Optimal Circle Search Despite the Presence of Faulty Robots

K. Georgiou¹, E. Kranakis², N. Leonardos³, A. Pagourtzis⁴, I. Papaioannou⁴

September 12, 2019

¹Ryerson University
 ²Carleton University
 ³University of Athens
 ⁴National Technical University of Athens

Search problem

Searching an environment to find an exit (or target) in the minimum possible time:

- Autonomous robots (mobile agents)
- (may) cooperate
- exchange messages

Searching for an exit placed at an unknown location:

- on the perimeter of a unit circle
- wireless communication
- crash/byzantine faults

Communication

- wirelessly and instantaneously
- anytime and regardless of distance
- message tagged with robot's unique ID (cannot be altered)

Robot movement

- start possition: center of the circle
- maximum speed is 1 (same for all robots)
- recognize and move along the perimeter of the circle
- recognize exit if they are at its location
- allowed to take "shortcuts" by moving in the interior of the disk
- trajectories known, and can be deduced

Computational model

Fault types

- Crash faults
 - stop functioning at any time
 - permanently remains idle and/or fails to communicate
- Byzantine faults
 - may alter trajectory
 - provide (or hide) information to confuse the rest
 - can exhibit behavior of a crash-faulty robot

Adversary

- controls the location of the exit
- controls the behaviour of the malicious robot
- goal to maximize the resulting search completion time

Linear Search

Single mobile agent searching for an exit placed at an unknown location on an infinite line. (Cow Path Problem)

- Bellman (1963), Beck (1964), Baeza-Yates et al. (1993)
- Ahlswede and Wegener, Alpern and Gal, Stone

Presence of faulty robots

- Crash-faulty: Czyzowicz, Kranakis et al. (2016)
- Byzantine-faulty: Czyzowicz, Georgiou et al. (2016)

Circle Search

- Introduced as an *evacuation* problem (minimize evacuation time) and analyzed in *Czyzowicz et al. (2014)*.
- Czyzowicz et al. (2017) investigate evacuation in the presence of crash and/or Byzantine faults.

A search is complete if:

- exit visited by a non-faulty robot
- the rest of the agents can be convinced of the location of the exit

(n, f)-search on a circle:

n > 1 robots searching for an exit in a circle of unit radius, f of which are faulty. Robots start at the center of the circle and can move anywhere with maximum speed 1.

•Presence of Crash Faults:

Optimal algorithms for the (n, f)-search problem Optimal worst case completion time $1 + \frac{(f+1)2\pi}{n}$

•Presence of Byzantine Faults:

Optimal algorithms for (n, 1)-search problem Optimal worst case completion time $1 + \frac{4\pi}{n}$

Theorem (Lower Bound for (n, f)-Search)

The worst-case search time $S_c(n, f)$ for $n \ge f + 1$ robots exactly f of which are crash-faulty satisfies

$$S_c(n, f) \ge 1 + (f+1)\frac{2\pi}{n}$$

We must traverse every point of the circle with at least (f + 1) robots.

If not the adversary will make at most f robots visit the exit and remain silent.

Honest robots will miss the exit

Theorem (Lower Bound for (n, f)-Search)

The worst-case search time $S_c(n, f)$ for $n \ge f + 1$ robots exactly f of which are crash-faulty satisfies

$$S_c(n, f) \ge 1 + (f+1)\frac{2\pi}{n}$$

Corollary (Lower Bound for Byzantine (n, 1)-Search)

The worst-case search time S(n) for $n \ge 2$ robots exactly one of which is Byzantine-faulty satisfies $S(n) \ge 1 + \frac{4\pi}{n}$.

Theorem (Upper Bound for (n, f)-Search with Crash Faults)

The worst-case search time $S_c(n, f)$ for $n \ge 2$ robots exactly f of which are prone to crash failures satisfies

$$S_c(n, f) \le 1 + (f+1)\frac{2\pi}{n}$$

(4,1): Search complete!

•
$$\theta = \frac{2\pi}{n}$$

• a_k moves t $k\theta$ and searches ccw for $(f+1)\theta$ radians

Theorem (Upper Bound for (n, f)-Search with Crash Faults)

The worst-case search time $S_c(n, f)$ for $n \ge 2$ robots exactly f of which are prone to crash failures satisfies

$$S_c(n, f) \le 1 + (f+1)\frac{2\pi}{n}$$

Bounds for crash faults are tight.

Lemma ((3,1)-Search)

The worst-case search time for 3 robots exactly one of which is Byzantine-faulty satisfies

$$S(3) \le 1 + \frac{4\pi}{3}$$

Step 0: time phase [0,1)

- Divide circle in 3 sectors, set $\theta = \frac{2\pi}{3}$
- agent a_k move to location $k\theta$
- in the next phase $[1, 1 + \theta)$, agent a_k searches ccw arc $[k\theta, (k+1)\theta]$

announcements = 0

Step 1: time phase $[1, 1 + \theta)$

• exit on territory of faulty robot

Step 2: time phase $[1 + \theta, 1 + 2\theta)$

• correct announcement

• exit on territory of faulty robot

third agent (say a₀), honest
a₀ could find the exit in previous phase, if a₂ was honest

announcements = 1

Step 1: time phase $[1, 1+\theta)$

Step 2: time phase $[1 + \theta, 1 + 2\theta)$

- correct if a_0 or a_1 confirms
- otherwise a_1 will find it
- max time $2 < \theta$

announcements = 2

Step 1: time phase $[1, 1 + \theta)$

- consecutive sectors
- silent agent is honest

Step 2: time phase $[1 + \theta, 1 + 2\theta)$

• honest agent will determine the correct exit

max time
$$1 + 2\theta = 1 + \frac{4\pi}{n} = 1 + \frac{4\pi}{3}$$

Lemma ((4,1)-Search)

The search time for 4 robots exactly one of which is Byzantine-faulty satisfies

$$S(4) \le 1 + \pi$$

- set $\theta = \frac{\pi}{2}$
- agent a_k moves to $k\theta$ and continues ccw
- each responsible for arc of length π

• t: length of arc searched by the agent who made first announcement, at the time of announcement

Case 1: # announcements in $t \ge \frac{\pi}{2}$: 1

• valid one

Case 1: # announcements in $t \geq \frac{\pi}{2}$: 2

• consecutive sectors

• valid the first in ccw direction

• In Case 1, where $t \ge \frac{\pi}{2}$, robots will know the correct exit when they check the sectors they are responsible for in time $1 + \pi$

 \bullet Otherwise, set $y=\pi-2$ and suppose an announcement is made by a_0 at $t<\frac{\pi}{2}$

Case 2: announcements in t < y

• a_1 and a_3 will search the two sectors that each is responsible for in time

• a_2 will move along a diameter to check the announcement

• y is defined so that a_2 reaches the announcement in time less than $1 + y + 2 = 1 + \pi$

Case 3: announcements in $y \le t < \frac{\pi}{2}$

- a_1 continues to cover distance $\sqrt{2}$
- then moves along a chord to check announcement
- a_2 finishes first sector and moves back through a chord to check the arc that a_1 left unchecked
- a_3 continues to search his two sectors

Case 3: announcements in $y \le t < \frac{\pi}{2}$

• a_2 covered an arc of at most $\frac{\pi}{2} + \sqrt{2} + (\frac{\pi}{2} - \sqrt{2}) = \pi$

Case 3: announcements in $y \le t < \frac{\pi}{2}$

- a_1 in the worst case where t = y will walk a chord that corresponds to an arc of lenght $\phi = \sqrt{2} + \frac{\pi}{2} - y = 2 + \sqrt{2} - \frac{\pi}{2}$
- total time needed is $1 + \sqrt{2} + 2\sin\frac{\phi}{2} < 1 + \pi$

max time $1 + \frac{4\pi}{n} = 1 + \pi$

Byzantine fault: (n,1)-search, $n \ge 5$

Byzantine fault: (n,1)-search, $n \ge 5$

- Analytical proof for $n \ge 9$
- After some computational verification...

$\left n \right $	x_5	x_4	x_3	x_2	x_1	y	Т	S(n)
5				0.0810	0.2285	0.611	3.51327	3.51327
6			0.047	0.135	0.3	0.36	3.07	3.09
7		0.029	0.085	0.17^{*}	0.34^{*}	0.2	2.74	2.79
8	0.02	0.04^{*}	0.08^{*}	0.16^{*}	0.32^{*}	0.1	2.56	2.57

Theorem (Upper Bound for (n,1)-Search)

The worst-case search time S(n) for $n \ge 2$ robots exactly one of which is Byzantine-faulty satisfies

$$S(n) \le 1 + \frac{4\pi}{n}$$

Bounds for one Byzantine fault are tight!

Conclusion

Search on a circle with n robots, where

- $f \ge 1$ crash-faulty
 - Optimal worst-case search time is exactly $1 + \frac{(f+1)2\pi}{n}$
- one of them is Byzantine-faulty
 - Optimal worst-case search time is exactly $1 + \frac{4\pi}{n}$

Open problems

- Multiple Byzantine-faulty robots
- Evacuation
- Other topologies
- Other communication models

Thank you!