

Can demand reduction create a huge loss of 
efficiency?



PoA for pure equilibria
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• OPT = 2k-1 
• SW(b) = k
• PoA ≥ (2k-1)/k = 2 – 1/k for UPA
• Can it get worse?

• The same is not true for UPA
• Example: Consider k units and the profiles:

(k, 0, 0,…,0)

(1, 1, 1,…, 1)

Real profile

(1, 1, 1,…, 1)

(0, 0, 0,…, 0)

Equilibrium profile b



PoA for pure equilibria

46

• For non-conservative bidders, it can get unbounded
• The no-overbidding assumption in UPA:

[Birmpas, Markakis, Telelis, Tsikiridis ’17]:
For the Uniform Price Auction (UPA), and for

– Submodular bidders 
– No-overbidding pure equilibria,

PoA ≤ 2.18 
– Tight example even for 2 bidders

bi j( )≤ vi s( )∀i,∀s ≤ k
j=1

s

∑



PoA for mixed equilibria
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Remarks: 
- 3.146… = |W-1(-1/e2)| (Lambert W function)
- Bounds hold both for standard bidding and for the simplified uniform 
bidding format
- The same bounds also hold for Bayesian games (PoA for Bayes-Nash 
equilibria)

[de Keijzer, Markakis, Schaefer, Telelis ’13]:
For submodular valuations, the PoA for mixed 
equilibria is
§ ≤ e/e-1 for DPA
§ ≤ 3.146 < 2e/e-1 for UPA



PoA for mixed equilibria
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• Currently known lower bounds: ≈1.1 for DPA, 2.18 for UPA
– Far from tight in the case of mixed equilibria

• Our proof can be cast into the smoothness framework of 
[Syrgkanis, Tardos ’13]

ß
• Upper bounds carry over to simultaneous and sequential 

compositions of multi-unit auctions (e.g. combinatorial 
multi-unit auctions)

• Similar approaches and techniques used in other types of 
auctions as well (e.g. item-bidding auctions)
[Christodoulou, Kovacs, Schapira ’08, Bhawalkar,
Roughgarden ’11, Feldman, Fu, Gravin, Lucier ’13]
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Beyond Submodular Valuations
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• [Milgrom ’04]: Very little known (i.e., nothing) for non-
submodular bidders

Lemma: Subadditive valuations can be approximated by
submodular functions, losing a factor of 2

• Subadditive valuations: Valuation compression is needed 
for such bidders



Subadditive Valuations
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Theorem: For subadditive valuations, mixed PoA is at 
most:

Auction \Bidding Standard bidding Uniform bidding

DPA 2 2e/e-1

UPA 4 6.292 < 4e/e-1

- Uniform bidding: same technique as before, using the 2-
approximation

- Standard bidding: Adaptation of [Feldman, Fu, Gravin, Lucier ’13] 
into multi-unit auctions
- Deviation constructed by sampling from the distribution of b-i



Conclusions on PoA

• Take-home story: simple auction formats used in practice 
perform quite well w.r.t. social welfare

• Upper bounds: 
– For pure equilibria, almost tight for sponsored search, completely tight 

for multi-unit auctions
– Open if we can improve the bounds for mixed equilibria 
– PoA can also become even better if we focus on Nash equilibria in 

undominated strategies
• Lower bounds:

– Much harder to get
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Examples of truthful auctions 
in practice

52



Spectrum Auctions
• Deferred Acceptance Auctions initiated by [Milgrom, Segal 

’14]
• Motivated by the design of the FCC “Broadcast Incentive 

Auction”

Broadcasters Mobile Broadband Providers

Reverse Auction Forward Auction

53
§ Commenced on March 2016, closed on April 2017 for repurposing 

spectrum to align with consumer demand for broadband services 

Relinquishing 
spectrum rights

Assigning new 
licenses



Basic Mechanism Design Setting
Main features:
§ A provider of some service or resources

§ A set of single-parameter buyers N = {1, 2, ..., n} 
interested in (some of) the resources

§ Each buyer has a valuation vi

§ For each buyer: need to make an accept/reject decision

§ Feasible solutions: Only specific subsets of buyers may 
be served simultaneously, due to problem constraints
(e.g. interference constraints in spectrum auctions) 54



1. Initially all bidders are active  (A1=N)
2. While accepting all active bidders in At is infeasible
• Reject the bidder i with the lowest score 
• At+1 = At \{i}

3. Remaining bidders are accepted and pay threshold prices

The framework of Deferred-
Acceptance Auctions

§ Backward greedy allocation algorithms
§ They work in rounds, finalizing the decision for a single bidder in each 

round
§ At = set of active bidders at round t
§ Score of bidder i at round t:

§ non-decreasing in bi
§ Possible dependence on the set At (but not on the bids of active 

bidders)
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Properties of Deferred-Acceptance 
Auctions

Incentive guarantees:
• Not hard to show that DA auctions are truthful
• In fact we can have much stronger incentive guarantees

Definition: A mechanism is weakly group-strategyproof if: for 
any coalition S Í N, and any profile b-S, there is no deviation 
by S, such that all members are strictly better off, i.e., such 
that:

ui(bS, b-S) > ui(vS, b-S), for every i Î S

Lemma: DA auctions are weakly group-strategyproof
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Properties of Deferred-Acceptance 
Auctions

Further advantages of DA auctions:
1. Practical and simple to implement as long as

• Scoring function is simple
• Checking feasibility of a solution is easy

2. They admit an implementation as an ascending clock auction
3. Using the ascending auction implementation:

• Very easy to argue that truth-telling is a dominant strategy 
(obvious strategyproofness [Li ’15])

• Privacy preservation: winners do not reveal their true value

Possible limitations:
1. They do not always guarantee a good approximation to the social 

welfare
2. Same for other objectives (e.g. revenue)
3. Solution returned may not be a maximal set w.r.t. problem 

constraints (drawback of backward greedy algorithms) 57



An illustration
Recall single-minded bidders from previous lectures
• The auctioneer has a set M of items for sale
• Each bidder i is interested in acquiring a specific subset of items, 
Si Í M  (known to the mechanism)

• If the bidder does not obtain Si (or a superset of it), his value is 0

• Each bidder submits a bid bi for his value if he obtains the set

58

• Motivated by certain spectrum auctions
• Feasible allocations: the auctioneer needs to select winners 

who do not have overlapping sets



Single-minded bidders
Examples
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1

41 =v

},{1 baS =

a b

c d

4 12 =v

},{2 dbS =

63 =v

},,{3 dcaS =

6

• In the examle above, the auctioneer can accept only 1 bidder 
as a winner

• In the example below, the auctioneer can accept up to 2 
bidders as winners 

41 =v 52 =v 13 =v 14 =v

},{1 baS = },{2 dcS = },{3 caS = },{4 dbS =

a b

c d

4

5

11

5

11

4



A forward greedy algorithm for single-
minded bidders
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• Order the bidders in decreasing order of bi/sqrt(si)
• Accept each bidder in this order unless overlapping 

with previously accepted bidders

si=|Si|[Lehmann, O’ Callaghan, Shoham ‘01]:

This algorithm achieves
• Monotonicity of the allocation (hence can be made truthful)
• 1/sqrt(m)-approximation, where m = |M|
• 1/d-approximation, where d = maxi si

Final conclusion: truthful polynomial time mechanism with 
the best possible approximation to the social welfare



Coalitions under the forward greedy 
mechanism

• The forward greedy mechanism is truthful but suppose players 
could also collude:

• What would forward greedy do?
1. Accept bid {c,d}
2. Reject bids {a,c} and {b,d}
3. Accept bid {a,b}
4. Threshold price = 0

41 =v 52 =v 13 =v 14 =v

},{1 baS = },{2 dcS = },{3 caS = },{4 dbS =

a b

c d

4

5

11

5

11

4 93 =v 94 =v
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• The coalition {3, 4} can change 
the outcome

• Threshold price still 0
• Both members better off!
• Forward greedy is not group-

strategyproof



Scoring Functions for DA auctions

iiiii svsv /),( =s

1

tiitiii cvcv ,, /),( =s

1.01 1.02 1.03 1.04 1.05

ca e g

fdb
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• Can we achieve similar welfare guarantees with 
backward greedy algorithms? 

• How about a DA auction with scoring                                  ? 

• Backward greedy can do much worse than forward greedy
• Use conflict number                                ?

• ci,t = number of conflicts with other bidders at stage t



Theorem 1: There exists a DA auction that achieves an 
approximation ratio of  O(d)

Theorem 2: There exists a DA auction that achieves an 
approximation ratio of O(Öm logm)

Positive results for DA auctions

[Dutting, Gkatzelis, Roughgarden ’14]:

Main message:
We can have comparable approximations as in forward greedy, but with 
stronger incentive guarantees!
• And with a more complicated scoring function 63



Final conclusions
• A wide range of applications
• The full spectrum of incentive guarantees can be seen in 

practice 
– Non-truthful and bad equilibria (uniform price auction or sponsored 

search with overbidding)
– Non-truthful and efficient equilibria (single-item first price auction)
– Non-truthful and relatively efficient equilibria (sponsored search, 

uniform price auction, under no-overbidding) 
– Truthful (single-item Vickrey)
– Weakly group-strategyproof (DA auctions)

• The choice of mechanism deployed may depend on:
– Traditions and practices used in a specific application domain (not 

always easy to switch to a new format)
– Complexity considerations (simplicity is often a must)
– Legal issues (there exist governmental auctions where social welfare 

w.r.t. reported bids needs to be maximized)  64


