
Games in Normal Form

Definition: A game in normal form consists of
– A set of players N = {1, 2,..., n}
– For every player i, a set of available strategies Si

– For every player i, a utility function 
ui: S1 x ... x Sn → R

•Strategy profile (configuration): any vector in the 
form (s1, ..., sn), with si ∈ Si

– Every profile corresponds to an outcome of the game
– The utility function describes the benefit/happiness that 

a player derives from the outcome of the game
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2-player games in normal form
Consider a 2-player game with finite strategy sets

– Ν = {1, 2}
– S1 = {s1, ..., sn}
– S2 = {t1, ..., tm}
– Utility functions:

u1: S1 x S2 → R, u2: S1 x S2 → R 

•Possible strategy profiles:
(s1, t1), (s1, t2), (s1, t3), ..., (s1, tm)
(s2, t1), (s2, t2), (s2, t3), ..., (s2, tm)
...
(sn, t1), (sn, t2), (sn, t3), ..., (sn, tm)
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2-player games in normal form
The utility function of each player can be described by a matrix
of size n x m

– We can think of player 1 as having to select a row
– And of player 2 as having to select a column

•A finite 2-player game in normal form is defined by a pair of n 
x m matrices (Α, Β), where:

– Aij = u1(si, tj), Bij = u2(si, tj)
– Player 1 is referred to as the row player
– Player 2 is referred to as the column player
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2-player games in normal form

u1(s1, t1), u2(s1, t1) ..., ... ..., ... ..., ... u1(s1, tm), u2(s1, tm)

u1(s2, t1), u2(s2, t1) ..., ... ..., ... ..., ... ..., ...

u1(si, tj), u2(si, tj) ..., ... ..., ...

..., ... ..., ... ..., ...

..., ... ..., ... ..., ... ..., ... u1(sn, tm), u2(sn, tm)

Representation in matrix form: 
For brevity, we will group together the values of the 
matrices Α, Β
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Dominant strategies
• Ideally, we would like a strategy that would provide the best possible 

outcome, regardless of what other players choose
• Definition: A strategy si of pl. 1 is dominant if

u1(si, tj) ≥ u1(s’, tj) 

for every strategy s’ ∈ S1 and every strategy tj ∈ S2

• Similarly for pl. 2, a strategy tj is dominant if

u2(si, tj) ≥ u2(si, t’) 

for every strategy t’ ∈ S2 and for every strategy si ∈ S1
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Dominant strategies
Even better:
•Definition: A strategy si of pl. 1 is strictly dominant if

u1 (si, tj) > u1 (s’, tj) 
for every strategy s’ ∈ S1 and every strategy tj∈ S2

•Similarly for pl. 2
•In prisoner’s dilemma, strategy D (confess) is strictly dominant
Observations:
•There may be more than one dominant strategies for a player, but then 
they should yield the same utility under all profiles
•Every player can have at most one strictly dominant strategy
•A strictly dominant strategy is also dominant
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Existence of dominant strategies
• Few games possess dominant 

strategies
• It may be too much to ask for
• E.g. in the BoS game, there is no 

dominant strategy:
– Strategy B is not dominant for pl. 1:

If pl. 2 chooses S, pl. 1 should choose S
– Strategy S is also not dominant for pl. 1:

If pl. 2 chooses B, pl. 1 should choose B

• In all the examples we have seen so far, only 
prisoner’s dilemma possesses dominant 
strategies

(5, 1) (0, 0)

(0, 0) (1, 5)

SB

S
B
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Nash Equilibria
• Definition (Nash 1950): A strategy profile (s, t) is a 

Nash equilibrium, if no player has a unilateral 
incentive to deviate, given the other player’s choice

• This means that the following conditions should be 
satisfied:
1. u1(s, t) ≥ u1(s’, t) for every strategy s’ ∈ S1

2. u2(s, t) ≥ u2(s, t’) for every strategy t’ ∈ S2

• One of the dominant concepts in game theory from 1950s 
till now

• Most other concepts in noncooperative game theory are 
variations/extensions/generalizations of Nash equilibria
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Pictorially:

(  ,  ) (  ,  ) (x1,   ) (  ,  ) (  ,  )
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(  ,y1) (  ,y2) (x, y) (  ,y4) (  ,y5)

(  ,  ) (  ,  ) (x5,   ) (  ,  ) (  ,  )

In order for (s, t) to be a Nash equilibrium:
•x must be greater than or equal to any xi in column t
•y must be greater than or equal to any yj in row s

s

t
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Nash Equilibria
• We should think of Nash equilibria as “stable” profiles 

of a game
– At an equilibrium, each player thinks that if the other player 

does not change her strategy, then he also does not want to 
change his own strategy

• Hence, no player would regret for his choice at an 
equilibrium profile (s, t)
– If the profile (s, t) is realized, pl. 1 sees that he did the best 

possible, against strategy t of pl. 2,
– Similarly, pl. 2 sees that she did the best possible against 

strategy s of pl. 1 
• Attention: If both players decide to change 

simultaneously, then we may have profiles where they 
are both better off
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Example 1: Prisoner’s Dilemma

5, 5 0, 15

15, 0 1, 1

In small games, we can examine all possible profiles and check if 
they form an equilibrium
•(C, C): both players have an incentive to

deviate to another strategy
•(C, D): pl. 1 has an incentive to deviate
•(D, C): Same for pl. 2
•(D, D): Nobody has an incentive to change

Hence: The profile (D, D) is the unique Nash equilibrium of this 
game

– Recall that D is a dominant strategy for both players in this game
Corollary: If s is a dominant strategy of pl. 1, and t is a dominant 
strategy for pl. 2, then the profile (s, t) is a Nash equilibrium

D C
D

C
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Mixed strategies
• Definition: A mixed strategy of a player is a 

probability distribution on the set of his available 
choices

• If S = (s1, s2,..., sn) is the set of available
strategies of a player, then a mixed strategy is a 
vector in the form p = (p1, ..., pn), where

pi ≥ 0 for i=1, ..., n,  and p1 + ... + pn = 1
• pj = probability for selecting the j-th strategy
• We can write it also as pj=p(sj) = prob/ty of 

selecting sj
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Pure and Mixed strategies
• From now on, we refer to the available choices of a player 

as pure strategies to distinguish them from mixed 
strategies

• For 2 players with S1 = {s1, s2,..., sn} and S2 = {t1, t2,..., tm}
• Pl. 1 has n pure strategies, Pl. 2 has m pure strategies
• Every pure strategy can also be represented as a mixed 

strategy that gives probability 1 to only a single choice
• E.g., the pure strategy s1 can also be written as the mixed 

strategy (1, 0, 0, ..., 0) 
• More generally: strategy si can be written in vector form as 

the mixed strategy ei = (0, 0, ..., 1, 0, ..., 0)
– 1 at position i, 0 everywhere else
– Some times, it is convenient in the analysis to use the vector form 

for a pure strategy
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Utility under Mixed Strategies

• Suppose that each player has chosen a mixed 
strategy in a game

• How does a player now evaluate the outcome 
of a game?

• We will assume that each player cares for his 
expected utility
– Justified when games are played repeatedly
– Not justified for more risk-averse or risk-seeking 

players
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Expected utility (for 2 players)
• Consider a n x m game
• Pure strategies of pl. 1: S1 = {s1, s2,..., sn}
• Pure strategies of pl. 2: S2 = {t1, t2,..., tm}
• Let p = (p1, ..., pn) be a mixed strategy of pl. 1
and q = (q1, ..., qm) be a mixed strategy of pl. 2
• Expected utility of pl. 1:

• Similarly for pl. 2 (replace u1 by u2)
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Nash equilibria with mixed 
strategies

• Definition: A profile of mixed strategies (p, q) is a
Nash equilibrium if
– u1(p, q) ≥ u1(p’, q) for any other mixed strategy p’ of pl. 1
– u2(p, q) ≥ u2(p, q’) for any other mixed strategy q’ of pl. 2

• Again, we just demand that no player has a unilateral 
incentive to deviate to another strategy

• How do we verify that a profile is a Nash equilibrium?
– There is an infinite number of mixed strategies!
– Infeasible to check all these deviations 16



Nash equilibria with mixed 
strategies

• Corollary: It suffices to check only deviations to pure 
strategies
– Because each mixed strategy is a convex combination of pure 

strategies

• Equivalent definition: A profile of mixed strategies (p, q) is a 
Nash equilibrium if
– u1(p, q) ≥ u1(ei, q) for every pure strategy ei of pl. 1
– u2(p, q) ≥ u2(p, ej) for every pure strategy ej of pl. 2

• Hence, we only need to check n+m inequalities as in the 
case of pure equilibria
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2 Player Zero2 Player Zero--Sum GameSum Game

0 -1 1

1 0 -1

-1 1 0

Row player

Column player

Row player tries to maximize the payoff, column player tries to minimize

Strategy:
A probability
distribution
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2 Player Zero2 Player Zero--Sum GameSum Game

A(i,j)Row player

Column playerStrategy:
A probability
distribution

You have to decide 
your strategy first.Is it fair??
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Von Neumann Minimax TheoremVon Neumann Minimax Theorem

Strategy set

Which player decides first doesn’t matter!

e.g. paper, scissor, rock.
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Key ObservationKey Observation

If the row player fixes his strategy,
then we can assume that x chooses a pure strategy

Vertex solution
is of the form
(0,0,…,1,…0),
i.e. a pure strategy
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Key ObservationKey Observation

similarly



23

Primal Dual ProgramsPrimal Dual Programs

duality



Existence of Nash equilibria
• Theorem [Nash 1951]: Every finite game 

possesses at least one equilibrium when we 
allow mixed strategies
– Finite game: finite number of players and finite number of pure 

strategies per player
• Corollary: if a game does not possess an equilibrium 

with pure strategies, then it definitely has one with mixed 
strategies

• One of the most important results in game theory
• Nash’s theorem resolves the issue of non-existence

– By allowing a richer strategy space, existence is guaranteed, no
matter how big or complex the game might be
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Examples
• In Prisoner’s dilemma or BoS, there exist equilibria with 

pure strategies
– For such games, Nash’s theorem does not add any 

more information. However, in addition to pure 
equilibria, we may also have some mixed equilibria

• Matching-Pennies: For this game, Nash’s theorem 
guarantees that there exists an equilibrium with mixed 
strategies
– In fact, it is the profile we saw: ((1/2, 1/2), (1/2, 1/2))

• Rock-Paper-Scissors?
– Again the uniform distribution: ((1/3, 1/3, 1/3), (1/3, 1/3, 1/3))
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Nash Equilibria: Computation
• Nash’s theorem only guarantees the existence 

of Nash equilibria
– Proof reduces to using Brouwer’s fixed point theorem

• Brouwer’s theorem: Let f:D➝D, be a continuous 
function, and suppose D is convex and compact. 
Then there exists x such that f(x) = x
– Many other versions of fixed point theorems also 

available
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Nash equilibria: Computation
• So far, we are not aware of efficient algorithms for 

finding fixed points [Hirsch, Papadimitriou, Vavasis ’91]
– There exist exponential time algorithms for finding approximate 

fixed points
• Can we design polynomial time algorithms for 2-player 

games?
– After all, it seems to be only a special case of the 

general problem of finding fixed points
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