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Faster Pseudopolynomial Time Algorithms for Subset Sum
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Given a (multi) set S of n positive integers and a target integer u, the subset sum problem is to decide if there

is a subset of S that sums up to u. We present a series of new algorithms that compute and return all the

realizable subset sums up to the integer u in Õ (min{
√
nu,u5/4,σ }), where σ is the sum of all elements of S

and Õ hides polylogarithmic factors. We also present a modified algorithm for integers modulo m, which

computes all the realizable subset sums modulo m in Õ (min{
√
nm,m5/4}) time.

Our contributions improve upon the standard dynamic programming algorithm that runs in O (nu) time.

To the best of our knowledge, the new algorithms are the fastest deterministic algorithms for this problem.

The new results can be employed in various algorithmic problems, from graph bipartition to computational

social choice. Finally, we also improve a result on covering Zm , which might be of independent interest.
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1 INTRODUCTION

Given a (multi) set S of n positive integers and an integer target value u, the subset sum problem is
to decide if there is a subset of S that sums up tou. The subset sum is a special case of the knapsack
problem [14], and it is one of Karp’s original NP-complete problems [32]. The subset sum has a
variety of applications, including: power indices [54], scheduling [23, 24, 45], set-based queries
in databases [53], breaking precise query protocols [15], and various other graph problems with
cardinality constraints [9, 10, 16, 17, 25, 34] (for a survey of further applications see Reference [33]).
In some of the applications, a faster pseudopolynomial time algorithm for the subset sum would
imply faster polynomial time algorithms.

An extended abstract of this paper appeared in SODA 2017 [35] and one algorithm appeared in an earlier manuscript [36].

This full version among other additions simplifies the Õ (
√

nu ) time algorithm and improves the bound from Õ (u4/3) to

Õ (u5/4 ) time.
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Table 1. Summary of Deterministic Pseudopolynomial Time Results on the Subset Sum Problem

Result Time Space Comments

Bellman [5] O (nu) O (u) original DP solution

Pisinger [44] O
(

nu
log u

)
O

(
u

log u

) RAM model implementation of
Bellman

Pisinger [43] O (n max(S )) O (u) fast if small max(S )

Faaland [19],
Pferschy [42]

O (n′u) O (u) fast for small n′

Klinz et al. [34] O (σ 3/2) O (u)
fast for small σ , obtainable from

above because n′ = O
(√

σ
)

Eppstein [17],
Serang [48, 49]

Õ (n max(S )) O (u logu) data structure

Lokshtanov
et al. [38]

Õ (n3u) Õ (n2) polynomial space

current work Õ (min{
√
n′u,u5/4,σ }) Thm. 1.2 O (u) see Section 1.1

The input S is a (multi) set of n numbers and n′ distinct values, σ =
∑

x∈S x and u is the target number.

The subset sum is a fundamental problem used as a standard example of a problem that can
be solved in weakly polynomial time in many undergraduate algorithms and complexity classes.
As a weakly NP-complete problem, there is a standard pseudopolynomial time algorithm using
a dynamic programming due to Bellman [5], who solves it in O (nu) time (see also [13, Chapter
34.5]). There has been extensive work done on the subset sum problem since: see Table 1 for a
summary of previous deterministic pseudopolynomial time results [5, 19, 34, 38, 42–44, 48, 49].
The current state-of-the-art had until recently been improved only by a logu factor using the
bit-packing technique of Reference [44].

Further results on subset sum depend on properties of the input, while others focus on data
structures that maintain the set of subset sums under standard operations. In particular, when
the maximum value of any integer in S is relatively small compared to the number of elements
n, and the target value u lies close to one-half the total sum of the elements, then one can solve
the subset sum problem in almost linear time [21, 22]. This result was improved by Chaimovich
[11]. Eppstein [17] described a data structure that efficiently maintains all subset sums up to a
given value u, under insertion and deletion of elements, inO (u logu logn) time per update, which
can be accelerated to O (u logu) when additional information about future updates is known. The
probabilistic convolution tree, by Serang [48, 49], is also able to solve the subset sum problem in

Õ (n max(S )) time, where Õ hides polylogarithmic factors; i.e., Õ (T ) = O (T polylog(T )).
A variant of the subset sum problem, known as the modular subset sum, has been especially

studied in the literature of additive combinatorics [2, 18, 26, 40, 41, 51, 52, 55]. In this problem,
all additions are modulo m, for some input m. Despite its popularity in combinatorics, there is no
prior work on establishing efficient algorithms for it. Note, though, that the dynamic programming
algorithm of Bellman [5] applies to it and solves the modular subset sum in O (nm) time.

The publication of the extended abstract of this article [35] sparked a series of works on ran-
domized pseudopolynomial time algorithms for the subset sum; we briefly survey them here.

Bringmann [8] showed a randomized near-linear time algorithm Õ (n + u) and a different one that

runs in Õ (nu) time, using only Õ (n logu) space under the Extended Riemann Hypothesis. Recently,
Jin and Wu showed a simpler randomized algorithm that achieves a slightly better running time
[31]. Both randomized algorithms use FFT and improve upon the best deterministic running time
achieved in this article. The question of derandomizing either result remains an open problem.
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Table 2. Our Contributions Compared Against the Previous

Best Deterministic Results

Parameters Previous best Current work

n and u O (nu/ logu) [44] Õ (min{
√
nu, u5/4})

n′ and u O (n′u) [19, 42] Õ (min{
√
n′u, u5/4})

σ O (σ 3/2) [34] Õ (σ )

The input S is a (multi) set of n numbers and n′ distinct values, σ =∑
x∈S x and u is the target number.

Axiotis et al. showed a randomized near-linear algorithm for the modular subset sum with run-

ning time Õ (n +m) through a clever use of sketching [4]. Surprisingly, their algorithm does not
depend on FFT. In addition, they observed that the randomized algorithms of Reference [8] do not
apply to the modular case. In fact, neither does the algorithm of Reference [31].

Finally, Abboud et al. [1] showed that it is unlikely that any subset sum algorithm runs in

O (u1−ε 2o (n) ) time for any constant ε > 0 and target number u, as such an algorithm would im-
ply that the Strong Exponential Time Hypothesis (SETH) of Impagliazzo and Paturi [30] is false.

1.1 Our Contributions

The new results are summarized in Table 2—we consider the following all subset sums problem:
Given a (multi) set S of n elements, with n′ distinct values, with σ denoting the total sum of its
elements, compute all the realizable subset sums up to a prespecified integer u. Computing all
subset sums for some u also answers the standard subset sum problem with any target value less
than or equal to u.

Our main contribution is a new algorithm for computing the all subset sums problem, and con-

sequently for the subset sum problem, in Õ (min{
√
nu,u5/4,σ }) time. The new algorithm improves

over all previous deterministic works (see Table 2). The general algorithm is a result of combining
multiple approaches based on different properties of the input. As such, we have developed a se-
ries of algorithms that work well for different inputs, which we believe might be of independent
interest, as they can be used as building blocks for other problems. For a high-level description,

see Table 3. As part of the above, we introduce an algorithm with running time Õ (
√
nu) that is

surprisingly simple compared to the conference version of Reference [35]. We believe the new
algorithm can be used in teaching as a simple example of a pseudopolynomial time algorithm for
the subset sum problem, as well as a striking example of applying FFT to a seemingly unrelated
problem.

Our second contribution is an algorithm that solves the modular all subset sums problem in

Õ (min{
√
nm,m5/4}) time. Though the time bound is superficially similar to the first algorithm,

this algorithm uses a different approach.
Both algorithms can be augmented to return the solution; i.e., the subset summing up to each

number, with a polylogarithmic slowdown (see Section 6 for details).
We also improve the running time of a number of applications. For instance, the bottleneck

graph partition problem on weighted graphs. This problem asks to split the vertices of a graph
into two equal-sized sets, such that the value of the bottleneck (maximum-weight) edge, over
all edges across the cut, is minimized. Another example is the computation of power indices in
computational social choice. In both cases, we obtain significant improvements in running time.
Finally, we improve the current best bound for the size of a covering set of limited-magnitude
errors.
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Table 3. Summary of All New Algorithms

Algorithm Input Output Running time

SS_SmallInput S,u Su (S ) Õ (
√
nu)

�

SS_SmallSum S S (S ) Õ (σ )

�

SSC_BoundSum S,u SCu (S ) Õ (un)

SS_LargeInput S,u Su (S ) Õ (u5/4)

�

SS_SmallMax S S (S ) Õ (max(S )5/3)

�

SS_LargeMin S,u Su (S ) Õ (u2/min(S ))

�

SSC_BoundCard S,v SCv (S ) Õ (diam(S )v2)

SS_Mod S,m S(S ) under modm Õ (min{
√
nm,m5/4})

The arrows denote algorithmic dependencies between the subroutines. The prefix SS_ denotes the algo-

rithm returns the set of all subset sums (Equation (†)) and SSC_ return the set of all subset sums with

their cardinalities (Equation (�)). The input set S has n elements, and σ =
∑

x∈S x .

1.2 Main Theorems

The following theorems capture our contributions.

Theorem 1.1. (Main Theorem) Let S ⊆ {0, 1, . . . ,u} be a set of n elements, with total sum σ , com-

puting the set of all subset sums takes

O
(

min
{√

nu,u5/4,σ
}

log2 u
)

time.

The above result extends to the case that the input is a multiset as follows:

Theorem 1.2 (Main Theorem (Multiset)). Let S ⊆ {0, 1, . . . ,u} be a multiset of n′ distinct ele-

ments, with total sum σ , computing the set of all subset sums takes

O
(

min
{√

n′u,u5/4,σ
}

log2 u
)

time.

The next result captures our contributions on the modular subset sum:

Theorem 1.3 (Main Theorem (Modular)). Let S ⊆ {0, 1, . . . ,m − 1} be a set of sizen, computing

the set of all subset sums modulom takes

O
(

min
{√

nm,m5/4
}

log2m
)

time.

1.3 Sketch of Techniques

The straightforward divide-and-conquer algorithm for solving the subset sum problem [29] parti-
tions the set of numbers into two sets, recursively computes their subset sums, and combines them
together using FFT [17, 48, 49] (Fast Fourier Transform [13, Chapter 30]). This algorithm has a
running time of O (σ logσ logn) and is shown in Theorem 3.1.

Sketch of the Õ (
√
nu) Time Algorithm. Partition S into sets Si = {x ∈ S | x ≡ i (mod b)} for some

fixed b, compute the set of subset sums (up to u) for each Si , and combine them together. Since all
the elements in the sets Si are of the form i + kb for some k , each element can be represented by the
numbers k and i . Therefore, one can compute the subset sums of S ′i = {k | i + kb ∈ Si } maintaining
the number of elements participating in the sums, and then recover Si from it.
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Sketch of the Õ (u5/4) Time Algorithm. For this algorithm, we combine two new algorithms: One
that is fast when max(S ) is small, and one that is fast when min(S ) is large. In particular, when
max(S ) is small, we employ tools from number theory [21] to handle most instances, while for the

remaining ones we apply the Õ (min(σ ,
√
nu)) time algorithms mentioned above. When min(S )

is large, one can compute the subset sums quickly by ignoring most of the sums that exceed the
upper bound u.

Sketch of the Õ (min{
√
nm,m5/4}) Time Algorithm. Assumem is a prime number. Using known re-

sults from number theory, we show that for any �, one can partition the input set into Õ ( |S |/�) sub-
sets, such that every such subset is contained in an arithmetic progression of the form x , 2x , . . . , �x .
The subset sums for such a set can be quickly computed by dividing and later multiplying the
numbers by x . Then combine all these subset sums to get the result. Sadly,m is not always prime.
Fortunately, all the numbers that are relative prime tom can be handled in the same way as above.
For the remaining numbers, we use a recursive partition classifying each number, in a sieve-like
process, according to which prime factors it shares with m. In the resulting subproblems, all the
numbers are coprime to the moduli used, and as such the above algorithm can be used. Finally, the
algorithm combines the subset sums of the subproblems.

1.4 Paper Organization

In Section 2, we provide preliminaries, including a discussion on how to consider sets over mul-

tisets without loss of generality. In Section 3, we describe the Õ (σ ) and Õ (
√
nu) time algorithms

for finding all subset sums up to u. Section 4 covers the Õ (u5/4) algorithm. Section 5 describes

the Õ (min{
√
nm,m5/4}) time algorithm for the modular subset sum. In Section 6, we show how

one can recover the solutions; i.e., retrieve the elements summing to each sum. Finally, Section 7
presents the impact of the results on selected applications of the problem.

2 PRELIMINARIES

Let [x ..y] = {x ,x + 1, . . . ,y} denote the set of integers in the interval [x ,y]. Similarly, [x] = [0..x].
For a set X ⊆ N , denote its diameter by diam(X ) = max{|x − y | | x ,y ∈ X } = max(X ) −min(X ).
For two sets X ,Y ⊆ N , let X ⊕ Y = {

x + y �� x ∈ X and y ∈ Y }
, X ⊕u Y = (X ⊕ Y ) ∩ [u], X ⊗ Y ={

xy �� x , ∈ X ,y ∈ Y }
, and x ⊗ Y = {

xy �� y ∈ Y }
.

If W ,Z ⊆ N ×N , then W ⊕ Z = {(w1 + z1,w2 + z2) |w1,w2 ∈W and z1, z2 ∈ Z }, addition-
ally defineW ⊕u Z = (W ⊕ Z ) ∩ ([u] ×N ) = {(a,b) | a ≤ u, (a,b) ∈W ⊕ Z }, andW ⊕v Z = (W ⊕
Z ) ∩ (N × [v]) = {(a,b) | b ≤ v, (a,b) ∈W ⊕ Z }.

Given a set X ⊆ N , let ΣX =
∑

x ∈X x . We define the set of all subset sums of X by

S (X ) = { ΣY |Y ⊆ X }, (†)

and the set of all subset sums of X with their cardinalities by

SC (X ) = { (ΣY , |Y |) |Y ⊆ X }. (�)

Moreover, we provide some additional auxiliary definitions:

• The set of all subset sums of X up to u:

Su (X ) = S (X ) ∩ [u].

• The set of all subset sums of X up to u with their cardinalities:

SCu (X ) = SC (X ) ∩ ([u] ×N ).

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 40. Publication date: June 2019.
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• The set of all subset sums of X with cardinalities up to v :

SCv (X ) = SC (X ) ∩ (N × [v]).

Observe, that if X and Y are two disjoint sets, then S (X ∪ Y ) = S (X ) ⊕ S (Y ) and SC (X ∪ Y ) =
SC (X ) ⊕ SC (Y ). This simple observation also holds for the three supplementary definitions.

We note a simple observation that is used repeatedly in the analysis of running times.

Observation 1. Letд be a positive, superadditive (i.e.,д(x + y) ≥ д(x ) + д(y),∀x ,y) function. For

a function f (n,m) satisfying

f (n,m) = max
m1+m2=m

{
f
(n

2
,m1

)
+ f

(n
2
,m2

)
+ д(m)

}
,

we have that f (n,m) = O (д(m) logn).

Finally, in this work, we consider all computation under the word RAM model [20]. The word
size is at least logL, where L is the length of the input when all integers are expressed in unary.
All operations on a single word can be completed in constant time.

2.1 Useful Tools

The following well-known lemmas describe how to compute pairwise sums between sets in almost
linear time, in the size of their ranges, using FFT.

Lemma 2.1. Given two sets S , T ⊆ [u], one can compute S ⊕ T in O (u logu) time.

Proof. Let fS = fS (x ) =
∑

i ∈S x
i be the characteristic polynomial of S . Construct, in a similar

fashion, the polynomial fT (for the setT ) and let д = fS ∗ fT . Observe that for i ≤ u, the coefficient
of x i in д is nonzero if and only if i ∈ S ⊕ T . Using FFT, one can compute the polynomial д in
O (u logu) time, and extract S ⊕ T from it. �

Lemma 2.2. Given two sets of points S , T ⊆ [u] × [v], one can compute S ⊕ T in O (u v log(u v ))
time.

Proof. As in Lemma 2.1, let fS = fS (x ,y) =
∑

(i, j )∈S x
iy j and fT be the characteristic polyno-

mials of S andT , respectively, and let д = fS ∗ fT . For i ≤ u the coefficient of x iy j is nonzero if and
only if (i, j ) ∈ S ⊕ T . One can compute the polynomial д by a straightforward reduction to regular
FFT (see multidimensional FFT [6, Chapter 12.8]), in O (u v log(u v )) time, and extract S ⊕ T from
it. �

2.2 From Multisets to Sets

Here, we show that the case where the input is a multiset can be reduced to the case of a set. The
reduction idea is somewhat standard (see [33, Section 7.1.1]) and first appeared in Reference [37].
We present it here for completeness.

For an element s in a multiset S , its multiplicity in S is denoted by χS (s ). We denote by set(S )
the set of distinct elements appearing in the multiset S . The size of a multiset S is the number of
distinct elements in S (i.e., |set(S ) |). The cardinality of S , is card(S ) =

∑
s ∈S χS (s ). We denote that

a multiset S has all its elements in the interval [x ..y] simply by S ⊆ [x ..y].

Lemma 2.3. Given a multiset S of integers, and a number s ∈ S , with χS (s ) ≥ 3. Consider the

multiset S ′ resulting from removing two copies of s from S , and adding the number 2s to it. Then,

Su (S ) = Su (S ′). Observe that card(S ′) = card(S ) − 1.

Proof. Consider any multiset T ⊆ S . If T contains two or more copies of s , then replace two
copies by a single copy of 2s . The resulting subset is T ′ ⊆ S ′, and ΣT = ΣT ′ , establishing the
claim. �
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Lemma 2.4. Given a multiset S of integers in [u] of cardinality n with n′ unique values, one can

compute, in O (n′ log2 u) time, a multiset T , such that:

(1) Su (S ) = Su (T ),
(2) card(T ) ≤ card(S ),
(3) card(T ) = O (n′ logu), and

(4) each element in T has multiplicity at most two.

Proof. Copy the elements of S into a working multiset X . Maintain the elements of set(X ) in a
heap D, and letT initially be the empty set. In each iteration, extract the minimum element x from
the heap D. If x > u, then we stop.

If χX (x ) ≤ 2, then delete x from X and add x , with its appropriate multiplicity, to the output
multiset T , and continue to the next iteration.

If χX (x ) > 2, then delete x from X , add x to the output set T (with multiplicity one), insert the
number 2x into X with multiplicity m′ = �(χX (x ) − 1)/2� (updating also the heap D—by adding
2x if it is not already in it), and set χX (x ) ← χX (x ) − 2m′. The algorithm now continues to the
next iteration.

At any point in time, we have that Su (S ) = Su (X ∪T ), and every iteration takes O (logu) time,
and and as such overall, the running time is O (card(T ) logu), as each iteration increases card(T )
by at most two. Finally, notice that every element in T is of the form 2ix ,x ∈ S for some i , where
i ≤ logu, and thus card(T ) = O (n′ logu). �

Combining the above, we can now state the following lemma, which simplifies the upcoming
analysis:

Lemma 2.5. Given an algorithm that computes Su (S ) in T(n,u) = Ω(u log2 u) time, for any set
S ⊆ [u] with n elements, then one can compute Su (S ′) for any multiset S ′ ⊆ [u], with n′ distinct

elements, in O (T(n′ logu,u)) time.

Proof. First, from S , compute the multisetT as described in Lemma 2.4, inO (u log2 u) time. As
every element inT appears at most twice, partition it into two sets P andQ . ThenSu (T ) = Su (P ) ⊕u

Su (Q ), which is computed using Lemma 2.1, in O (u logu) time. This reduces all subset sums for
multisets of n′ distinct elements to two instances of all subset sums for sets of sizeO (n′ logu). �

This section shows there is little loss in generality and running time if the input is restricted to
sets instead of multisets. For simplicity of exposition, we assume the input is a set from here on.

3 SIMPLE IMPROVEMENTS TO FINDING Su (S )

In this section, we introduce the Õ (σ ) and Õ (
√
nu) time algorithms for subset sum (Figure 1). Both

are simple and succinct in terms of description and analysis.

First, we show how S (S ) can be solved in Õ (σ ) time:

Theorem 3.1. Given a set of n positive integers S with total sum σ , one can compute the set of all

subset sums S (S ) in O (σ logσ logn) time.

Proof. Partition S into two sets L,R of (roughly) equal cardinality, and compute recursively
L′ = S (L) and R′ = S (R). Next, compute S (S ) = L′ ⊕ R′ using Lemma 2.1. The recurrence for the
running time is f (n,σ ) = maxσ1+σ2=σ { f (n/2,σ1) + f (n/2,σ2) +O (σ logσ )}, and the solution to
this recurrence, by Observation 1, is O (σ logσ logn). �

The standard divide-and-conquer algorithm of Theorem 3.1 was already known in Refer-
ences [17, 49]. Here, we showed a better analysis. Note that the basic divide-and-conquer algorithm
without the FFT addition was known much earlier [29].
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Fig. 1. The Õ (
√
nu) time algorithm (SS_SmallInput) for the subset sum and its subroutine SSC_BoundSum:

the algorithm of Theorem 3.2 for computing SCu (S ) in Õ (
√
nu) time.

3.1 The Õ (un) Time Algorithm for SCu (S )

In this section, we give an algorithm (SSC_BoundSum of Figure 1) to answer subset sum problem

with cardinalities. This will be used as a subroutine for the Õ (
√
nu) time algorithm for finding

Su (S ).

Theorem 3.2. Given a set S ⊆ [u] of n elements, one can compute, in O (u n logn logu) time, the

set SCu (S ), which includes all subset sums of S up to u with their cardinalities.

Proof. Partition S into two sets S1 and S2 of roughly the same size. Compute SCu (S1)
and SCu (S2) recursively, and observe that both SCu (S1), SCu (S2) ⊆ ([u] × [ n

2 ]). Next, note
that SCu (S1) ⊕u SCu (S2) = SCu (S ). Applying Lemma 2.2 yields SCu (S ) in O (un logu) time.
The running time follows the recursive formula T (n) = 2 ·T (n/2) +O (u n logu), which is
O (u n logu logn), proving the claim. �

3.2 The Õ (
√
nu) Time Algorithm for Su (S )

First, we show how to compute the subset sums of elements in a congruence class quickly.

Lemma 3.3. Let �, b ∈ N with � < b. Given a set S ⊆ {x ∈ N | x ≡ � (mod b)} of size n, one can

compute Su (S ) in O ((u/b) n logn logu) time.

Proof. An element x ∈ S can be written as x = yb + �. Let Q = {y | yb + � ∈ S }. As such, for
any subset X = {y1b + �, . . . ,yjb + �} ⊆ S of size j, we have that

∑
x ∈X

x =

j∑
i=1

(yib + � ) = �
�

j∑
i=1

yi
�
�b + j�.

In particular, a pair (z, j ) ∈ SCu/b (Q ) corresponds to a set Y = {y1, . . . ,yj } ⊆ Q of size j, such
that

∑
i yi = z. The set Y in turn corresponds to the set X = {y1b + �, . . . ,yjb + �} ⊆ S . By the

above, the sum of the elements of X is zb + j�. As such, compute SCu/b (Q ), using the algorithm
of Theorem 3.2, and return { zb + j� | (z, j ) ∈ SCu/b (Q ) } = Su (S ) as the desired result. �

We are ready to introduce the new algorithm for finding Su (S ). First, partition the input into
sets by congruence. Next, compute the SCu/b (T ) for each such set T and combine the results
(SS_SmallInput of Figure 1).
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Theorem 3.4. Let S ⊆ [u] be a given set of n elements. One can compute the set Su (S ) in

O (
√
n lognu logu) time.

Proof. Partition S into b = �
√
n logn� sets S� = S ∩ {x ∈ N | x ≡ � (mod b)} of size n� , for

� ∈ [b − 1]. For each S� , compute the set of all subset sums Su (S� ) in O ((u/b) n� logn� logu)
time by Lemma 3.3. The time spent to compute all Su (S� ) is

∑
�∈[b−1] O ((u/b) n� logn� logu) =

O ((u/b) n logn logu). Combining Su (S0) ⊕u · · · ⊕u Su (Sb−1) takes O (b u logu) time. Hence, the

total running time is O ((u/b) n logn logu + b u logu) = O (
√
n lognu logu). �

4 SUBSET SUMS IN Õ (u5/4) TIME

In this section, we describe the Õ (u5/4) time algorithm. It is based on two subroutines: one that
performs well when the input set S has a small maximum and one that performs well when it has a
large minimum. The algorithm balances out the two subroutines to achieve the final running time.

4.1 The Õ (max(S )5/3) Algorithm for S(S )

We begin with the first subroutine. This algorithm runs fast when the maximum element of the
input set is small (SS_SmallMax of Figure 2). There are two cases. We first show how to handle

the case where the set S is dense. Intuitively, when S is dense, i.e., Ω̃(
√

max(S )), one can employ
number theoretical results to obtain a fast algorithm [21]. When the set is not dense, the sum of

the elements has to be small, and therefore one can use the Õ (σ ) time algorithm of the previous
section. Formally:

Definition 4.1 (Dense Set). A set S is called dense if it contains at least 1,000
√
M logM elements,

where M = max(S ).

Next, we state a lemma from Reference [21] that shows how the dense structure of a set S can
be exploited to compute a large portion of the set S (S ) fast.1

Lemma 4.2 (References [21, 22], see also Reference [39, Theorem C.4]). Given a dense set S
of n elements with M = max(S ), one can compute S (S ) ∩ (L,σ − L) in O (n + (M log(M )/n)2) time,

where σ is the sum of S and L = 100M2/n.

Lemma 4.3. Given a set S of n elements, one can compute S (S ) in O (M
5
3 log2 M ) time, where

M = max(S ).

Proof. Consider the following two cases:

• When n ≤ M2/3, compute S (S ) in O (σ logσ logn) = O (M5/3 log2 M ) time, using the algo-
rithm of Theorem 3.1.

• When n > M2/3, the input set S is dense. Let L = 100M2/n. Compute S (S ) ∩ (L,σ − L)
in O (n + (M log(M )/n)2) time, using Lemma 4.2. Since x ∈ S (S ) ⇐⇒ σ − x ∈ S (S ), it
suffices to compute S (S ) ∩ [L]. Computing S (S ) ∩ [L] via the algorithm of Theorem 3.4

takes O (
√
n logn L logL) = O (M2

√
logn log(M/n)/

√
n) time. The O ((M logM )2/

√
n) =

O (M5/3 log2 M ) running time dominates both. �

4.2 The Õ (u2/min(S )) Algorithm for Su (S )

The second subroutine computes the set of subset sums fast when the minimum element of the
input set is large (SS_LargeMin of Figure 2). As part of this algorithm, we first describe a subrou-
tine that computes the set of subset sums with cardinalities SCv (S ) fast when the diameter of the
input set S is small (SSC_BoundCard of Figure 2).

1 The same idea was used by Reference [39] in their approximation algorithm for the subset sum.

ACM Transactions on Algorithms, Vol. 15, No. 3, Article 40. Publication date: June 2019.



40:10 K. Koiliaris and C. Xu

Fig. 2. The Õ (u5/4) time algorithm (SS_LargeInput) along with the three new algorithms for the subset

sum introduced in this section used as subroutines. SS_SmallMax is the Õ (M5/3) time algorithm of Lemma

4.3, SS_LargeMin is the Õ (u2/μ ) time algorithm of Lemma 4.6, and SSC_BoundCard is the Õ (�v2) time

algorithm of Lemma 4.5. Note that SS_Dense is the algorithm of Lemma 4.2, which we use as black box.

Lemma 4.4. Given two disjoint sets A,B ⊆ [x ..x + �] and SCv (A), SCv (B), one can compute

SCv (A ∪ B) in O (�v2 log(�v )) time.

Proof. Consider the linear map f defined as (i, j ) �→ (i − xj, j ). Let X = f (SCv (A)) and Y =
f (SCv (B)). If (i, j ) ∈ SCv (A) ∪ SCv (B), then i = jx + y for y ∈ [0..�j]. Hence, X ,Y ⊆ [0..�v] ×
[0..v].
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Computing X ⊕v Y using the algorithm of Lemma 2.2 can be done in O (�v2 log(�v )) time. Let
Z = X ⊕v Y . The set SCv (A ∪ B) is then precisely f −1 (Z ), where f −1 is the inverse map of f ,
which is (a,b) �→ (a + xb,b). Applying f −1 to Z takes an additional O (�v2 log(�v )) time. �

Lemma 4.5. Given a set S ⊆ [x ..x + �] of n elements, one can compute SCv (S ) in

O (�v2 log(�v ) logn) time.

Proof. Compute the median of S , denoted by δ , in linear time. Next, partition S into two sets
S− = S ∩ [δ] and S+ = S \ S−. Compute recursively T − = SCv (S−) and T + = SCv (S+), and com-
bine them into SCv (S− ∪ S+) using Lemma 4.4. The recurrence for the running time is:

f (n, �) =max
�1+�2=�

{
f
(n

2
, �1

)
+ f

(n
2
, �2

)
+O

(
�v2 log(�v )

)}
,

which takes O (�v2 log(�v ) logn) time, by Observation 1. �

Lemma 4.6. Given a set S of n elements, one can compute Su (S ) in O (u2/μ log2 u) time, where

μ = min(S ).

Proof. We first partition S into S1, . . . , Sk as follows: Si = S ∩ [μi−1..μi − 1], where μi = �2iμ�.
The resulting partition is composed of k = O (logu) sets S1, . . . , Sk , and can be computed in
O (n logn) time. Indeed, sort the numbers in S and add them into the sets, in the obvious
fashion.

For each Si , we will compute Ti = Su (Si ). The idea is as follows: The sets Si contain num-
bers at least as large as μi−1. Moreover, each set Si is contained in an interval of length �i =
μi − μi−1 = μi−1. Apply Lemma 4.5 by setting v = �u/μi−1� to get T ′i = SC

v (Si ). This can be done

inO ((u/μi−1)2�i log(�iu/μi−1) logni ) = O ( u2

μi−1
log2 u) time. LetTi = {x | (x ,y) ∈ T ′i } ∩ [u], and ob-

serve thatTi = Su (Si ). Summing this, for i = 1, . . . ,k , results inO ( u2

μ
log2 u) running time. Finally,

combining all the Ti to obtain Su (S ) takes an additional O (u log2 u) time. �

4.3 The Õ (u5/4) Time Algorithm for Su (S )

Combining the above results yields a Õ (u5/4) time algorithm with straightforward description; all
that remains is deciding when to apply which algorithm (SS_LargeInput of Figure 2).

Theorem 4.7. Let S ⊆ [u] be a set of n elements. Computing the set of all subset sums Su (S ), takes

O (u5/4 log2 u) time.

Proof. Fix an 0 < r ≤ u. Partition S into S− = { s ∈ S | s < r }, and S+ = S \ S−. ComputeSu (S+)
in O (u2/r log2 u) time via the algorithm of Lemma 4.6 and Su (S−) in O (r 5/3 log2 r ) time using the
algorithm of Lemma 4.3. Compute Su (S ) = Su (S−) ⊕u Su (S+) inO (u logu) time using Lemma 2.1.
The running time is O (r 5/3 log2 r + u2 log2 u/r + u). Setting r = u3/4 proves the theorem. �

5 THE MODULAR SUBSET SUM

In this section, we demonstrate how to extend some of the previous ideas to work for the modular
subset sum problem, where all additions take place modulo m. Previous algorithms could ignore
many sums that fell outside of [u]; the challenge here is that this can no longer be done, since these
sums get “wrapped back in” and as such must be accounted for.

For any positive integerm, the set of integers modulom with the operation of addition forms a
finite groupZm = {0, 1, . . . ,m − 1} of orderm. We denote byZ∗m = {x ∈ Zm | gcd(x ,m) = 1} the set

of units of Zm (also known as the multiplicative group of integers modulom) and by φ (m) = |Z∗m |
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Fig. 3. The O (min{
√
nm,m5/4} log2m) time algorithm (SS_Mod) for the modular subset sum, along with its

subroutine SS_ModUnit: the algorithm of Lemma 5.5 for computing the set of subset sums when input is a

subset of Z∗m in O
(
min

{√
nm,m5/4

}
logm logn

)
time. Here, SetCover(S,T ) is the greedy algorithm that

returns a sequence of sets in T that covers S .

Euler’s totient function capturing the number of units of Zm . Two integers x ,y with gcd(x ,y) = 1
are called coprime (or relatively prime). We call the finite arithmetic progression

x ⊗ [�] = {0,x , 2x , . . . , �x }

a segment of x of length �. Finally, let S/x = {s/x | s ∈ S and x | s} and S�/x = {s ∈ S | x � s}, where
x | s and x � s denote that “s divides q” and “s does not divide q,” respectively.

5.1 Subset Sums When All Numbers Are Coprime tom

First, we consider the special case of computing S (S ) modulo m when all the numbers in S are
coprime to m (SS_ModUnit of Figure 3). The idea is to partition S into a small number of short
segments, compute the subset sums of each segment, and combine them. We will use properties
of Z∗m to show that one can indeed find such a covering.

Lemma 5.1. For a set S ⊆ Zm of size n, such that S ⊆ x ⊗ [�], the set S (S ) can be computed in

O (n� log(n�) logn) time.
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Proof. All elements of x ⊗ [�] are multiples of x , and thus S ′ = S/x ⊆ [�] is a well-defined set
of integers. Next, compute S (S ′) in O (n� log(n�) logn) time using the algorithm of Theorem 3.1
(over the integers). Finally, compute the set {σx (mod m) | σ ∈ S (S ′)} = S (S ) in linear time. �

Lemma 5.2. Let S ⊆ Zm be a set of size n covered by segments x1 ⊗ [�], . . . ,xk ⊗ [�], formally

S ⊆ ⋃k
i=1 xi ⊗ [�], then the set S (S ) can be computed in O (km logm + n� log(n�) logn) time.

Proof. Partition, inO (kn) time, the elements of S into k sets S1, . . . , Sk , such that Si ⊆ xi ⊗ [�],
for i ∈ [k]. Next, compute the subset sumsTi = S (Si ) using the algorithm of Lemma 5.1 for i ∈ [k].
Then, compute T1 ⊕ T2 ⊕ . . . ⊕ Tk = S (S ) by k − 1 applications of Lemma 2.1. The resulting run-
ning time is O ((k − 1)m logm +

∑
i |Si |� log( |Si |�) log |Si |) = O (km logm + n� log(n�) logn). �

Next, we show how to acquire such a covering, via an application of set cover. The set cover
problem takes as input a collection of sets in a universe, and outputs a small number of sets that
cover the universe. Covering S ⊆ Z∗m by segments can be framed as a covering problem for the
universe S with sets {(x ⊗ [�]) ∩ S | x ∈ Z∗m }. The textbook greedy set cover algorithm finds an
approximate cover in linear time [13, Section 35.3].

We state the following lemma, which stems from the proof of Theorem 3.1 and Remark 3.4 in
Reference [7].

Lemma 5.3 (Reference [7]). LetG be a group ofm elements and letA ⊆ G be a subset ofk elements.

Define a set cover instance with universe S ⊆ G and sets T = {S ∩ (x ⊕ A) | x ∈ G}. Then, the greedy

set cover algorithm yields a solution B = {S ∩ (b ⊕ A) | b ∈ B} ⊆ T , where |B| = |B | ≤ m
k

(log(k +
1)).

We apply the above lemma to algorithmically produce a set of segments that covers a set S ⊆ Z∗m .

Lemma 5.4. Let S ⊆ Z∗m be a set of size n. There exists a constant c > 0 such that for any � ≥
2

c ln m

ln ln m there is a collection L of O ( m ln �
� ) segments, each of length �, such that S ⊆ ⋃

x ∈L x ⊗ [�].
Furthermore, such a collection can be computed in O ((n + logm) �) time.

Proof. There are two steps in the proof. First, we need to bound k = |Z∗m ∩ [�]| with �. Recall
that |Z∗m | = ϕ (m). Let θ (m) be the number of distinct square-free divisors of m. It is known that

k ≥ � ϕ (m)
m
− c0θ (m) for some c0 [50, Equation (1.4)]. Form ≥ 3, there are constants c1, c2 > 0 such

that θ (m) ≤ 2
c1 ln m

ln ln m [46] and ϕ (m) ≥ c2
m

ln ln m
[27, Theorem 328]. Hence, there is some constant

c > 0 for which the following holds:

c0θ (m) ≤ 2
c1 ln m

ln ln m ≤ 1

2
2

c ln m

ln ln m

c2

ln lnm
≤ 1

2
�
ϕ (m)

m
.

Therefore, have k = Ω(�
ϕ (m)

m
).

Second, we need to show the running time. Note that Z∗m is the multiplicative group of integers

modulo m. By Lemma 5.3, there exists a B ⊆ U of size
ϕ (m)

k
(1 + lnk ) = O ( m

� log �) such that S ⊆
A ⊗ B and can be found with the greedy set cover algorithm over T = {(x ⊗ [�]) ∩ S | x ∈ Z∗m }.
So, we need to show that the sets in T can be computed quickly. To implement this efficiently, in
the preprocessing stage, compute the modular inverses of every element in [�] using the extended
Euclidean algorithm in O (� logm) time [13, Section 31.2]. Then, for every b ∈ S and every i ∈ A,
find the unique x for which ix ≡ b (mod m) using the inverse i−1 in O (1) time. This indicates
that b is in (x ⊗ [�]) ∩ S . Hence, the greedy algorithm computes (x ⊗ [�]) ∩ S , for all x , in time
O (n� + � logm). �

Putting everything together completes the algorithm.
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Lemma 5.5. Let S ⊆ Z∗m be a set of size n, computing the set of all subset sums S (S ) takes

O (min{
√
nm,m5/4} logm logn) time.

Proof. If n < 2
√
m, then apply the algorithm of Lemma 5.4 for � =m/

√
n ≥ m1/2. This re-

sults in a cover of S by O ( m
� logn) segments (each of length �), which takes O ((n + logm) �) =

O (
√
nm logm) time. Next, compute S (S ) in O (n� log(n�) logn) = O (

√
nm logm logn) time using

the algorithm of Lemma 5.2. Since n = O (
√
m), we have the promised running time.

If |S | ≥ 2
√
m, then S (S ) = Zm [26, Theorem 1.1]. As such, the case where n = |S | ≥ 2

√
m is

immediate. �

5.2 The General Case

In this section, we show how to tackle the general case when S is any subset of Zm (SS_Mod of
Figure 3).

5.2.1 Algorithm Description. Parametrize the input instance via a triple (Γ, μ,τ ) as follows: Γ is
the input set, μ is its modulus, and τ an auxiliary parameter such that Γ only contains elements x
for which gcd(x , μ ) | τ . For such an instance (Γ, μ,τ ), the algorithm computes the set of all subset
sums of Γ modulo μ. The initial instance would then be (S,m,m).

Let q be the smallest prime factor of τ , referred to as pivot. Compute the sets Γ/q and Γ�/q from Γ.
Recursively compute the (partial) subset sums S (Γ/q) and S (Γ�/q), of the instances (Γ/q, μ/q,τ/q)
and (Γ�/q, μ,τ/q), respectively. Then compute the set of all subset sumsS (Γ) = {qx | x ∈ S (Γ/q)} ⊕
S (Γ�/q) by combining them together using Lemma 2.1. At the bottom of the recursion, when τ = 1,
for each set compute its subset sums, using the algorithm of Lemma 5.5.

5.2.2 Handling Multiplicities. During the execution of the algorithm there is a natural tree
formed by the recursion. Consider an instance (Γ, μ,τ ) such that the pivot q divides τ (and μ)
with multiplicity r . The top-level recursion would generate instances with sets Γ/q and Γ�/q. In
the next level, Γ/q is partitioned into Γ/q2 and (Γ/q)�/q. On the other side of the recursion, Γ�/q
gets partitioned (naively) into (Γ�/q)/q (which is an empty set) and (Γ�/q)�/q = Γ�/q. As such, this is
a superfluous step and can be skipped. Hence, compressing the r levels of the recursion for this
instance results in r + 1 instances

(Γ/q0)�/q, (Γ/q1)�/q, . . . , (Γ/qr−1)�/q, (Γ/qr )�/q.

The total size of these sets is equal to the size of Γ. In particular, compress this subtree into a single
level of recursion with the original call having r + 1 children. At each such level of the tree, label
the edges by 0, 1, 2, . . . , r , based on the multiplicity of the divisor of the resulting (node) instance
(i.e., an edge between instance sets Γ and (Γ/q2)�/q would be labeled by “2”).

5.2.3 Analysis. The recursion tree formed by the execution of the algorithm has a level for
each of the k = O (logm/ log logm) distinct prime factors of m [46]—assume the root level is the
0th level.

Lemma 5.6. Consider running the algorithm on input (S,m,m). Then the values of the moduli at

the leaves of the recursion tree are unique, and are precisely the divisors ofm.

Proof. Letm =
∏k

i=1 q
ri

i be the prime factorization ofm, whereqi < qi+1 for all 1 ≤ i < k . Then
every vector x = (x1, . . . ,xk ), with 0 ≤ xi ≤ ri , defines a path from the root to a leaf of modulus

m/
∏k

i=1 q
xi

i in the natural way: Starting at the root, at each level of the tree follow the edge la-
beled xi . If for two vectors x and y there is an i ∈ [k] such that xi � yi , then the two paths they
define will be different (starting at the ith level). And, by the unique factorization of integers, the
values of the moduli at the two leaves will also be different. Finally, note that every divisor of m,
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∏k
i=1 q

ρi

i with 0 ≤ ρi ≤ ri , occurs as a modulus of a leaf, and can be reached by following the path
(r1 − ρ1, . . . , rk − ρk ) down the tree. �

Theorem 5.7. Let S ⊆ Zm be a set of size n, computing the set of all subset sums S (S ) takes

O (min{
√
nm,m5/4} log2m) time.

Proof. The algorithm is described in Section 5.2.1 and shown in Figure 3 (SS_Mod). We break
down the running time analysis into two parts: the running time at the leaves, and the running
time at internal nodes.

Let d be the number of leaves of the recursion tree. Arrange them so the modulus of the ith leaf,
μi , is the ith largest divisor ofm. Note that μi is at mostm/i for all i ∈ [1..d]. Using Lemma 5.5, the
running time is bounded by

O �
�

d∑
i=1

min
{√

ni μi , μ
5/4
i

}
logni log μi

�
� = O

�
�logm logn

d∑
i=1

min

{
√
ni

m

i
,
(m
i

)5/4
}�
� .

Using Cauchy-Schwarz inequality, the first sum of the min is bounded by

m
d∑

i=1

√
ni

i
≤ m

√√√�
�

d∑
i=1

(√
ni

)2�
�
�
�

d∑
i=1

1

i2
�
� = O

(√
nm

)
,

while the second is bounded by O (m5/4). Putting it all together, the total work done at the leaves
is O (min{

√
nm,m5/4} logm logn).

Next, consider an internal node of modulus μ, pivotq and r + 1 children. The algorithm combines
these instances by applying r times Lemma 2.1. The total running time necessary for this process
is described next. As the moduli of the instances decrease geometrically, pair up the two smallest
instances, combine them together, and in turn combine the result with the next (third) smallest
instance, and so on. This yields a running time of

O �
�

r∑
i=0

μ

qi
log

μ

qi
�
� = O (μ log μ ).

At the leaf level, by Lemma 5.6, the sum of the moduli
∑d

i=1 μi is known to be O (m log logm) [27,
Theorem 323]. As such, the sum of the moduli of all internal nodes is bounded byO (km log logm) =
O (m logm), as the sum of each level is bounded by the sum at the leaf level, and there are k levels.
As each internal node, with modulus μ, takes O (μ log μ ) time and x logx is a convex function, the
total running time spent on all internal nodes is O (m logm log(m logm)) = O (m log2m).

Aggregating everything together, the complete running time of the algorithm is bounded by
O (min{

√
nm,m5/4} log2m), implying the theorem. �

6 RECOVERING THE SOLUTION

Given sets X and Y , a number x is a witness for i ∈ X ⊕ Y , if x ∈ X and i − x ∈ Y . A function
w : X ⊕ Y → X is a witness function, if w (i ) is a witness of i .

If one can find a witness function for each X ⊕ Y computation of the algorithm, then we can
trace back the recursion tree and reconstruct the subset that sums up to t inO (n) time. The problem
of finding a witness function quickly can be reduced to the reconstruction problem defined next.

In the reconstruction problem, there are hidden sets S1, . . . , Sn ⊆ [m] , and we have two oracles
Size and Sum that take as input a query set Q .

• Size(Q ) returns the size of each intersection:(
|S1 ∩Q |, |S2 ∩Q |, . . . , |Sn ∩Q |

)
.
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• Sum(Q ) returns the sum of elements in each intersection:

�

�

∑
s ∈S1∩Q

s,
∑

s ∈S2∩Q

s, . . . ,
∑

s ∈Sn∩Q

s��� .
The reconstruction problem asks to find n values x1, . . . ,xn such that for all i , if Si is non-empty,

xi ∈ Si . Let f be the running time of calling the oracles and assume f = Ω(m + n), then is it known
that one can find x1, . . . ,xn in O ( f logn polylogm) time [3].

IfX ,Y ⊆ [u], then finding the witness ofX ⊕ Y is just a reconstruction problem. Here, the hidden
sets areW0, . . . ,W2u ⊆ [2u], whereWi = {x | x + y = i and x ∈ X ,y ∈ Y } is the set of witnesses of
i . Next, define the polynomials χQ (x ) =

∑
i ∈Q x i and IQ (x ) =

∑
i ∈Q ix i . The coefficient for x i in

χQ χY is |Wi ∩Q | and in IQ χY is
∑

s ∈Wi∩Q s , which are precisely the ith coordinate of Size(Q ) and
Sum(Q ), respectively. Hence, the oracles can be implemented using polynomial multiplication, in

Õ (u) time per call. This yields an Õ (u) time deterministic algorithm to compute X ⊕ Y with its
witness function. The exact same argument also shows we can compute X ⊕ Y , where X × Y ⊆
[u] × [v] with a witness function in Õ (uv ) time.

Hence, with a polylogarithmic slowdown, we can find a witness function every time we perform
a ⊕ operation, thus effectively maintaining which subsets sum up to which sum.

7 APPLICATIONS AND EXTENSIONS

Since every algorithm that uses subset sum as a subroutine can benefit from the new algorithm,
we only highlight certain selected applications and some interesting extensions. Most of these
applications are derived directly from Theorem 3.1. Finally, we highlight an additional result with
applications in error correction codes.

7.1 Bottleneck Graph Partition

LetG = (V ,E) be a graph with n verticesm edges and let w : E → R+ be a weight function on the
edges. The bottleneck graph partition problem is to split the vertices into two equal-sized sets such
that the value of the bottleneck (maximum-weight) edge, over all edges across the cut, is mini-
mized. This is the simplest example of a graph partition problem with cardinality constraints. The
standard divide-and-conquer algorithm reduces this problem to solvingO (logn) subset sum prob-
lems: Pick a weight, delete all edges with smaller weight, and decide if there exists an arrangement
of components that satisfies the size requirement [28]. The integers being summed are the various
sizes of the components, the target value is n/2, and the sum of all inputs is n. Previously, using the
O (σ 3/2) algorithm by Klinz and Woeginger, the best known running time was O (m + n3/2 logn)
[34]. Using Theorem 3.1, this is improved to O (m) + Õ (n) time.

7.2 Counting and Power Index

Here, we show that the standard divide-and-conquer algorithm can also answer the counting ver-
sion of all subset sums. Namely, computing the function Nu,S (x ): the number of subsets of S that
sum up to x , where x ≤ u.

For two functions f ,д : X → Y , define f � д : X → Y to be

( f � д) (x ) =
∑
t ∈X

f (x )д(x − t ).

Corollary 7.1. Given two functions f ,д : [u]→ [b], one can compute f � д in O (u logu logb)
time.
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Proof. This is an immediate extension of Lemma 2.1 using the fact that multiplication of two
degree u polynomials, with coefficients at most b, takes O (u logu logb) time [47]. �

Theorem 7.2. Let S be a set of n positive integers. One can compute the function Nu,S in

O (nu logu logn) time.

Proof. Partition S into two (roughly) equally sized sets S1 and S2. Compute Nu,S1 and Nu,S2

recursively and combine them into Nu,S = Nu,S1 � Nu,S1 using Corollary 7.1, inO (u logu log 2n ) =
O (nu logu) time. The final running time is then given by Observation 1. �

7.2.1 Power Indices. The Banzhaf index of a set S of n voters with cutoff u can be recovered
from Nu,S in linear time. Theorem 7.2 yields an algorithm for computing the Banzhaf index in

Õ (nu) time. Previous dynamic programming algorithms take O (nu) arithmetic operations, which
translates to O (n2u) running time [54]. Similar speed-ups (of roughly a factor n) can be obtained
for the Shapley-Shubik index.

7.3 Covering Zm by Segments

The results of Section 5, along with the analysis of the recursion tree, conclude the following
corollary on covering Zm with a small number of segments. In a study on error correction codes,

Chen et al. [12] showed that one can cover Zm withm1+o (1)/
√
� segments of length �. In this work

this is improved tom1+o (1)/�, an improvement factor of
√
�.

For an integer x , let σ0 (x ) denote the number of divisors of x and σ1 (x ) the sum of its divisors. It

is known that σ1 (x ) = O (m log logm) =m1+o (1) and σ0 (x ) =mo (1) [27].

Corollary 7.3. There exists a constant c , for all m ≥ 3 and � such that 2
c ln m

ln ln m ≤ � ≤ m, one can

cover Zm with O ((σ1 (m) lnm)/�) + σ0 (m) =m1+o (1)/� segments of length �. Furthermore, such a

cover can be computed in O (m�) time.

Proof. Let Sm/d = {x/(m/d ) | x ∈ Zm and gcd(x ,m) =m/d }, for all d | m. Note that Sm/d =

Z∗
d

, hence by Lemma 5.4, each Sm/d has a cover of O ((d ln �)/�) = O ((d lnm)/�) segments. Next,
“lift” the segments of each set Sm/d back up to Zm (by multiplying by m/d), forming a cover of
Zm . The number of segments in the final cover is bounded by

∑
d |m
� ≤ d

O

(
d

�
lnm

)
+

∑
d |m
� > d

1 ≤ O

(
σ1 (m) lnm

�

)
+ σ0 (m).

The time to cover each Sm/d , by Lemma 5.4, is O ((n + logm) �) = O ((φ (d ) + logd )�), since there
areφ (d ) elements in Sm/d , and Sm/d ⊆ Zd . Also,φ (d ) dominates logd , asO (φ (d )) = Ω(d/ log logd )
[27, Theorem 328]; therefore, the running time simplifies to O (φ (d )�). Summing over all Sm/d , we
have ∑

d |m
O (φ (d )�) = O �


��
∑
d |m

φ (d )��� = O (m�) ,

since
∑

d |m φ (d ) =m [27, Sec 16.2], implying the corollary. �

If � < 2
c ln m

ln ln m , then � =mo (1) . The corollary above then shows that for all �, there is a cover of
Zm withm1+o (1)/� segments of length �. Our analysis only employed elementary number theory;
more involved techniques, such as the ones found in sieve theory, might yield better bounds.
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