Approximation Algorithms 2009 Petros Potikas

Definition: Let $p_1, p_2, ..., p_n$ be the processing times for *n* jobs and *m* identical machines.

Goal: Find an assignment of the *n* jobs to the *m* machines, so that the completion time, also called *makespan*, is minimized.

Results

- Strongly NP-hard problem
- Approximation algorithm with ratio 2
- PTAS
- No FPTAS

Lower bounds

- 1. The average time for which a machine has to run, $(\sum_i p_i)/m$,
- 2. The last processing time.

LB =max {($\sum_{i} p_{i}$)/m, max_i{ p_{i} } }

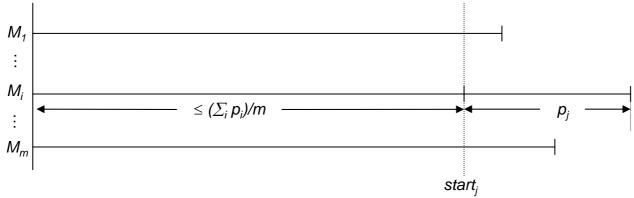
Algorithm 1 (Graham, 1966)

- 1. Order the *n* jobs arbitrarily.
- 2. Schedule jobs on machines in this order, scheduling the next job on machine that has been assigned least so far.

Theorem 1: *Algorithm 1 achieves a* 2*-approximation.*

Proof:

Let M_i be the machine that completes last in the schedule produced by the algorithm and let j be the last job scheduled on this machine.



Let $start_i$ be the time that job *j* starts.

From the choice of M_i by the algorithm we know that

all the other machines are busy until *start*_i

Thus,
$$start_j \leq (\sum_i p_i)/m \leq OPT$$

Theorem 1: Algorithm 1 achieves an approximation factor 2.

Proof (cont'd): Furthermore, $p_i \leq OPT$

Thus, the makespan produced by the algorithm is

 $start_j + p_j \le 2 \cdot \text{OPT}$

We also proved, that $LB \leq OPT \leq 2 \cdot LB$.

NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan

 \square

Tight example:

A sequence of m^2 jobs with unit processing time, followed by a single job of length m.

OPT = m+1, while the algorithm gives makespan 2m.

Algorithm 2 (Graham)

1. Sort the *n* jobs by decreasing processing times.

2. Schedule jobs on machines in this order, scheduling the next job on machine that has been assigned least so far.

Theorem 2: *Algorithm 2 achieves a* 4/3*-approximation*.

Tight example: *m* machines, n=2m+1 jobs two jobs of length m+1, m+2,..., 2mone job of length *m*

A PTAS for minimum makespan scheduling

We will, for every $\varepsilon > 0$, derive an algorithm A_{ε} that

- Returns a schedule with makespan $\leq (1+3\varepsilon)OPT$
- Runs in time $O(n^{2k} \lceil \log_2(1/\varepsilon) \rceil)$ where $k = \lceil \log_{1+\varepsilon}(1/\varepsilon) \rceil$

 A_{ε} is therefore a

Polynomial Time Approximation Scheme (PTAS)

but not a

Fully Polynomial Time Approximation Scheme (FPTAS)

(in an FPTAS, time is not only polynomial in *n* but also in $1/\varepsilon$)

Restricted bin packing

There a exists a schedule with makespan t iff n objects of sizes $p_1, p_2, ..., p_n$ can be packed into m bins of capacity t.

Reduction from minimum makespan to bin packing: Let *I* be the sizes of the *n* objects, $p_1, p_2, ..., p_n$ and bins(I,t) the minimum number of bins of size required to pack these *n* objects.

 $OPT(makespan) = \min\{t : bins(I,t) \le m\}$

We know that

 $LB \le t \le 2 \cdot LB$

So the idea is to binary search [*LB*, $2 \cdot LB$] to find the minimum *t* for which bins(*I*,*t*) $\leq m$.

We can't do this exactly!

Core algorithm: restricted bin packing (fixed number of object sizes), of time $O(n^{2k})$ that uses $\alpha(I,t,\varepsilon)$ bins of size $t(1+\varepsilon)$. This packing has the property

 $\forall t, \varepsilon \qquad \alpha(I, t, \varepsilon) \leq \operatorname{bins}(I, t)$

Thus $\forall \varepsilon \quad \alpha(I, 2LB, \varepsilon) \leq \operatorname{bins}(I, 2LB) \leq m$

So, the PTAS is the following:

• If $\alpha(I, LB, \varepsilon) \le m$ then use packing given by core algorithm for *t*=LB. This has makespan

 $\leq LB(1+\varepsilon) \leq OPT(1+\varepsilon)$

• If $\alpha(I, LB, \varepsilon) > m$, then perform a binary search to find an interval [T', T] in [LB, 2LB] with $T-T' \le \varepsilon LB$, $\alpha(I, T', \varepsilon) > m$ and $\alpha(I, T, \varepsilon) \le m$. Return the packing given by the core algorithm for t=T.

Notice that $m < \alpha(I,T',\varepsilon) \le bins(I,T')$, so $T' \le OPT$ and $T \le T' + \varepsilon LB \le OPT + \varepsilon OPT \le (1+\varepsilon)OPT$

The *core* algorithm for t=T returns a schedule (packing) with makespan at most $(1+\varepsilon)T$. The makespan of the schedule returned is at most

$(1+\varepsilon)T \le (1+\varepsilon)^2 \text{OPT} \le (1+3\varepsilon) \text{OPT}$

The binary search uses at most $log_2 1/\varepsilon$ steps.

Error introduced by two sources:

- o Rounding objects so that there a bounded number of different sizes
- o Terminating the binary search to ensure polynomial running time

Exact restricted bin packing

n items to pack in bins of size *t*, with *k* different sizes only

Input $I=(i_1, i_2, ..., i_k)$ (fix an ordering on the object sizes)

BINS (i_1, i_2, \dots, i_k) : minimum number of bins needed to pack these objects

Suppose we are given $(n_1, n_2, ..., n_k)$, $\sum_i n_i = n$

First, compute Q, the set of all k-tuples $(q_1,q_2,...,q_k)$, such that BINS $(q_1,q_2,...,q_k)=1$ (at most $O(n^k)$ such tuples)

Exact restricted bin packing

Use dynamic programming to find all the entries of the table BINS $(i_1, i_2, ..., i_k)$, for $0 \le i_j \le n_j$

- 1. $\forall q \in Q \text{ set BINS}(q) = 1$
- 2. If $\exists j$, such that $i_j < 0$ then set $BINS(i_1, i_2, \dots, i_k) = \infty$
- 3. For all other q, use recurrence relation BINS $(i_1, i_2, \dots, i_k) = 1 + \min_{(q1, q2, \dots, qk) \in Q} BINS(i_1 - q_1, i_2 - q_2, \dots, i_k - q_k)$

Since there are $O(n^k)$ entries and each one takes $O(n^k)$ time, the algorithm needs $O(n^{2k})$ time.

The Core Algorithm

 $t \in [LB, 2LB]$, so $\forall j, p_j \le t$

- 1. An object is small if it has size $\leq t\varepsilon$.
- 2. Non-small objects are *rounded*.
- If $p_j \in [t\varepsilon(1+\varepsilon)^i, t\varepsilon(1+\varepsilon)^{i+1}]$, then set $p_j' = t\varepsilon(1+\varepsilon)^i$. There can be at most $k = \lceil \log_{1+\varepsilon} 1/\varepsilon \rceil$ different sizes.
- 3. Use dynamic programming algorithm to optimally pack non-small objects using p_j' costs into bins of size *t*. Rounding can reduce size by a factor of $1+\varepsilon$ at most, so packing

is valid for bins of size $t(1+\varepsilon)$ with the original p_i object sizes.

- 4. Place the small objects items into the $t(1+\varepsilon)$ packing greedily. Open new bins only if needed. If new bins are opened, then all other must be filled at height *t* at least.
- 5. Let $\alpha(I,t,\varepsilon)$ be the number of bins used (of size $t(1+\varepsilon)$).

The Core Algorithm

Lemma: $\alpha(I,t,\varepsilon) \leq \text{bins}(I,t)$.

Proof:

- Case 1: The algorithm opens new bins. Then all the bins, except possibly the last one, are filled to at least size t. Thus, the optimal packing into bins of size t must use at least $\alpha(I,t,\varepsilon)$ bins.
- Case 2: The algorithm does not open new bins. Let I' be the set of nonsmall items. Then $\alpha(I,t,\varepsilon) = \alpha(I',t,\varepsilon)$ $\leq bins(I',t)$
 - $\leq bins(I,t)$.
- The optimal packing of I' uses bins(I',t) bins, so the same packing of the rounded down I' also uses bins(I',t) bins.
- But $\alpha(I',t,\varepsilon)$ is the *optimal* number of bins needed for the rounded down I'. The first inequality holds.
- Packing optimally more items can not reduce the number of bins needed.□ NTUA / Corelab / Approximation Algorithms / Spring 2009 / P. Potikas / Minimum Makespan 17