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Bitcoin was the first decentralized cryptocurrency, with no
need for a trusted central authority.

Bitcoin was a fresh solution at an old, fundamental, and
well-studied problem in distributed computing, the consen-

sus problem.
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Bitcoin was the first decentralized cryptocurrency, with no
need for a trusted central authority.

Bitcoin was a fresh solution at an old, fundamental, and

well-studied problem in distributed computing, the consen-
sus problem.

To understand and analyze Bitcoin’s core protocol means to sup-
ply formal descriptions of the following.

A model in which a solution to the problem can described.
The properties that a suggested solution should satisfy.

Proof that Bitcoin’s backbone protocol indeed has the desired
properties.
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First formal analysis of the Bitcoin core protocol.

Applications on top of the backbone protocol, assuming minor-
ity adversarial hashing power.

— Consensus (blockchain based).
— Robust transaction ledger (e.qg., Bitcoin).
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Follow up work: Model variants and extensions.

— Additional properties [KP15,PSS17], partial synchrony
[PSS17], simulation based security [BMTZ17].
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First formal analysis of the Bitcoin core protocol.

Applications on top of the backbone protocol, assuming minor-
ity adversarial hashing power.

— Consensus (blockchain based).
— Robust transaction ledger (e.qg., Bitcoin).

Follow up work: Model variants and extensions.

— Additional properties [KP15,PSS17], partial synchrony
[PSS17], simulation based security [BMTZ17].

All of the above work in the static setting, i.e., assume fixed
number of participants and a fixed target.

This is not how Bitcoin works.

It employs a target recalculation mechanism that adjusts POW
hardness and accommodates for dynamic population of users.
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First formal analysis of Bitcoin’s target recalculation function.

[ GKL15] Applications carry over to this setting (consensus, ro-
bust transaction ledger).

New analysis methodology for blockchain protocols in the dy-
namic setting.
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Synchronous model: time is discrete and divided in rounds.

A number of honest parties n and an adversary that controls t
parties.

— Honest parties act independently.
— Parties controlled by the adversary collaborate.

Parties communicate by broadcasting a message.

The adversary can:
— inject messages into a party’s incoming messages.
— reorder a party’s incoming messages.

Anonymous setting: parties cannot associate a message to a

sender; they don’t even know if two messages come from the
same sender.
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input, or data

Si+1 = H(ri, si, xi, wy)

A block (r, s, x, w) is valid if it has a small hash-value, providing
a proof-of-work:

H(r,s,x, w) <T.

A chain is valid if all its blocks provide a proof-of-work and each
block extends the previous one:

for each i,

Sig1 = H(ri, si, Xi, wi) and ri1 >ri.
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To alter the contents of a block and preserve the length of the

chain the adversary either has to discover a collision in H(-) or
compute all the subsequent blocks.

— Thus the adversary cannot delete, copy, inject, or predict
blocks.

The hash function is modeled as a random oracle.

By adjusting the target T we control how hard is computing a
block: the lower the target the higher the difficulty, wlog 1/T.
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In each round r, each party with a chain Cq performs the following:
Receive from the network (block)chains C4, Co, ...

Choose the first longest chain C among the valid ones in
{Co,C1,Cy,...}. (Order matters*.)

Try to extend the longest chain C.

This is modeled by a Bernoulli trial with a probability of success
that depends on the target T.

— Suppose its last block is the i-th one and equal to (r;, si, xi, w;)
with s = H(r, si, xi;, w;). Find we {1, 2,...,q} such that

H(r,s,x, w) <T.

If successful, let C«— C || (r, s, x, w).

If C # Co (i.e., you computed or switched-to another (longer)
chain), broadcast the new chain C.
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An execution example
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— White blocks have been computed by an honest party.
— Red blocks have been computed by the adversary.

— A star (*) on a block means that an honest party has the chain
ending with that block at the given round.
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— White blocks have been computed by an honest party.
— Red blocks have been computed by the adversary.

— A star (*) on a block means that an honest party has the chain
ending with that block at the given round.
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Persistence. If a transaction is confirmed by an honest party, no
honest party will ever disagree about the position of that trans-
action in the ledger.
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Persistence. If a transaction is confirmed by an honest party, no
honest party will ever disagree about the position of that trans-
action in the ledger.

Liveness. If a transaction is broadcast, it will eventually become
confirmed by all honest parties.
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Common-Prefix Property. Any two honest parties’ chains have
a large common prefix.

(Specifically, if one party prunes a sufficiently large number of
blocks from its chain, it obtains a prefix of the other party’s
chain.)
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Common-Prefix Property. Any two honest parties’ chains have
a large common prefix.

(Specifically, if one party prunes a sufficiently large number of
blocks from its chain, it obtains a prefix of the other party’s
chain.)

Chain quality property. Any large enough chunk of an hon-
est party’s chain, will contain some blocks computed from honest
parties.

Chain growth property. The chain of any honest party grows at
least at a steady rate.
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Proof of the common-prefix lemma [ GKL15]

Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ k) (The party with the shortest chain should be honest.)
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Proof of the common-prefix lemma [ GKL15]

Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ k) (The party with the shortest chain should be honest.)

r

Observation. Suppose the [-the block of a chain was computed
by an honest party in a uniquely successful round. Then any other
L-th block has been computed by the adversary.
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Common-Prefix Lemma. The probability that at a given round
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Observation. Suppose the [-the block of a chain was computed
by an honest party in a uniquely successful round. Then any other
L-th block has been computed by the adversary.
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Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ Q) (The party with the shortest chain should be honest.)

r*
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Proof. Let r* be the last round before the fork that was computed
by an honest party. SetS={r*+1,...,r—1}.
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Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ Q) (The party with the shortest chain should be honest.)
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Proof. Let r* be the last round before the fork that was computed
by an honest party. SetS={r*+1,...,r—1}. By the Lemma, to
every uniquely successful round in S corresponds an adversarial
block computed in S.
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Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ Q) (The party with the shortest chain should be honest.)

=
TEm LR e

r* r

Proof. Let r* be the last round before the fork that was computed
by an honest party. SetS={r*+1,...,r—1}. By the Lemma, to
every uniquely successful round in S corresponds an adversarial
block computed in S. It follows that

Unigely successful

. < Adversarial successes in S.
rounds in S
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The proof in the static case (fixed number of parties) breaks.
— As block-production rate goes to 1, persistence breaks.
— As block-production rate goes to 0, liveness is hurt.
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The proof in the static case (fixed number of parties) breaks.
— As block-production rate goes to 1, persistence breaks.
— As block-production rate goes to 0, liveness is hurt.

Actually, Bitcoin strives to maintain constant block-production
rate of about 1 block per 10 mins.

The difficulty of producing a block can be calibrated by chang-
iIng the target T.

Note that we want to use this in a distributed manner.

Bitcoin achieves (approximately) constant rate by having the
target of the to-be-computed block determined (locally) by a
fixed number of previous blocks.

Each block now is associated with a target T and difficulty %

Parties now follow the heaviest chain.
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The common-prefix lemma in the dynamic case

Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ k) (The party with the shortest chain should be honest.)
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Common-Prefix Lemma. The probability that at a given round
two parties have chains that disagree in the last k blocks, is at most
e~ k) (The party with the shortest chain should be honest.)

difficulty from uniquely successful block
\_/—+7 %

| adversarial difficulty

Observation. Suppose difficulty d of a chain belongs to a block
that was computed by an honest party in a uniquely successful
round. Then any other block that contains difficulty d has been
computed by the adversary.
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In unigely successful < by the adversary
rounds inasetS during rounds in S
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Difficulty accumulated Difficulty accumulated
In unigely successful < by the adversary
rounds inasetS during rounds in S

Same statement in static case [GKL15] is easy, as we are com-
paring two binomials.

In the dynamic case, as prove, we have two martingales where
success probabilities are random variables depending on the
strateqgy of the adversary.
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The target is recalculated every m blocks.

Bitcoin uses m = 2016 and calls the period between two recal-
culation points an epoch.

If one wants to extend a chain of length Am, first determines T
by the last m blocks.
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The target is recalculated every m blocks.

Bitcoin uses m = 2016 and calls the period between two recal-
culation points an epoch.

If one wants to extend a chain of length Am, first determines T
by the last m blocks.

Informally, if the last m blocks were calculated quickly, then
increase difficulty (decrease T), otherwise decrease difficulty
(increase T).

Suppose the last m blocks were computed in A rounds for tar-
get T. If we want to have m blocks in every % rounds, set

JA
= p—r

This is justified because for small f the relation between f and
T is approximately linear.

T’ - T, (f = block-production rate).
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Suppose that at some round r the honest parties have a chain
of length Am.

The adversary builds the next epoch all by himself with fake
timestamps, resulting in huge difficulty for the next epoch.

His strategy is to set T’ so small, so that if he computes the 1st

block (a superblock of difficulty %) of the next epoch fast (say
half the expected time), he obtains a chain heavier than the
chain the honest parties are expected to have by that time.

This works with constant probability!
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Suppose that at some round r the honest parties have a chain
of length Am.

The adversary builds the next epoch all by himself with fake
timestamps, resulting in huge difficulty for the next epoch.

His strategy is to set T’ so small, so that if he computes the 1st

block (a superblock of difficulty %) of the next epoch fast (say
half the expected time), he obtains a chain heavier than the
chain the honest parties are expected to have by that time.

This works with constant probability!

But, Nakamoto knew this!!!
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Suppose the last m blocks were computed in A rounds for tar-
get T. If we want to have m blocks in every ? rounds, set

JAN

T'=—".
m/f

’
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Suppose the last m blocks were computed in A rounds for tar-
get T. If we want to have m blocks in every % rounds, set

JAN
= p—r

unless T’ <T/4 or T’ > 4T, in whichcasesetT'=T/4orT'=4T
accordingly.

T/

’
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If the number of parties keeps increasing by a large factor per
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Suppose the last m blocks were computed in A rounds for tar-
get T. If we want to have m blocks in every % rounds, set

JAN
= p—r

unless T’ <T/4 or T’ > 4T, in whichcasesetT'=T/4orT'=4T
accordingly.

T/

’

If the number of parties keeps increasing by a large factor per
epoch, then target recalculation won’t catch up.

Can we prove security under the assumption that the number
of parties does not fluctuate wildly?

Theorem. [f, for appropriate constants s and A,

n

.
’ Ir—r'|<s = )\SanS)\nr,

Yr, r

then common prefix and chain quality hold (assuming adversarial
minority and appropriate initialization).




Assuming the execution begins with good initial parameters—i.e.,
in the beginning the block-production rate is very close to the (de-
sired) f—we show that with high probability the following hold.
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Assuming the execution begins with good initial parameters—i.e.,
in the beginning the block-production rate is very close to the (de-
sired) f—we show that with high probability the following hold.

If a chain C is adopted by an honest party, then C:

was never abandoned by honest parties for Q(m/f) rounds,

iIs O(m/f)-accurate—each of its blocks has a timestamp that is
O(m/f) rounds away from its real creation time,

has “very good” recalculation points,

has blocks with “good” targets.

Theorem. Every block in a chain that is ever adopted by an honest
party, has “accurate” timestamp and “good” target.

The Bitcoin Backbone Protocol with Chains of Variable Difficulty 18/21



We define the notion typical execution. Informally, the execu-
tionis typical if for any set of consecutive rounds the number of
successful queries did not deviate to far from its expectation.
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considering probability at all.
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We define the notion typical execution. Informally, the execu-
tionis typical if for any set of consecutive rounds the number of
successful queries did not deviate to far from its expectation.

Having defined the typical set and proved that almost all ex-
ecutions are typical, we can then study its properties without
considering probability at all.

For example, in the static case, we may say that an execution
Is typical if for any set S of Q(k) consecutive rounds, the num-
ber of blocks computed is (1 £ 6)f|S]|.

How to do this in the dynamic case? Consider the following
stochastic procedure.

— In the beginning of each round i the adversary chooses p;.
— We gcun = W|th prob p; or lose — p with prob 1— p;.

Consider an adversary that is deterministic and adaptive.
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Theorem [McDiarmid, Concentration]. Let Xy, X1,... be a
martingale with respect to the sequence Yy, Y1,.... Forn >0, let

V= ZVar(X[—Xl-_llYo,.., Yi_1) and b = max sup(Xi—Xi—1|Yo,.., Yie1),

, 1<i<n
1<i<n

where sup is taken over all possible assignments to Yo, ..., Yi-1.
Then, forany t,v =0,

t2
PriX,=>Xo+tAV <v]|<ex {— }
[Xn = Xo ] P1™2v + 2bt/3
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Theorem [McDiarmid, Concentration]. Let Xy, X1,... be a
martingale with respect to the sequence Yy, Y1,.... Forn >0, let

V= ZVar(X[—Xl-_llYo,.., Yi_1) and b = max sup(Xi—Xi—1|Yo,.., Yie1),

, 1<i<n
1<i<n

where sup is taken over all possible assignments to Yo, ..., Yi-1.
Then, forany t,v =0,

t2
PriX,=>Xo+tAV <v]|<ex {— }
[Xn = Xo ] P1™2v + 2bt/3

Proof application: Show that if an execution begins with good
initial parameters (in particular, V < v) and at some point de-
viates from the desired block-production rate, then concentra-

tion was violated while V < v.
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Improve analysis tightness.

— Real world Bitcoin parameterization outside our current
bounds.
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Improve analysis tightness.

— Real world Bitcoin parameterization outside our current
bounds.

Partial synchrony.

— Similar strategy as in the new version of [GKL15] (see
eprint) might work.

Is Bitcoin’s target recalculation best possible?
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Thank you for listening
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Re: Bitcoin P2P e-cash paper
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James A. Donald wrote:

> It is not sufficient that everyone knows X. We also
need everyone to know that everyone knows X, and that
everyone knows that everyone knows that everyone knows X
- which, as in the Byzantine Generals problem, is the
classic hard problem of distributed data processing.

The proof-of-work chain is a solution to the Byzantine Generals' Problem. I'll
try to rephrase it in that context.

A number of Byzantine Generals each have a computer and want to attack the
King's wi-fi by brute forcing the password, which they've learned is a certain
number of characters in length. Once they stimulate the network to generate a
packet, they must crack the password within a limited time to break in and
erase the logs, otherwise they will be discovered and get in trouble. They
only have enough CPU power to crack it fast enough if a majority of them attack
at the same time.

They don't particularly care when the attack will be, just that they all agree.
It has been decided that anyone who feels like it will announce a time, and
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A set of parties {1,...,n}, t of which are controlled and coordi-
nated by an adversary. Parties have inputs x;1,...,x, € {0, 1}
and want to decide on outputs v,..., v, so that the following
conditions are satisfied.

Agreement: All honest parties decide on the same value
(i.e., if {and j are honest, then v; = v;).

Validity: If all honest parties have the same input value
X, then all honest parties decide x (i.e., if i is honest, then
Vi = X).
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One of the classical problems in distributed computing, a
variant of which was first introduced in “Reaching Agree-
ment in the Presence of Faults” [Pease-Shostak-Lamport
1980].

Requires n > 3t, unless cryptography is used [ PSL].

Even with cryptographic tools, at least t + 1 rounds are
needed [ Fischer-Lynch and Dolev-Strong 1982].

In an asynchronous or anonymous network no deterministic
protocol exists [ Fischer-Lynch-Paterson 1985]. But possible
with probability 1 [Ben-Or 1983]. (Rounds are expected to
be exponential in t, but if t = O(+/n) constant.)

Bit complexity is Q(nt) [ Dolev-Reischuk 1985].
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Theorem [GKL2015]. Assuming t < n/3, the following proto-
col terminates after O(k) rounds in expectation and solves con-
sensus with probability at least 1 — e=9Kk),
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Theorem [GKL2015]. Assuming t < n/3, the following proto-

col terminates after O(k) rounds in expectation and solves con-
sensus with probability at least 1 — e=9Kk),

1) Parties run the Bitcoin protocol, putting their own input-bit in
every block they compute.

2) When they obtain a chain with length > 2k they halt (after they
broadcast it).

3) Each party decides on the output equal to the majority of the
iInputs recorded in the first k blocks.
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col terminates after O(k) rounds in expectation and solves con-
sensus with probability at least 1 — e=9Kk),
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inputs recorded in the first k blocks.
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col terminates after O(k) rounds in expectation and solves con-
sensus with probability at least 1 — e=9Kk),

1) Parties run the Bitcoin protocol, putting their own input-bit in
every block they compute.

2) When they obtain a chain with length > 2k they halt (after they
broadcast it).

3) Each party decides on the output equal to the majority of the
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By the common-prefix property, if the adversary has less
than half of the total computational power, Agreement is
satisfied with high probability.

This is because every honest party will output the majority
of the input-bits included in the common prefix of their (pos-
sibly different) chains. (Consider the first time an honest
party has a chain of length at least 2k.)
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By the common-prefix property, if the adversary has less
than half of the total computational power, Agreement is
satisfied with high probability.

This is because every honest party will output the majority
of the input-bits included in the common prefix of their (pos-
sibly different) chains. (Consider the first time an honest
party has a chain of length at least 2k.)

By the chain-quality property, if the adversary has less than
one third of the total computational power, Validity is satis-
fied with high probability.

This is because out of the k bits of the common prefix, the
adversary has computed less than half of them. Therefore,
if all the honest parties have the same input x, the majority
of the bits in the common prefix will be x.
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