Games in Normal Form

Definition: A game in normal form consists of

- A set of players $N=\{1,2, \ldots, n\}$
- For every player i, a set of available strategies S^{i}
- For every player i, a utility function

$$
u_{i}: S^{1} \times \ldots \times S^{n} \rightarrow R
$$

- Strategy profile (configuration) any vector in the form $\left(s_{1}, \ldots, s_{n}\right)$, with $s_{i} \in S^{i}$
- Every profile corresponds to an outcome of the game
- The utility function describes the benefit/happiness that a player derives from the outcome of the game

2-player games in normal form

Consider a 2-player game with finite strategy sets

- $\mathrm{N}=\{1,2\}$
$-\mathrm{S}^{1}=\left\{\mathrm{s}_{1}, \ldots, \mathrm{~s}_{\mathrm{n}}\right\}$
$-S^{2}=\left\{t_{1}, \ldots, t_{m}\right\}$
- Utility functions:

$$
u_{1}: S^{1} \times S^{2} \rightarrow R, u_{2}: S^{1} \times S^{2} \rightarrow R
$$

-Possible strategy profiles:

$$
\begin{aligned}
& \left(s_{1}, t_{1}\right),\left(s_{1}, t_{2}\right),\left(s_{1}, t_{3}\right), \ldots,\left(s_{1}, t_{m}\right) \\
& \left(s_{2}, t_{1}\right),\left(s_{2}, t_{2}\right),\left(s_{2}, t_{3}\right), \ldots,\left(s_{2}, t_{m}\right) \\
& \ldots \\
& \left(s_{n}, t_{1}\right),\left(s_{n}, t_{2}\right),\left(s_{n}, t_{3}\right), \ldots,\left(s_{n}, t_{m}\right)
\end{aligned}
$$

2-player games in normal form

The utility function of each player can be described by a matrix of size $\mathrm{n} \times \mathrm{m}$

- We can think of player 1 as having to select a row
- And of player 2 as having to select a column
-A finite 2-player game in normal form is defined by a pair of n x m matrices (A, B), where:
$-\mathrm{A}_{\mathrm{ij}}=\mathrm{u}_{1}\left(\mathrm{~s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right), \mathrm{B}_{\mathrm{ij}}=\mathrm{u}_{2}\left(\mathrm{~s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right)$
- Player 1 is referred to as the row player
- Player 2 is referred to as the column player

2-player games in normal form

Representation in matrix form:

For brevity, we will group together the values of the matrices A, B

$u_{1}\left(s_{1}, t_{1}\right), u_{2}\left(s_{1}, t_{1}\right)$	\ldots, \ldots	\ldots, \ldots	\ldots, \ldots	$u_{1}\left(s_{1}, t_{m}\right), u_{2}\left(s_{1}, t_{m}\right)$
$u_{1}\left(s_{2}, t_{1}\right), u_{2}\left(s_{2}, t_{1}\right)$	\ldots, \ldots	\ldots, \ldots	\ldots, \ldots	\ldots, \ldots
		$u_{1}\left(s_{i}, t_{j}\right), u_{2}\left(s_{i}, t_{j}\right)$	\ldots, \ldots	\ldots, \ldots
		\ldots, \ldots	\ldots, \ldots	\ldots, \ldots
\ldots, \ldots	\ldots, \ldots	\ldots, \ldots	\ldots, \ldots	$u_{1}\left(s_{n}, t_{m}\right), u_{2}\left(s_{n}, t_{m}\right)$

Dominant strategies

- Ideally, we would like a strategy that would provide the best possible outcome, regardless of what other players choose
- Definition: A strategy s_{i} of pl. 1 is dominant if

$$
\mathrm{u}_{1}\left(\mathrm{~s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right) \geq \mathrm{u}_{1}\left(\mathrm{~s}^{\prime}, \mathrm{t}_{\mathrm{j}}\right)
$$

for every strategy $s^{\prime} \in S^{1}$ and every strategy $t_{j} \in S^{2}$

- Similarly for pl. 2, a strategy t_{j} is dominant if

$$
\mathrm{u}_{2}\left(\mathrm{~s}_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right) \geq \mathrm{u}_{2}\left(\mathrm{~s}_{\mathrm{i}}, \mathrm{t}^{\prime}\right)
$$

for every strategy $t^{\prime} \in S^{2}$ and for every strategy $s_{i} \in S^{1}$

Dominant strategies

Even better:
-Definition: A strategy s_{i} of pl. 1 is strictly dominant if

$$
u_{1}\left(s_{\mathrm{i}}, \mathrm{t}_{\mathrm{j}}\right)>\mathrm{u}_{1}\left(\mathrm{~s}^{\prime}, \mathrm{t}_{\mathrm{j}}\right)
$$

for every strategy $s^{\prime} \in S^{1}$ and every strategy $t_{j} \in S^{2}$
-Similarly for pl. 2

- In prisoner's dilemma, strategy D (confess) is strictly dominant

Observations:
-There may be more than one dominant strategies for a player, but then they should yield the same utility under all profiles
-Every player can have at most one strictly dominant strategy
-A strictly dominant strategy is also dominant

Existence of dominant strategies

- Few games possess dominant strategies
- It may be too much to ask for
- E.g. in the BoS game, there is no dominant strategy:

- Strategy B is not dominant for pl. 1: If pl. 2 chooses S, pl. 1 should choose S
- Strategy S is also not dominant for pl. 1: If pl. 2 chooses B, pl. 1 should choose B
- In all the examples we have seen so far, only prisoner's dilemma possesses dominant strategies

Nash Equilibria

- Definition (Nash 1950): A strategy profile (s, t) is a Nash equilibrium, if no player has a unilateral incentive to deviate, given the other player's choice
- This means that the following conditions should be satisfied:

$$
\begin{aligned}
& \text { 1. } u_{1}(\mathrm{~s}, \mathrm{t}) \geq \mathrm{u}_{1}\left(\mathrm{~s}^{\prime}, \mathrm{t}\right) \text { for every strategy } \mathrm{s}^{\prime} \in \mathrm{S}^{1} \\
& \text { 2. } u_{2}(\mathrm{~s}, \mathrm{t}) \geq \mathrm{u}_{2}\left(\mathrm{~s}, \mathrm{t}^{\prime}\right) \text { for every strategy } \mathrm{t}^{\prime} \in \mathrm{S}^{2}
\end{aligned}
$$

- One of the dominant concepts in game theory from 1950s till now
- Most other concepts in noncooperative game theory are variations/extensions/generalizations of Nash equilibria

Pictorially:

$($,	$($,	$\left(\mathrm{X}_{1}, \quad\right)$	$($,	$($,
$($,	$($,	$\left(\mathrm{X}_{2}, \quad\right)$	$($,	(l)
(,)	(,)	$\left(\mathrm{X}_{3}, \quad\right)$	(,)	(,)
$\left(, y_{1}\right)$	$\left(, y_{2}\right)$	(x, y)	$\left(, y_{4}\right)$	$\left(, \mathrm{y}_{5}\right)$
$($,	(,)	$\left(\mathrm{X}_{5}, \quad\right)$	$($,	$($,)

In order for (s, t) to be a Nash equilibrium:
$\cdot x$ must be greater than or equal to any x_{i} in column \dagger

- y must be greater than or equal to any y_{j} in row s

Nash Equilibria

- We should think of Nash equilibria as "stable" profiles of a game
- At an equilibrium, each player thinks that if the other player does not change her strategy, then he also does not want to change his own strategy
- Hence, no player would regret for his choice at an equilibrium profile (s, t)
- If the profile (s, t) is realized, pl. 1 sees that he did the best possible, against strategy t of pl. 2,
- Similarly, pl. 2 sees that she did the best possible against strategy s of pl. 1
- Attention: If both players decide to change simultaneously, then we may have profiles where they are both better off

Example 1: Prisoner's Dilemma

In small games, we can examine all possible profiles and check if they form an equilibrium
$\bullet(\mathrm{C}, \mathrm{C})$: both players have an incentive to deviate to another strategy
$\cdot(C, D)$: pl. 1 has an incentive to deviate
-(D, C): Same for pl. 2
$\bullet(D, D)$: Nobody has an incentive to change

Hence: The profile (D, D) is the unique Nash equilibrium of this game

- Recall that D is a dominant strategy for both players in this game Corollary: If s is a dominant strategy of pl . 1 , and t is a dominant strategy for pl . 2 , then the profile (s, t) is a Nash equilibrium

Mixed strategies

- Definition: A mixed strategy of a player is a probability distribution on the set of his available choices
- If $S=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is the set of available strategies of a player, then a mixed strategy is a vector in the form
$p=\left(p_{1}, \ldots, p_{n}\right)$, where

$$
\mathrm{p}_{\mathrm{i}} \geq 0 \text { for } \mathrm{i}=1, \ldots, \mathrm{n} \text {, and } \mathrm{p}_{1}+\ldots+\mathrm{p}_{\mathrm{n}}=1
$$

- $p_{j}=$ probability for selecting the j-th strategy
- We can write it also as $p_{j}=p\left(s_{j}\right)=$ prob/ty of selecting s_{j}

Pure and Mixed strategies

- From now on, we refer to the available choices of a player as pure strategies to distinguish them from mixed strategies
- For 2 players with $S^{1}=\left\{s_{1}, S_{2}, \ldots, s_{n}\right\}$ and $S^{2}=\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$
- PI. 1 has n pure strategies, PI. 2 has m pure strategies
- Every pure strategy can also be represented as a mixed strategy that gives probability 1 to only a single choice
- E.g., the pure strategy s_{1} can also be written as the mixed strategy ($1,0,0, \ldots, 0$)
- More generally: strategy s_{i} can be written in vector form as the mixed strategy $\mathrm{e}^{\mathrm{i}}=(0,0, \ldots, 1,0, \ldots, 0)$
- 1 at position i, 0 everywhere else
- Some times, it is convenient in the analysis to use the vector form for a pure strategy

Utility under Mixed Strategies

- Suppose that each player has chosen a mixed strategy in a game
- How does a player now evaluate the outcome of a game?
- We will assume that each player cares for his expected utility
- Justified when games are played repeatedly
- Not justified for more risk-averse or risk-seeking players

Expected utility (for 2 players)

- Consider a $\mathrm{n} \times \mathrm{m}$ game
- Pure strategies of pl. 1: $S^{1}=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$
- Pure strategies of pl. 2: $S^{2}=\left\{t_{1}, t_{2}, \ldots, t_{m}\right\}$
- Let $p=\left(p_{1}, \ldots, p_{n}\right)$ be a mixed strategy of $p l .1$ and $q=\left(q_{1}, \ldots, q_{m}\right)$ be a mixed strategy of $p l .2$
- Expected utility of pl. 1 :

$$
u_{1}(\mathbf{p}, \mathbf{q})=\sum_{i=1}^{n} \sum_{j=1}^{m} p_{i} \cdot q_{j} \cdot u_{1}\left(s_{i}, t_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{m} p\left(s_{i}\right) \cdot q\left(t_{j}\right) \cdot u_{1}\left(s_{i}, t_{j}\right)
$$

- Similarly for pl. 2 (replace u_{1} by u_{2})

Nash equilibria with mixed strategies

- Definition: A profile of mixed strategies (p, q) is a Nash equilibrium if
$-u_{1}(p, q) \geq u_{1}\left(p^{\prime}, q\right)$ for any other mixed strategy p^{\prime} of $p l .1$
$-u_{2}(p, q) \geq u_{2}\left(p, q^{\prime}\right)$ for any other mixed strategy q ' of $p l .2$
- Again, we just demand that no player has a unilateral incentive to deviate to another strategy
- How do we verify that a profile is a Nash equilibrium?
- There is an infinite number of mixed strategies!
- Infeasible to check all these deviations

Nash equilibria with mixed strategies

- Corollary: It suffices to check only deviations to pure strategies
- Because each mixed strategy is a convex combination of pure strategies
- Equivalent definition: A profile of mixed strategies (p, q) is a Nash equilibrium if
$-u_{1}(p, q) \geq u_{1}\left(e^{i}, q\right)$ for every pure strategy ei of pl. 1
$-u_{2}(p, q) \geq u_{2}\left(p, e^{j}\right)$ for every pure strategy ej of pl. 2
- Hence, we only need to check n+m inequalities as in the case of pure equilibria

2 Player Zero-Sum Game

Row player tries to maximize the payoff, column player tries to minimize

2 Player Zero-Sum Game

Strategy:
A probability distribution

Row player

Column player

Is it fair??

Von Neumann Minimax Theorem

$$
\max _{y \in \Delta^{m}} \min _{x \in \Delta^{n}} y A x=\min _{x \in \Delta^{n}} \max _{y \in \Delta^{m}} y A x
$$

Which player decides first doesn't matter!

e.g. paper, scissor, rock.

Key Observation

$$
\max _{y \in \Delta^{m}} \min _{x \in \Delta^{n}} y A x
$$

If the row player fixes his strategy, then we can assume that x chooses a pure strategy

$$
\left.\begin{array}{l}
\min _{x \in \Delta n} y A x \\
\sum_{i=1}^{n} x_{i}=1 \\
x_{i} \geq 0
\end{array}\right\} \begin{aligned}
& \\
& \begin{array}{l}
\text { Vertex solution } \\
\text { is of the form } \\
(0,0, \ldots, 1, \ldots) \\
\text { i.e. a pure strategy }
\end{array} \\
&
\end{aligned}
$$

Key Observation

$\max _{y \in \Delta^{m}} \min _{x \in \Delta^{n}} y A x=\max _{y \in \Delta^{m}} \min _{i}(y A)_{i}$

similarly

$\min _{x \in \Delta^{n}} \max _{y \in \Delta^{m}} y A x=\min _{x \in \Delta^{n}} \max _{j}(A x)_{j}$

Primal Dual Programs

$\max _{y \in \Delta^{m}} \min _{i}(y A)_{i}$	$\min _{x \in \Delta^{n}} \max _{j}(A x)_{j}$
$\max t$	$\min w$
$x_{j} \rightarrow \sum_{i=1}^{m} y_{i} a_{i j} \geq t$	$\sum_{j=1}^{n} a_{i j} x_{j} \leq w$
$(w) \sum_{i=1}^{m} y_{i}=1$	duality $\quad$$\sum_{j=1}^{n} x_{j}=1$ $y_{i} \geq 0$
$x_{j} \geq 0$	

Existence of Nash equilibria

- Theorem [Nash 1951]: Every finite game possesses at least one equilibrium when we allow mixed strategies
- Finite game: finite number of players and finite number of pure strategies per player
- Corollary: if a game does not possess an equilibrium with pure strategies, then it definitely has one with mixed strategies
- One of the most important results in game theory
- Nash's theorem resolves the issue of non-existence
- By allowing a richer strategy space, existence is guaranteed, no matter how big or complex the game might be

Examples

- In Prisoner's dilemma or BoS, there exist equilibria with pure strategies
- For such games, Nash's theorem does not add any more information. However, in addition to pure equilibria, we may also have some mixed equilibria
- Matching-Pennies: For this game, Nash's theorem guarantees that there exists an equilibrium with mixed strategies
- In fact, it is the profile we saw: ((1/2, 1/2), (1/2, 1/2))
- Rock-Paper-Scissors?
- Again the uniform distribution: ((1/3, 1/3, 1/3), (1/3, 1/3, 1/3))

Nash Equilibria: Computation

- Nash's theorem only guarantees the existence of Nash equilibria
- Proof reduces to using Brouwer's fixed point theorem
- Brouwer's theorem: Let $\mathrm{f}: \mathrm{D} \rightarrow \mathrm{D}$, be a continuous function, and suppose D is convex and compact.
Then there exists x such that $f(x)=x$
- Many other versions of fixed point theorems also available

Nash equilibria: Computation

- So far, we are not aware of efficient algorithms for finding fixed points [Hirsch, Papadimitriou, Vavasis '91]
- There exist exponential time algorithms for finding approximate fixed points
- Can we design polynomial time algorithms for 2-player games?
- After all, it seems to be only a special case of the general problem of finding fixed points

