
NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan 1

Minimum Makespan Scheduling

Approximation Algorithms 2009
Petros Potikas

NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan 2

Minimum makespan scheduling

Definition: Let p1, p2, …, pn be the processing times for n jobs and m
identical machines.

Goal: Find an assignment of the n jobs to the m machines, so that the
completion time, also called makespan, is minimized.

NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan 3

Minimum makespan scheduling

Results

Strongly NP-hard problem

Approximation algorithm with ratio 2

PTAS

No FPTAS

NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan 4

Minimum makespan scheduling

Lower bounds

1. The average time for which a machine has to run, (∑i pi)/m,

2. The last processing time.

LB =max{(∑i pi)/m, maxi{pi} }

NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan 5

Minimum makespan scheduling

Algorithm 1 (Graham, 1966)

1. Order the n jobs arbitrarily.

2. Schedule jobs on machines in this order, scheduling the next job on
machine that has been assigned least so far.

NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan 6

Minimum makespan scheduling

Theorem 1: Algorithm 1 achieves a 2-approximation.

Proof:
Let Mi be the machine that completes last in the schedule produced by the
algorithm and let j be the last job scheduled on this machine.

Let startj be the time that job j starts.
From the choice of Mi by the algorithm we know that

all the other machines are busy until startj

Thus, startj ≤ (∑i pi)/m ≤ OPT

M1

Mi

Mm

…
…

≤ (∑i pi)/m pj

startj

NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan 7

Minimum makespan scheduling

Theorem 1: Algorithm 1 achieves an approximation factor 2.

Proof (cont’d):
Furthermore, pj ≤ OPT

Thus, the makespan produced by the algorithm is

startj + pj ≤ 2⋅OPT

We also proved, that LB ≤ OPT ≤ 2⋅LB. □

NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan 8

Minimum makespan scheduling

Tight example:

A sequence of m2 jobs with unit processing time, followed by a single
job of length m.

OPT = m+1, while the algorithm gives makespan 2m.

NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan 9

Minimum makespan scheduling

Algorithm 2 (Graham)

1. Sort the n jobs by decreasing processing times.

2. Schedule jobs on machines in this order, scheduling the next job on
machine that has been assigned least so far.

Theorem 2: Algorithm 2 achieves a 4/3-approximation.

Tight example:
m machines, n=2m+1 jobs
two jobs of length m+1, m+2,…, 2m
one job of length m

NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan 10

A PTAS for minimum makespan scheduling

We will, for every ε>0, derive an algorithm Aε that

• Returns a schedule with makespan ≤ (1+3ε)OPT

• Runs in time O(n2k ⎡log2(1/ε)⎤) where k= ⎡log1+ε(1/ε)⎤

Aε is therefore a

Polynomial Time Approximation Scheme (PTAS)

but not a

Fully Polynomial Time Approximation Scheme (FPTAS)

(in an FPTAS, time is not only polynomial in n but also in 1/ε)

NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan 11

Restricted bin packing

There a exists a schedule with makespan t iff n objects of sizes
p1, p2,…, pn can be packed into m bins of capacity t.

Reduction from mininum makespan to bin packing:
Let I be the sizes of the n objects, p1, p2,…, pn and bins(I,t) the
minimum number of bins of size required to pack these n objects.

OPT(makespan) = min{t : bins(I,t) ≤ m}

We know that
LB ≤ t ≤ 2⋅LB

So the idea is to binary search [LB, 2⋅LB] to find the minimum t for which
bins(I,t) ≤ m.

We can’t do this exactly!

NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan 12

Core algorithm: restricted bin packing (fixed number of object sizes),
of time O(n2k) that uses α(I,t,ε) bins of size t(1+ε).

This packing has the property

∀t,ε α(I,t,ε) ≤ bins(I,t)

Thus ∀ε α(I,2LB,ε) ≤ bins(I,2LB) ≤ m

So, the PTAS is the following:
• If α(I,LB,ε) ≤ m then use packing given by core algorithm for t=LB.

This has makespan
≤ LB(1+ε) ≤ OPT(1+ε)

• If α(I,LB,ε) > m, then perform a binary search to find an interval
[T’,T] in [LB,2LB] with T-T’≤ εLB, α(I,T’,ε) > m and α(I,T,ε) ≤ m.
Return the packing given by the core algorithm for t=T.

Notice that m < α(I,T’,ε) ≤ bins(I,T’), so T’ ≤ OPT and
T ≤ T’ + εLB ≤ OPT + εOPT ≤ (1+ε)OPT

NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan 13

The core algorithm for t=T returns a schedule (packing) with makespan
at most (1+ε)T. The makespan of the schedule returned is at most

(1+ε)T ≤ (1+ε)2OPT ≤ (1+3ε)OPT

The binary search uses at most log21/ε steps.

Error introduced by two sources:

o Rounding objects so that there a bounded number of different sizes

o Terminating the binary search to ensure polynomial running time

NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan 14

Exact restricted bin packing

n items to pack in bins of size t, with k different sizes only

Input I=(i1,i2,…,ik) (fix an ordering on the object sizes)

BINS(i1,i2,…,ik): minimum number of bins needed to pack these objects

Suppose we are given (n1,n2,…,nk), ∑ini=n

First, compute Q, the set of all k-tuples (q1,q2,…,qk), such that
BINS(q1,q2,…,qk)=1 (at most O(nk) such tuples)

NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan 15

Exact restricted bin packing

Use dynamic programming to find all the entries of the table
BINS(i1,i2,…,ik), for 0 ≤ ij ≤ nj

1. ∀q ∈ Q set BINS(q) =1
2. If ∃j, such that ij < 0 then set BINS(i1,i2,…,ik) = ∞
3. For all other q, use recurrence relation

BINS(i1,i2,…,ik) = 1 + min(q1,q2,…,qk) ∈ Q BINS(i1-q1,i2-q2,…,ik-qk)

Since there are O(nk) entries and each one takes O(nk) time, the algorithm
needs O(n2k) time.

NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan 16

The Core Algorithm
t ∈ [LB,2LB], so ∀j, pj ≤ t

1. An object is small if it has size ≤ tε.
2. Non-small objects are rounded.
If pj ∈ [tε(1+ε)i, tε(1+ε)i+1], then set pj

’ = tε(1+ε)i. There can be at most
k=⎡log1+ε1/ε⎤ different sizes.

3. Use dynamic programming algorithm to optimally pack non-small
objects using pj

’ costs into bins of size t.
Rounding can reduce size by a factor of 1+ε at most, so packing
is valid for bins of size t(1+ε) with the original pj object sizes.

4. Place the small objects items into the t(1+ε) packing greedily. Open
new bins only if needed. If new bins are opened, then all other must
be filled at height t at least.

5. Let α(I,t,ε) be the number of bins used (of size t(1+ε)).

NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan 17

The Core Algorithm
Lemma: α(I,t,ε) ≤ bins(I,t).

Proof:
Case 1: The algorithm opens new bins. Then all the bins, except possibly

the last one, are filled to at least size t. Thus, the optimal packing into
bins of size t must use at least α(I,t,ε) bins.

Case 2: The algorithm does not open new bins. Let I’ be the set of non-
small items. Then α(I,t,ε) = α(I’,t,ε)

≤ bins(I’,t)
≤ bins(I,t).

The optimal packing of I’ uses bins(I’,t) bins, so the same packing of the
rounded down I’ also uses bins(I’,t) bins.

But α(I’,t,ε) is the optimal number of bins needed for the rounded down I’.
The first inequality holds.
Packing optimally more items can not reduce the number of bins needed.□

	 Minimum makespan scheduling
	 Minimum makespan scheduling
	 Minimum makespan scheduling
	 Minimum makespan scheduling
	 Minimum makespan scheduling
	 Minimum makespan scheduling
	 Minimum makespan scheduling
	 Minimum makespan scheduling
	 A PTAS for minimum makespan scheduling
	Restricted bin packing
	
	
	
	
	
	

