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Single parameter auctions

For the single-item case, we saw that the Vickrey auction is
ideal

We would like to achieve the same properties for any other
type of auction

e truthfulness and individual rationality [incentive guarantees]

e welfare maximization [economic performance guarantees]

* implementation in polynomial time [computational performance
guarantees]

Can we achieve all 3 properties for any single-parameter
environment?




Knapsack auctions

We will see an illustration for knapsack auctions
k identical items for sale

Each bidder i has a publicly known demand for w; items

- Inelastic demand

- The mechanism should either give w, items to the bidder or should
not give him anything

Each bidder i submits a bid b, for his value per unit
Real value per unit = v,

Assume the demands (w,, w,, ..., w,_) are known to the
mechanism

- Say bidders have no incentive to lie about them

Only private information to bidderiis v,




Knapsack auctions

Alternative view of knapsack auctions
*The auctioneer has a resource of total capacity k (a knapsack)
*Each bidder requires size w,, if he is served
*Each bidder has a value v, w,, if he is served

°The auctioneer needs to select a subset of bidders to serve so
as not to exceed the capacity k

Feasible allocations:
* (Xy Xy, -, X, ) With x. € {0, 1}, and 2, wix; <=k

e Just like the feasible solutions of a knapsack problem




Knapsack auctions

Example
*Resource = the half-time break in the Champions League final
*Capacity k = total length of the break

*Each bidder corresponds to a company who wants to be
advertised during the break

*The size w;, is the duration of the ad of bidder i

°The auctioneer needs to select a subset of bidders as winners
and present their ads without exceeding the time capacity k




Knapsack auctions

* Letb=(b,b,, ..., n ) bethe biding vector
* Need to decide the allocation and payment rule

* For the allocation rule:

* Think of maximizing the social welfare

* Then we have precisely the 0-1 Knapsack problem!

max 2 bx.
S.t.
2 WX <=k

x. € {0, 1}, fori=1,...,n




Knapsack auctions

Claim: The allocation rule that maximizes the social welfare is
monotone

*Consider a winner and see what can happen if he increases
his bid

Hence, we can apply Myerson’s lemma

How many jumps can we have for the allocation of a single
player?

*At most one, a player can jump from being a loser (x, = 0) to
being a winner (x, = 1)




Myerson’s lemma and knapsack auctions

*The jump for a winner i happens at i’s critical bid: the minimum
he could bid and still be a winner, also known as threshold bid

*Generalization of the payment in Vickrey auction

%(2] Final mechanism:

*Solve the knapsack problem and
find an optimal solution

*Give to each winner i, the

1 requested number of items w,
*Charge the winners their critical
bid




Myerson’s lemma and knapsack
auctions

Does this mechanism achieve the desirable properties we
wanted?

e truthfulness [YES]

e welfare maximization [YES]

* implementation in polynomial time [?]
*Knapsack is an NP-complete problem
*The properties can be enforced only for special cases where
Knapsack is easy

* If highest bid or highest demand is polynomial in n (by dynamic
programming)

* |f weights form a super-increasing sequence
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Algorithmic Mechanism Design

The requirement for low complexity usually comes in
conflict with the other criteria

Goal of algorithmic mechanism design: explore the trade-
offs between the 3 main properties (or any other properties
that we may require in a given setting)

* Truthfulness
* welfare maximization
* implementation in polynomial time

Approach: relax one of the criteria and see if we can achieve
the others

For Knapsack and in general whenever welfare
maximization is NP-complete: resort to approximation
algorithms 11




Knapsack auctions

Goal for Knapsack:
*Find an approximation algorithm for the social welfare
*Prove that it is monotone

Recall:

Definition: An algorithm A, for a maximization problem, achieves
an approximation factor of y (y < 1), if for every instance | of the
problem, the solution returned by A satisfies:

SOL(1) >y OPT(1)

Where OPT(l) is the value of the optimal solution for instance |

12




Knapsack auctions

There are several heuristics and approximation algorithms
for Knapsack, but not all of them are monotone

A greedy Y:-approximation:
* For each bidder i, we care to evaluate the quantity b./w.

* Intuitively, we prefer bidders with small size/demand and large
value

Step 1: Sort and re-index the bidders so that
b,/w;2b,/w,2...2b /w,

Step 2: Pick bidders in that order until the first time that

adding someone exceeds the knapsack capacity

Step 3: Return either the previous solution, or just the
highest bidder if he achieves higher social welfare on his

own
13




Knapsack auctions

Why do we need the last step?

Maybe there is a bidder with a very high value, but with a
large demand as well

The algorithm may not select this bidder in the first steps

Step 3 ensures we do not miss out such highly-valued
bidders

Claim: This algorithm is monotone

Theorem: Using Myerson’s lemma, we can have a truthful
polynomial time mechanism, that produces at least 50% of
the optimal social welfare

14




Knapsack auctions

Going further
*Knapsack also admits an FPTAS (Fully Polynomial Time

Approximation Scheme)
* We can have a (1- € )-approximation for any constant &€ >0
[Ibarra, Kim '75]
* But this is not a monotone algorithm

*[Briest, Krysta, Voecking "05]: A truthful FPTAS for Knapsack

*Conclusion: For a knapsack auction and any € >0, we have a
truthful mechanism that produces at least (1 — & )-fraction of
the optimal social welfare and runs in time polynomial in n and

1/ &
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General Approach

Suppose we have a single-parameter auction where the social
welfare maximization problem is NP-hard

» Check if any of the known approximation algorithms for the
problem is monotone (usually not)

»If not, then try to tweak it so as to make it monotone
(sometimes feasible)

»Or design a new approximation algorithm that is monotone
(hopefully without worsening the approximation guarantee)

16




Single-minded bidders

A single-paramerer auction with non-identical items

*The auctioneer has a set M of items for sale

*Each bidder i is interested in acquiring a specific subset of items,
S, M (known to the mechanism)

 If the bidder does not obtain S, (or a superset of it), his value is 0

*Each bidder submits a bid b, for his value if he obtains the set

* Motivated by certain spectrum auctions

 Feasible allocations: the auctioneer needs to select winners
who do not have overlapping sets

17




Single-minded bidders

Examples

) g ) g L4

S ={a,b} S, =1{b,d} S, ={a,c,d)

* Inthe example above, the auctioneer can accept only 1
bidder as a winner
* Inthe example below, the auctioneer can accept up to 2

bidders as winners

v v v W

S, ={a,b} S,={c,d} S;=1a,c} S,={b,d}
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Single-minded bidders

Social welfare maximization:

*Given the bids of the players, select a set of bidders with non-
overlapping subsets, so as to maximize the sum of their bids

|t contains the SET PACKING problem, hence NP-hard
*Actually it gets even worse w.r.t. approximation

Theorem [Sandholm "99]: Under certain complexity theory
assumptions, we cannot have an algorithm with approximation
factor better than 1/sqrt(m)

Q: Can we have a 1/sgrt(m)-approximation?

19




Single-minded bidders

[Lehmann, O’ Callaghan, Shoham ‘01]: O

e Order the bidders in decreasing order of b./sqrt(s;)
* Accept each bidder in this order unless overlapping
with previously accepted bidders
* Payment i: largest bid b; for set S; with nonempty
intersection with S, .

eThis algorithm achieves
e 1/sgrt(m)-approximation, where m = |M|
* 1/d-approximation, where d = max; s
* Monotonicity and truthfulness.

Final conclusion: truthful polynomial time mechanism with
the best possible approximation to the social welfare

20




Single-minded bidders

* Order the bidders in decreasing order of b,/sqrt(s,)®
e Accept each bidder in this order unless overlapping
with previously accepted bidders

e A algorithm’s solution (set of indices accepted by Greedy)
*0 optimal solution (set of indices accepted by OPT)

Wlog. assume that O N A = ().
Partition O into O;, 1 € A, s.t. j € O; if j € O and S; N S; # 0.

Z v < Vi Z V/5j Greedy property
JEO; \/7 J€0;
< Z Rvaen Cauchy-Schwarz ineq.
5i J€0;
Uy
< \/S,I\/a\/.sj |0;| < s; and Zjeoi s;i <m

< v;/m 21




Quick Summary of Previous Lecture

Single parameter bidders: private information of bidder i is single value v,
expressed by bid b,

Myerson’s Lemma: truthful mechanism iff monotone allocation,
payments are uniguely determined (and virtually always easy to
compute).

« 2" price / Vickrey auction is the only truthful single-item auction.

 Optimal is always monotone: if allocation problem is easy, we also
get computational efficiency.

* If allocation problem is hard, we seek monotone poly-time
approximation algorithms.

e (1-1/k)-approximation in time O(n**') and FPTAS for Knapsack (with
demand known).

* Single-minded bidders / set packing: Greedy wrt b./sqrt(s) is
monotone and O(sqrt(m))-approximation (best possible

approximation in polynomial time). -




Multi-dimensional Bidders /
Combinatorial Auctions

23




Set of players
N={1, 2, .., n}

The model

Set of indivisible goods
M={1, 2, ..., m}

24




Combinatorial Auctions

Any auction with multiple items for sale

The players may be allowed to express interest / bids on
various combinations of goods

In practice very active field within the last 10-15 years
e Spectrum licences
 The FCC incentive auction:

e https://www.fcc.gov/about-fcc/fcc-
initiatives/incentive-auctions

* Transportation routes

* Logistics

25




Combinatorial auctions

In practice, it seems economically more efficient and
profitable to sell the items together than have a separate
auction for each good

Main challenges:

e Algorithmic: How shall we design the allocation rule
(especially if we have many overlaps in what the
players want the most)?

* Game-theoretic: Can we generalize Myerson’s lemma
to get truthful mechanisms?

26




Valuation functions

So far we studied settings where a single parameter v,
determined all the information we needed for a player

Most general scenario: consider that each player has a
valuation function defined for every subset of the items

v,: P(M) > R
* where P(M) = powerset of M (all subsets of M)

* ForeverySc M,

- v,(S) = utility derived for player i if he acquires set S

= maximum amount willing to pay for acquiring S
We always assume monotonicity (“free-disposal”):
forall TS, vi(T) £ vi(S).

27




Examples of valuation functions

Additive valuation functions

*For every SC M, v(S) = 2 jes Vi
* where v;; = utility of acquiring item |

*Hence, the function can be completely determined by
specifying the vector (v.,, v, ..., Vi,

*m parameters for each bidder
*In such cases, the goods can be auctioned independently:

* The value of an item is not affected by other items
that a bidder may have already obtained

28




Examples of valuation functions

In practice, the items may be interrelated with each other
and additive valuations are not appropriate

The value they add to a player may depend on the other
items that the player has

The items may exhibit

* Complementarity: some items may be valuable only when they
are sold together with other items (e.g. left and right shoe)

* Substitutability: some items may be of similar type and should
not be sold together to the same player (e.g. 2 cars with the
same features)

29




Examples of valuation functions

Subadditive functions

*For any 2 disjoint subsetsSc M, T < M,
Vi(SUT) L v(S) + vi(T)

*In this case, we have substitutability among the goods

*They are also called complement-free functions (since we
do not have complementarity)

30




Value

Examples of valuation functions

Submodular functions

For any 2 subsets S, T, withScTc M, and foreveryjg T

O wTu-v(m SW

“ R Decreasing marginal values

Discrete analog of
concave functions

>
Number of bottles

31




Examples of valuation functions

Submodular functions form a special class of subadditive
valuations

Hence, they also do not exhibit complementarity
They play a key role in micro-economic theory

Expressing the fact that utility gets “saturated” as we
keep allocating substitutes to the same player

32




Examples of valuation functions

Symmetric submodular
e Special case of submodular functions, where all
goods are identical

* Hence, the final utility depends only on how many items the
player receives

* Applicable for multi-unit auctions

* E.g., auctions for government bonds fall under this framework

* For kidentical items, such functions can be represented
by a vector of k marginal values

" (m(1), m(2),..., m(k)) with m.(j) 2 m.(j+1)

* Where m(j) = additional utility to the player for obtaining the j-th
unit, if the player already has j-1 units

33




Examples of valuation functions

Superadditive functions

*For any 2 disjoint subsetsSc M, T < M,
Vi(SUT) 2 v(S) + v(T)

*In this case, we have complementarity

*For example, the items may not have any value if they are
sold on their own, but only when sold in bundles with other
goods

* Single-minded bidders fall under this class

34




Relations between different classes
of valuation functions

General

Subadditive

35




Social Welfare Maximization

Need to define social welfare in this more general setting
Definition: Let S =(S,, S,, ..., S,) be an allocation of the items to
the players, where S, = subset assigned to player i. Then the

social welfare derived from S is
SW(S) = 2, vi(S)

The SWM problem (Social Welfare Maximization):
Input: The valuation functions of the players (how?)
Output: Find an allocation $* = (S, S,, ..., S,) that produces
the highest possible social welfare:

SW(S®) 2 SW(S) for any other allocation S

36




Integer Programming Formulation

ma}{; Ii:si’i(S) min Z p; + Z U;

j€[m] i€[n]
D Ts <1 Vien w>v(S) =Y p, VS
S | jES
Y zis<1 Vje[m] p; >0 Vj € [m]
1,5:7€8
> '
tis >0 w; >0 Vi € [n]

* p;isthe price ofitemjand , _— max{v;(S) — p(S))
u is the utility of bidder i >

 Complementary slackness: in optimal solution (assuming
integrality), each bidder gets a utility maximizing set and
each item with positive price is allocated.

* Optimal solutions, if integral, correspond to equilibrium! ,




Walrasian (Competitive) Equilibrum

 Competitive (Walrasian) equilibrium is price vector
p =(py, -, P,,) and allocation S = (S, ..., S,,) such that

* vi(S)—pl(S) 2 v.(S)—p(S), for any subset S of items.
* Everyitem j with p, > O is allocated.

 Example: two bidders Alice and Bob, two items x and vy.
e Alice has value 2 for x, y and x+y, 0 for empty set.
 Bob has value 4 for x+y and O for anything else.
* p,=p, =2, Alice nothing, Bob x+y is equilibrium.

* |f Bob had value 3 for x+y and O for anything else,
Walrasian equilibrium does not exist!

38




Walrasian (Competitive) Equilibrum

Competitive (Walrasian) equilibrium is price vector
p=(py -, P,,) and allocation S™ = (S,, ..., S,,,) such that

* vi(S)—pl(S;) 2 v.(S)—p(S), for any subset S of items.
* Everyitem j with p, > O is allocated.

First Welfare Theorem: (If exists,) Walrasian equilibrium
maximizes social welfare, even among fractional solutions.

For any feasible (fractional) solution z; g, for any bidder i,

v;(S;) — ij > Zﬁ?z? (%(S) — ij) (1)

JES; S JeES
by first condition and because ) z; s < 1.

e We sum up (1) and observe that sums of prices cancel

out, because allocations must be disjoint.
39




Walrasian (Competitive) Equilibrum

Competitive (Walrasian) equilibrium is price vector
p=(py -, P,,) and allocation S™ = (S,, ..., S,,,) such that

* vi(S)—p(S;) 2 v,(S) —p(S), for any subset S of items.
* Everyitem j with p, > O is allocated.

Second Welfare Theorem: If LP admits integral optimal
solution, then Walrasian equilibrium exists.

* Follows from complementary slackness conditions.

LP admits integral optimal solution for gross substitutes.

 When price for item increases, the demand for other items does
not decrease.

* Walrasian equilibrium computed by natural tatonnement process.
[Kelso-Crawford, ‘82] Special case of discrete convexity!!!

* http://www.inbaltalgam.com/slides/GS%20Tutorial%20Part%20l.pdf and
http://www.inbaltalgam.com/slides/GS%20Tutorial%20Part%20Il.pdf 44




Walrasian Tatonnement

Demand correspondence:
D(v,p) ={S CU :v(S) —p(S) >v(T) —p(T), VI C U}
Di(p) = {S CU :v(S) = p(S) > w(T) —p(T), VT C U}

An item-price ascending auction for substitutes valuations:

Initialization:
For every item j € M, set p; < 0.
For every bidder i let S; «— 0.
Repeat
For each i, let D; be the demand of i at the following prices:
pj for 7 € S; and p; + € for 7 € S;.
If for all 7 S; = D;, exit the loop;
Find a bidder ¢ with S; # D; and update:
e For every item j € D; \ S;, set p; < p; + ¢
e S; — D,
e For every bidder k # i, S « Si \ D;

Finally: Output the allocation Si,...,5,.

41




Mechanisms for Combinatorial Auctions

How do the players describe their valuations to auctioneer?

 For a general function, the bidder would need to specify
v,(S), for every S = M (2™ numbers, prohibitive!)

" Three approaches:
1. Some functions can be described with a small number of

parameters
 E.g. additive or symmetric submodular (m parameters)

2. The auctioneer can ask the bidders during the auction

for their values on certain subsets of items
* Value queries.
* No need to know the entire function.
3. The auctioneer computes prices and let the bidders
decide on their utility maximizing set.
* Demand queries — NP-hard to compute, in general.

: : C : 42
* No information about valuation is given to auctioneer.




Mechanisms for Combinatorial Auctions

Truthful mechanisms for combinatorial auctions?

Can we generalize the 2" price auction when we have
multiple items?

We need to generalize:

* The allocation algorithm: with 1 item, the winner was
the highest bidder

* multiple winners (with non-overlapping sets of goods),
but monotonicity still necessary!

* The payment rule: with 1 item, we offered a
«discount» to the winner

* Adjust the discount to the more general setting (and we also
need a separate discount for each winner)

43




Social welfare maximization

Example with additive valuations
* 3 players, 4 items

* The input can be determined by a 3 x 4 array

48 41 11 0
35 10 S0 5
45 20 10 25

e Optimal allocation: S" =(S,, S,, S3) = ({1, 2}, {3}, {4})
 Optimal social welfare: 48 + 41 + 50 + 25 =164

44




The VCG mechanism

e A generalization of the Vickrey auction
e Named after [Vickrey '61, Clarke 71, Groves "73]

1. S$*=(S,S,, .., S,) social welfare maximizing allocation.
2. Allocation rule: For i=1, ..., n, player i receives set S,
3. Payment rule:

e Payment of pIayer| p,=SW_" - ZFI v;(S)
where SW_." = optimal social Welfare W|thout player i

e Every pIayer pays the “externality” that his presence
causes to the welfare of the others

e Utility (value — payment) of player i: u, = SW™ —SW_~

e Every player has utility equal to the increase in the
social welfare due to his presence.




The VCG mechanism

In conclusion:

*Every player receives the items specified by the optimal
allocation (w.r.t. the social welfare)

*His payment is determined by the declarations of the other
players, just as in the Vickrey auction

Theorem: For any valuation functions, the VCG mechanism is
truthful and maximizes the social welfare

Can we implement efficiently the VCG mechanism?
-Only when we can solve the SWM problem efficiently

46




The VCG Mechanism Truthfulness

Fix 7 and b_;. When the chosen outcome x(b) is w*, i's utility is

0(w") — pi(b) = lwm F3b, (w*>] - llfgﬁzf’ﬂ(”

JFi

L ” L

Y Sy

(A) (B)
e Part(B)isindependent of i’ bid b, (truthfulness holds for
any (B) that does not depend on b)).

— Part (B), a.k.a. Clarke pivot rule, ensures non-positive transfers
(NPT) and individual rationality (IR).

e Bidding truthfully, i.e. b, = v, allows the mechanism to
maximize part (A), which is exactly what player i wants!
— Players’ incentives fully aligned with objective of mechanism!




Implementing the VCG mechanism

How to compute the allocation and the payment rule of
VCG:

* |t suffices to solve n+1 instances of the SWM problem

* 1 instance with all players present to determine the
allocation of the items

* n more instances with a different player absent each time
(SWM with n-1 out of the initial n players)

* Final complexity: O(n) - (complexity of SWM)

48




Implementing the VCG mechanism

Additive valuations

* Input: n X m matrix
* Solving SWM: Easy, greedy algorithm

* For every item j: give it to the player with the highest
value

* Implementing the payment rule of VCG:

* Easy, solve n more times SWM with 1 player absent each

time

49




Implementing the VCG mechanism

Example with additive valuations

3 players, 4 items

48 41 11 0
35 10 S0 5
45 20 10 25

* Optimal allocation: S" =(S,, S,, S3) = ({1, 2}, {3}, {4})
* Optimal social welfare: 48 + 41 + 50 + 25 =164

50




Implementing the VCG mechanism

Example with additive valuations

3 players, 4 items

48 41 11 0
35 10 S0 5
45 20 10 25

Payments:
* p;=SW_ - 2 i#1 J(S) 140 — (50+425) =
* p,=SW,," - 2 i#2 J(S) 125 — (89+25) =

* Similarly, p;=5

51




Implementing the VCG mechanism

Additive valuations

 What if we run m independent Vickrey auctions for
every item separately?

* We get the same result!

* I|tis due to the fact that we have additive valuations
(hence, the values of different items for a player are
not correlated)

Corollary:

For additive valuations, the VCG mechanism is

equivalent to executing an independent Vickrey
auction for each item

52




Implementing the VCG mechanism

Submodular functions?

Good news

Theorem: The VCG mechanism can be implemented in
polynomial time for symmetric submodular valuations

-Greedy (wrt. marginal values) allocation is optimal.

Bad news

*For general submodular valuations, SWM is NP-complete
 Reduction from Knapsack

*The same also holds for subadditive valuations

53




Implementing the VCG mechanism

Submodular functions?

[Lehmann, Lehmann, Nisan '01]: greedy, 1/2-approximation
e Fix an ordering of the goods, 1, 2, ..., m

e Forj=1,.. m

> Let (S, S,, ..., S,) be the current allocation to the bidder

» Allocate next good to the bidder with currently highest
marginal value for this good

e j.e., calculate v,(S, U {j}) — v,(S;,) for each player i

e We measure how much extra welfare is derived by adding the
good to the currently assigned bundle of a player

54




Implementing the VCG mechanism

Submodular functions?

= Further progress: (1 —1/e = 0.632)-approximation with value
qgueries [Vondrak "08]

= [Mirrokni, Schapira, Vondrak '08]: Better approximation would
require exponentially many value queries.

= Unfortunately these algorithms cannot be combined with the
VCG payment formula to obtain a truthful mechanism

" Open problem to derive a truthful mechanism for submodular
valuations with the best possible approximation to the social
welfare ae




Truthful Mechanisms
for Subadditive Valuations

Value Queries [Dobzinski, Nisan, Schapira 05]:
1. Query each bidder for values of all singleton sets and U.
2. Find best “matching” allocation where each bidder gets at

most one good (maximum bipartite matching).
= Complete bipartite graph with agents on the left, goods on the
right, and weight v.({ j }) on each { agent i, good j} edge.
3. Return best of maximum “matching” and max{ v,(U) }

= Algorithm finds optimal over subset of feasible allocations,

that includes only “matchings” and “winner-takes-all”.

= Maximal-in-Range (MiR) mechanisms: optimize over a
predetermined subset of feasible solutions (a.k.a. “range”).

= Allocation is optimal-in-range: truthfulness with VCG payments!

= Range chosen to guarantee good approximation and polynomial-

time optimization. 56




Truthful Mechanisms
for Subadditive Valuations

Value Queries [Dobzinski, Nisan, Schapira 05]:
1. Query each bidder for values of all singleton sets and U.
2. Find best “matching” allocation where each bidder gets at

most one good (maximum bipartite matching).
= Complete bipartite graph with agents on the left, goods on the
right, and weight v.({ j }) on each { agent i, good j} edge.
3. Return best of maximum “matching” and max{ v,(U) }

= Approximation ratio O(sqrt(m)) for subadditive valuations.
= |f most of OPT SW by “large sets” (cardinality 2 sgrt(m), so at most
sqgrt(m) of them), max{ v,(U) } is sqrt(m)-approximation.
= |f most of OPT SW by “small sets” (cardinality < sqrt(m)) maximum
“matching” is sgrt(m)-approximation (due to subadditivity and
bound on cardinality).

57




Truthful Mechanisms
for Subadditive Valuations

Value Queries [Dobzinski, Nisan, Schapira ‘05]:
1. Query each bidder for values of all singleton sets and U.
2. Find best “matching” allocation where each bidder gets at

most one good (maximum bipartite matching).
= Complete bipartite graph with agents on the left, goods on the right,
and weight v.({ ] }) on each { agent i, good j} edge.

3. Return best of maximum “matching” and max{ v,(U) }

= Theorem. MiR algorithm above is truthful with VCG
payments and achieves sqrt(m)-approximation for
subadditive valuations.

=  Maximal-in-Distributional Range gives sqrt(m)-approximation

for CAs with general valuations [Lavi, Swamy "05]
https://www.cs.princeton.edu/~smattw/Teaching/521fal7lec19.pdf
https://www.math.uwaterloo.ca/~cswamy/papers/mechdeslp-journ.pdf




Linear Programming Relaxation of
Social Welfare Maximization

ma}{; Iirsvi(s) min Z p; + Z U;

jE[m] i€[n]
D Ts <1 Vien w>v(S) =Y p, VS
S | jES
Z zis <1 Vjé€[m] p; >0 Vj € [m]
1,5:7€8
> :
tis >0 w; >0 Vi € [n]

* p;isthe price ofitemjand _ max{v;(S) — p(9)}
ujis the utility of bidderi 5

D;(Ui,p) = {S CU; : v;(S) — p(S) > v(T) — p(T), VT C U;}
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Truthful Mechanisms
for Submodular Valuations

Demand Queries [Krysta, Vocking, ‘12]:

Algorithm 1. Overselling MPU algorithm

1 For each good e € U do p; := po.
2 Foreachbidder: =1,2,....,ndo

3 Set S; := D;(U;, p*), for a suitable U; C U.

4 Update for each good e € S;: pit! :=pL - 2

= Binary search in optimal prices of goods!

= Truthful because prices p, do not depend on bidder i and
demand queries.

" If p,=max{v(U)}/(4m), Algl allocates < log,(4m)+1 copies

of each good.

=  After allocating so many copies of good e,
p. > max{ v,(U) } and no player can afford it anymore.




Truthful Mechanisms
for Submodular Valuations

Lemma. p’ denotes final price of good e. Then,

mn

Alg=) ui(S:) =) pi—mpo

1=1 eclU

= Approximation ratio: compare social welfare of Alg and OPT

= We get Alg 2 30PT/8 (but with logarithmic “overselling”).




Truthful Mechanisms

for Submodular Valuations
Algorithm 1. Overselling MPU algorithm

1 For each good e € U do p; := po.
2 Foreachbidderz =1,2,....ndo

3 Set S; = Di(Ul-,pi), for a suitable U; C U.

4 Update for each good e € S;: pitt :=p? - 2

“Overselling” is fixed with oblivious rounding and sets U,
= U.isthe set of available goods at step i.

= After the demand query D,(U,, p') is answered,
S. is allocated with probability 1/ log,(4m)
= Approximation ratio increases by factor O(log,(4m)) for
submodular valuations.
Demand-query truthful approximations extends to budgeted
bidders and liquid welfare: LiquidValuation (S) = min{ v,(S), B, }




Negative Cycles, Monotonicity
and Truthfulness

"= Consider allocation (and truthfulness) from viewpoint of
single bidder (as in Myerson’s Lemma, but multi-dimensional)
= Fix allocation rule x, other bids b_, and payments p.
= Consider allocation x(b), payments p(b) and utility
v(x(b)) — p(b) of bidder i as functions of i’s bid b
and i’s true valuation (a.k.a. type) v.

= We want to characterize allocation rules x that allow for
truthful payments p (similar to Myerson’s Lemma).

= Definition of truthfulness:

v(x(v)) — p(v) 2 v(x(b)) — p(b), for all types v, b

= Focus on discrete domains (finite set of types), but
everything generalizes to infinite (and continuous)
domains.




Negative Cycles, Monotonicity
and Truthfulness

Let D set of all possible types.
Correspondence graph G(D, E, w) is an edge-weighted
complete directed graph on D.
= Letbandb’ betwo types / vertices and
o = X(b) and o’ = x(b’) corresponding outcomes.
= w(b, b’)=b(o)—-Db(o’) (and w(b’, b) = b’(0") — b’(0) ).
=  When true type b, how much bidder prefers o (outcome
if he is truthful) to o’ (outcome if he misreports b’)
= Payments p function of outcomes (only)!
Allocation x is truthful (without payments!) iff w(b, b’) 2 0,
for all edges (b, b’).




Negative Cycles, Monotonicity
and Truthfulness

Correspondence graph G(D, E, w).
= Lethb, b’ betypesando=x(b), o’ =x(b’) outcomes.
= w(b, b’)=b(o)—-Db(o’) (and w(b’, b) = b’(0’) — b’(0) ).
Allocation x admits truthful payments p : Outcomes -> R, if
all edges (b, b’) become non-negative after we apply p:
b(o) — p(0) 2 b(o’) — p(0’)

Allocation x admits truthful payments p iff G(D, E, w) does
not have negative cycles!
=  Truthful payments computed by Johnson’s algorithm!
If domain D is convex, allocation x admits truthful payments
p iff G(D, E, w) does not have negative 2-cycles.
=  Weak monotonicity: b(o) — b’(o) 2 b(o’) — b’(0’),

for all b, b’ [Zaks, Yu 'O5]




Research questions on the
implementation of truthful mechanisms

Find special cases where SWM is solvable in
polynomial time

Design approximation algorithms for SWM for various
types of valuation functions

General problem with approximation algorithms: they
cannot always be combined with some payment rule
and get a truthful mechanism

At the end, we need to understand how truthful
mechanisms look like for multi-parameter
environments, esp. when SWM is difficult
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