Optimal Circle Search Despite the Presence of Faulty Robots

K. Georgiou ${ }^{1}$, E. Kranakis ${ }^{2}$, N. Leonardos ${ }^{3}$, A. Pagourtzis ${ }^{4}$, I. Papaioannou ${ }^{4}$

September 12, 2019

[^0]
Search problem

Searching an environment to find an exit (or target) in the minimum possible time:

- Autonomous robots (mobile agents)
- (may) cooperate
- exchange messages

Searching for an exit placed at an unknown location:

- on the perimeter of a unit circle
- wireless communication
- crash/byzantine faults

Computational model

Communication

- wirelessly and instantaneously
- anytime and regardless of distance
- message tagged with robot's unique ID (cannot be altered)

Robot movement

- start possition: center of the circle
- maximum speed is 1 (same for all robots)
- recognize and move along the perimeter of the circle
- recognize exit if they are at its location
- allowed to take "shortcuts" by moving in the interior of the disk
- trajectories known, and can be deduced

Computational model

Fault types

- Crash faults
- stop functioning at any time
- permanently remains idle and/or fails to communicate
- Byzantine faults
- may alter trajectory
- provide (or hide) information to confuse the rest
- can exhibit behavior of a crash-faulty robot

Adversary

- controls the location of the exit
- controls the behaviour of the malicious robot
- goal to maximize the resulting search completion time

Related Work

Linear Search

Single mobile agent searching for an exit placed at an unknown location on an infinite line. (Cow Path Problem)

- Bellman (1963), Beck (1964), Baeza-Yates et al. (1993)
- Ahlswede and Wegener, Alpern and Gal, Stone

Presence of faulty robots

- Crash-faulty: Czyzowicz, Kranakis et al. (2016)
- Byzantine-faulty: Czyzowicz, Georgiou et al. (2016)

Circle Search

- Introduced as an evacuation problem (minimize evacuation time) and analyzed in Czyzowicz et al. (2014).
- Czyzowicz et al. (2017) investigate evacuation in the presence of crash and/or Byzantine faults.

Search with faults

A search is complete if:

- exit visited by a non-faulty robot
- the rest of the agents can be convinced of the location of the exit
(n, f)-search on a circle:
$n>1$ robots searching for an exit in a circle of unit radius, f of which are faulty. Robots start at the center of the circle and can move anywhere with maximum speed 1.

Our results

-Presence of Crash Faults:
Optimal algorithms for the (n, f)-search problem Optimal worst case completion time $1+\frac{(f+1) 2 \pi}{n}$
-Presence of Byzantine Faults:
Optimal algorithms for $(n, 1)$-search problem Optimal worst case completion time $1+\frac{4 \pi}{n}$

Crash Faults: Lower Bound

Theorem (Lower Bound for (n, f)-Search)

The worst-case search time $S_{c}(n, f)$ for $n \geq f+1$ robots exactly f of which are crash-faulty satisfies

$$
S_{c}(n, f) \geq 1+(f+1) \frac{2 \pi}{n}
$$

Example:
$(4,1)$ - Adversary wins!

We must traverse every point of the circle with at least $(f+1)$ robots.

If not the adversary will make at most f robots visit the exit and remain silent.

Honest robots will miss the exit

Crash Faults: Lower Bound

Theorem (Lower Bound for (n, f)-Search)

The worst-case search time $S_{c}(n, f)$ for $n \geq f+1$ robots exactly f of which are crash-faulty satisfies

$$
S_{c}(n, f) \geq 1+(f+1) \frac{2 \pi}{n}
$$

Corollary (Lower Bound for Byzantine ($n, 1$)-Search)

The worst-case search time $S(n)$ for $n \geq 2$ robots exactly one of which is Byzantine-faulty satisfies $S(n) \geq 1+\frac{4 \pi}{n}$.

Crash Faults: Upper Bound

Theorem (Upper Bound for (n, f)-Search with Crash Faults)

The worst-case search time $S_{c}(n, f)$ for $n \geq 2$ robots exactly f of which are prone to crash failures satisfies

$$
S_{c}(n, f) \leq 1+(f+1) \frac{2 \pi}{n}
$$

- $\theta=\frac{2 \pi}{n}$
- a_{k} moves $\mathrm{t} k \theta$ and searches ccw for $(f+1) \theta$ radians

Example:
$(4,1)$: Search complete!

Crash Faults: Upper Bound

Theorem (Upper Bound for (n, f)-Search with Crash Faults)

The worst-case search time $S_{c}(n, f)$ for $n \geq 2$ robots exactly f of which are prone to crash failures satisfies

$$
S_{c}(n, f) \leq 1+(f+1) \frac{2 \pi}{n}
$$

Bounds for crash faults are tight.

Byzantine fault: $(3,1)$-search

Lemma ((3,1)-Search)

The worst-case search time for 3 robots exactly one of which is Byzantine-faulty satisfies

$$
S(3) \leq 1+\frac{4 \pi}{3}
$$

- Divide circle in 3 sectors, set $\theta=\frac{2 \pi}{3}$
- agent a_{k} move to location $k \theta$
- in the next phase $[1,1+\theta)$, agent a_{k} searches ccw arc $[k \theta,(k+1) \theta]$

Step 0: time phase $[0,1)$

Byzantine fault: $(3,1)$-search

$\#$ announcements $=\mathbf{0}$

Step 1: time phase $[1,1+\theta)$

- exit on territory of faulty robot
$\#$ announcements $=1$

Step 2: time phase $[1+\theta, 1+2 \theta)$

- correct announcement

Byzantine fault: $(3,1)$-search

\# announcements $=\mathbf{0}$

Step 1: time phase $[1,1+\theta)$

- exit on territory of faulty robot
$\#$ announcements $=\mathbf{2}$

Step 2: time phase $[1+\theta, 1+2 \theta)$

- third agent (say a_{0}), honest
- a_{0} could find the exit in previous phase, if a_{2} was honest

Byzantine fault: $(3,1)$-search

\# announcements $=\mathbf{1}$

Step 1: time phase $[1,1+\theta)$

Step 2: time phase $[1+\theta, 1+2 \theta)$

- correct if a_{0} or a_{1} confirms
- otherwise a_{1} will find it
- max time $2<\theta$

Byzantine fault: $(3,1)$-search

\# announcements $=\mathbf{2}$

Step 1: time phase $[1,1+\theta)$

- consecutive sectors
- silent agent is honest

Step 2: time phase $[1+\theta, 1+2 \theta)$

- honest agent will determine the correct exit

$$
\max \text { time } 1+2 \theta=1+\frac{4 \pi}{n}=1+\frac{4 \pi}{3}
$$

Byzantine fault: $(4,1)$-search

Lemma ((4,1)-Search)

The search time for 4 robots exactly one of which is
Byzantine-faulty satisfies

$$
S(4) \leq 1+\pi
$$

- set $\theta=\frac{\pi}{2}$
- agent a_{k} moves to $k \theta$ and continues ccw
- each responsible for arc of length π

Byzantine fault: $(4,1)$-search

- t : length of arc searched by the agent who made first announcement, at the time of announcement

Byzantine fault: $(4,1)$-search

Case 1: \# announcements in $t \geq \frac{\pi}{2}: \mathbf{1}$

- valid one

Byzantine fault: $(4,1)$-search

Case 1: \# announcements in $t \geq \frac{\pi}{2}: \mathbf{2}$

$t<\frac{\pi}{2}$

$t \geq \frac{\pi}{2}$

- consecutive sectors
- valid the first in ccw direction

Byzantine fault: $(4,1)$-search

- In Case 1, where $t \geq \frac{\pi}{2}$, robots will know the correct exit when they check the sectors they are responsible for in time $1+\pi$
- Otherwise, set $y=\pi-2$ and suppose an announcement is made by a_{0} at $t<\frac{\pi}{2}$

Byzantine fault: $(4,1)$-search

Case 2: announcements in $t<y$

- a_{1} and a_{3} will search the two sectors that each is responsible for in time
- a_{2} will move along a diameter to check the announcement
- y is defined so that a_{2} reaches the announcement in time less than $1+y+2=1+\pi$

Byzantine fault: $(4,1)$-search

Case 3: announcements in $y \leq t<\frac{\pi}{2}$

- a_{1} continues to cover distance $\sqrt{2}$
- then moves along a chord to check announcement
- a_{2} finishes first sector and moves back through a chord to check the arc that a_{1} left unchecked
- a_{3} continues to search his two sectors

Byzantine fault: $(4,1)$-search

Case 3: announcements in $y \leq t<\frac{\pi}{2}$

- a_{2} covered an arc of at most $\frac{\pi}{2}+\sqrt{2}+\left(\frac{\pi}{2}-\sqrt{2}\right)=\pi$

Byzantine fault: $(4,1)$-search

Case 3: announcements in $y \leq t<\frac{\pi}{2}$

- a_{1} in the worst case where $t=y$ will walk a chord that corresponds to an arc of lenght $\phi=\sqrt{2}+\frac{\pi}{2}-y=2+\sqrt{2}-\frac{\pi}{2}$
- total time needed is $1+\sqrt{2}+2 \sin \frac{\phi}{2}<1+\pi$
\max time $1+\frac{4 \pi}{n}=1+\pi$

Byzantine fault: $(n, 1)$-search, $n \geq 5$

(4,1)-search: $y \leq t<\frac{\pi}{2}$

(n-1)-search: $y \leq t<\theta$

Byzantine fault: $(n, 1)$-search, $n \geq 5$

- Analytical proof for $n \geq 9$
- After some computational verification...

n	x_{5}	x_{4}	x_{3}	x_{2}	x_{1}	y	T	$S(n)$
5				0.0810	0.2285	0.611	3.51327	3.51327
6			0.047	0.135	0.3	0.36	3.07	3.09
7		0.029	0.085	0.17^{*}	0.34^{*}	0.2	2.74	2.79
8	0.02	0.04^{*}	0.08^{*}	0.16^{*}	0.32^{*}	0.1	2.56	2.57

Theorem (Upper Bound for ($\mathrm{n}, 1$)-Search)

The worst-case search time $S(n)$ for $n \geq 2$ robots exactly one of which is Byzantine-faulty satisfies

$$
S(n) \leq 1+\frac{4 \pi}{n}
$$

Bounds for one Byzantine fault are tight!

Conclusion

Search on a circle with n robots, where

- $f \geq 1$ crash-faulty
- Optimal worst-case search time is exactly $1+\frac{(f+1) 2 \pi}{n}$
- one of them is Byzantine-faulty
- Optimal worst-case search time is exactly $1+\frac{4 \pi}{n}$

Open problems

- Multiple Byzantine-faulty robots
- Evacuation
- Other topologies
- Other communication models

Thank you!

[^0]: ${ }^{1}$ Ryerson University
 ${ }^{2}$ Carleton University
 ${ }^{3}$ University of Athens
 ${ }^{4}$ National Technical University of Athens

