
Optimal Circle Search Despite the Presence of
Faulty Robots

K. Georgiou1, E. Kranakis2, N. Leonardos3, A. Pagourtzis4,
I. Papaioannou4

September 12, 2019

1Ryerson University
2Carleton University
3University of Athens
4National Technical University of Athens

1 / 29

Search problem

Searching an environment to find an exit (or target) in the
minimum possible time:

Autonomous robots
(mobile agents)

(may) cooperate

exchange messages

Searching for an exit placed at
an unknown location:

on the perimeter of a unit
circle

wireless communication

crash/byzantine faults

exit

wireless
communication

a0

ak

2 / 29

Computational model

Communication

wirelessly and instantaneously

anytime and regardless of distance

message tagged with robot’s unique ID (cannot be altered)

Robot movement

start possition: center of the circle

maximum speed is 1 (same for all robots)

recognize and move along the perimeter of the circle

recognize exit if they are at its location

allowed to take ”shortcuts” by moving in the interior of the
disk

trajectories known, and can be deduced

3 / 29

Computational model

Fault types

Crash faults

– stop functioning at any time
– permanently remains idle and/or fails to communicate

Byzantine faults

– may alter trajectory
– provide (or hide) information to confuse the rest
– can exhibit behavior of a crash-faulty robot

Adversary

controls the location of the exit

controls the behaviour of the malicious robot

goal to maximize the resulting search completion time

4 / 29

Related Work

Linear Search
Single mobile agent searching for an exit placed at an unknown
location on an infinite line. (Cow Path Problem)

Bellman (1963), Beck (1964), Baeza-Yates et al. (1993)

Ahlswede and Wegener, Alpern and Gal, Stone

Presence of faulty robots

Crash-faulty: Czyzowicz, Kranakis et al. (2016)

Byzantine-faulty: Czyzowicz, Georgiou et al. (2016)

Circle Search

Introduced as an evacuation problem (minimize evacuation
time) and analyzed in Czyzowicz et al. (2014).

Czyzowicz et al. (2017) investigate evacuation in the
presence of crash and/or Byzantine faults.

5 / 29

Search with faults

A search is complete if:

exit visited by a non-faulty robot

the rest of the agents can be convinced of the location of
the exit

(n, f)-search on a circle:
n > 1 robots searching for an exit in a circle of unit radius, f of
which are faulty. Robots start at the center of the circle and
can move anywhere with maximum speed 1.

6 / 29

Our results

•Presence of Crash Faults:
Optimal algorithms for the (n, f)-search problem

Optimal worst case completion time 1 + (f+1)2π
n

•Presence of Byzantine Faults:
Optimal algorithms for (n, 1)-search problem
Optimal worst case completion time 1 + 4π

n

7 / 29

Crash Faults: Lower Bound

Theorem (Lower Bound for (n, f)-Search)

The worst-case search time Sc(n, f) for n ≥ f + 1 robots exactly
f of which are crash-faulty satisfies

Sc(n, f) ≥ 1 + (f + 1)
2π

n

Example:
(4,1) - Adversary wins!

We must traverse every point of
the circle with at least (f + 1)
robots.

If not the adversary will make
at most f robots visit the exit
and remain silent.

Honest robots will miss the exit
8 / 29

Crash Faults: Lower Bound

Theorem (Lower Bound for (n, f)-Search)

The worst-case search time Sc(n, f) for n ≥ f + 1 robots exactly
f of which are crash-faulty satisfies

Sc(n, f) ≥ 1 + (f + 1)
2π

n

Corollary (Lower Bound for Byzantine (n, 1)-Search)

The worst-case search time S(n) for n ≥ 2 robots exactly one of
which is Byzantine-faulty satisfies S(n) ≥ 1 + 4π

n .

9 / 29

Crash Faults: Upper Bound

Theorem (Upper Bound for (n, f)-Search with Crash Faults)

The worst-case search time Sc(n, f) for n ≥ 2 robots exactly f
of which are prone to crash failures satisfies

Sc(n, f) ≤ 1 + (f + 1)
2π

n

Example:
(4,1): Search complete!

θ = 2π
n

ak moves t kθ and searches
ccw for (f + 1)θ radians

10 / 29

Crash Faults: Upper Bound

Theorem (Upper Bound for (n, f)-Search with Crash Faults)

The worst-case search time Sc(n, f) for n ≥ 2 robots exactly f
of which are prone to crash failures satisfies

Sc(n, f) ≤ 1 + (f + 1)
2π

n

Bounds for crash faults are tight.

11 / 29

Byzantine fault: (3,1)-search

Lemma ((3,1)-Search)

The worst-case search time for 3 robots exactly one of which is
Byzantine-faulty satisfies

S(3) ≤ 1 +
4π

3

a0

a1
a2

Step 0: time phase [0,1)

Divide circle in 3 sectors,
set θ = 2π

3

agent ak move to location
kθ

in the next phase [1, 1 + θ),
agent ak searches ccw arc
[kθ, (k + 1)θ]

12 / 29

Byzantine fault: (3,1)-search

announcements = 0

a0

a1

a2

Step 1: time phase [1, 1 + θ)

• exit on territory of faulty
robot

announcements = 1

a2

a0

a1

T

Step 2: time phase [1 + θ, 1 + 2θ)

• correct announcement

13 / 29

Byzantine fault: (3,1)-search

announcements = 0

a0

a1

a2

Step 1: time phase [1, 1 + θ)

• exit on territory of faulty
robot

announcements = 2

a2

a0

a1

T

F

Step 2: time phase [1 + θ, 1 + 2θ)

• third agent (say a0), honest
• a0 could find the exit in
previous phase, if a2 was honest

14 / 29

Byzantine fault: (3,1)-search

announcements = 1

a0

a1

a2

Step 1: time phase [1, 1 + θ)

a0

a1

Step 2: time phase [1 + θ, 1 + 2θ)

• correct if a0 or a1 confirms
• otherwise a1 will find it
• max time 2 < θ

15 / 29

Byzantine fault: (3,1)-search

announcements = 2

a0

a1

a2

Step 1: time phase [1, 1 + θ)

• consecutive sectors
• silent agent is honest

a2
F

T

Step 2: time phase [1 + θ, 1 + 2θ)

• honest agent will determine
the correct exit

max time 1 + 2θ = 1 + 4π
n = 1 + 4π

3
16 / 29

Byzantine fault: (4,1)-search

Lemma ((4,1)-Search)

The search time for 4 robots exactly one of which is
Byzantine-faulty satisfies

S(4) ≤ 1 + π

a0

a1

a2

a3

set θ = π
2

agent ak moves to kθ and
continues ccw

each responsible for arc of
length π

17 / 29

Byzantine fault: (4,1)-search

a0

t

t: length of arc searched by
the agent who made first
announcement, at the time
of announcement

18 / 29

Byzantine fault: (4,1)-search

Case 1: # announcements in t ≥ π
2 : 1

a0

a1 a2

a3

t < π
2

a0

a1

a2

a3

t ≥ π
2

• valid one
19 / 29

Byzantine fault: (4,1)-search

Case 1: # announcements in t ≥ π
2 : 2

a0

a1 a2

a3

t < π
2

• consecutive sectors

a0

a1

a2

a3

T

F

t ≥ π
2

• valid the first in ccw direction
20 / 29

Byzantine fault: (4,1)-search

• In Case 1, where t ≥ π
2 , robots will know the correct exit when

they check the sectors they are responsible for in time 1 + π

• Otherwise, set y = π − 2 and suppose an announcement is
made by a0 at t < π

2

21 / 29

Byzantine fault: (4,1)-search

Case 2: announcements in t < y

a0

a1
a2

a3

t < y

• a1 and a3 will search the two
sectors that each is responsible
for in time

• a2 will move along a diameter
to check the announcement

• y is defined so that a2 reaches
the announcement in time less
than 1 + y + 2 = 1 + π

22 / 29

Byzantine fault: (4,1)-search

Case 3: announcements in y ≤ t < π
2

a3a0

a1

a2
√
2

y ≤ t < π
2

• a1 continues to cover distance√
2

• then moves along a chord to
check announcement

• a2 finishes first sector and
moves back through a chord to
check the arc that a1 left
unchecked

• a3 continues to search his two
sectors

23 / 29

Byzantine fault: (4,1)-search

Case 3: announcements in y ≤ t < π
2

a3a0

a1

a2
√
2

y ≤ t < π
2

• a2 covered an arc of at most
π
2 +
√

2 + (π2 −
√

2) = π

24 / 29

Byzantine fault: (4,1)-search

Case 3: announcements in y ≤ t < π
2

a1

√
2

y

t = y

π
2 − y

√
2

• a1 in the worst case where
t = y will walk a chord that
corresponds to an arc of lenght
φ =
√

2 + π
2 − y = 2 +

√
2− π

2

• total time needed is
1 +
√

2 + 2 sin φ
2 < 1 + π

max time 1 + 4π
n = 1 + π

25 / 29

Byzantine fault: (n,1)-search, n ≥ 5

a3a0

a1

a2
√
2

(4,1)-search: y ≤ t < π
2

a0

a1

a2

x1

x2

(n-1)-search: y ≤ t < θ
26 / 29

Byzantine fault: (n,1)-search, n ≥ 5

• Analytical proof for n ≥ 9
• After some computational verification...

n x5 x4 x3 x2 x1 y T S(n)

5 0.0810 0.2285 0.611 3.51327 3.51327

6 0.047 0.135 0.3 0.36 3.07 3.09

7 0.029 0.085 0.17∗ 0.34∗ 0.2 2.74 2.79

8 0.02 0.04∗ 0.08∗ 0.16∗ 0.32∗ 0.1 2.56 2.57

Theorem (Upper Bound for (n,1)-Search)

The worst-case search time S(n) for n ≥ 2 robots exactly one of
which is Byzantine-faulty satisfies

S(n) ≤ 1 +
4π

n

Bounds for one Byzantine fault are tight!

27 / 29

Conclusion
Search on a circle with n robots, where

f ≥ 1 crash-faulty

– Optimal worst-case search time is exactly 1 + (f+1)2π
n

one of them is Byzantine-faulty

– Optimal worst-case search time is exactly 1 + 4π
n

Open problems

Multiple Byzantine-faulty robots

Evacuation

Other topologies

Other communication models

28 / 29

Thank you!

29 / 29

