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Outline

• Algorithms for finding equilibria in general normal 
form games
– The support theorem
– Analysis of 2x2 and 2xn games
– Complexity of general nxm games

• Approximate Nash equilibria
– A subexponential algorithm for any constant ε>0
– Polynomial time algorithms
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Nash equilibria: Existence and 
computation

• In 0-sum games
– von Neumann’s theorem establishes both existence and an 

algorithm for finding an equilibrium
– Boils down to solving one linear program

• In general games?
– Nash’s theorem guarantees only existence
– Big research question over the last 2 decades
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The support of a strategy
• To come up with efficient algorithms, we need to understand 

better the properties of Nash equilibria
• Definition: For a mixed strategy p = (p1, p2,..., pn), the

support of p is the set of pure strategies that have a positive 
probability of being selected, when we play p

Supp(p) = {i: pi > 0}
• E.g. if p = (2/7, 0, 0, 3/7, 0, 2/7), then Supp(p) = {1, 4, 6}

– For pl. 1, Supp(p) shows us which rows have a chance to be selected 
according to p

– Respectively, for a strategy of pl. 2, it shows the columns
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Utility functions revisited
• Let (p, q) be a strategy profile in a nxm game

– p = (p1, p2,..., pn), q = (q1, q2,..., qm)

• Analyzing the utility function of pl. 1:

• The last term can also be written in terms of the support of
p, hence:
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Support properties at Nash equilibria

• Let (p, q) be a Nash equilibrium and let i, j Î Supp(p)
– pi > 0, pj > 0

• How are the quantities u1(ei, q) and u1(ej, q) related?
• If u1(ei, q) > u1(ej, q), then pl. 1 has an incentive to reduce 

the probability pj and increase the probability pi
– But then (p, q) would not be a Nash equilibrium
– Similarly, if u1(ei, q) < u1(ej, q)
– The only choice at an equilibrium is to have u1(ei, q) = u1(ej, q)

• If i Î Supp(p) and j Ï Supp(p)?
– Then it must hold that u1(ei, q) ≥ u1(ej, q), otherwise (p, q) is not an 

equilibrium
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Support properties at Nash equilibria

Support theorem: A profile (p, q) is a Nash equilibrium if and 
only if

i. "i, j Î Supp(p), u1(ei, q) = u1(ej, q)
ii. "i, j Î Supp(q), u2(p, ei) = u2(p, ej)
iii. "i Î Supp(p) and "j Ï Supp(p), u1(ei, q) ≥ u1(ej, q)
iv. "i Î Supp(q) and "j Ï Supp(q), u2(p, ei) ≥ u2(p, ej)
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Support properties at Nash equilibria

In other words:
– If a pure strategy is used with positive probability at a Nash 

equilibrium, then this strategy should be at least as good as any 
other pure strategy, given the other player’s strategy

– 2 pure strategies that have positive probability at a Nash equilibrium 
must have the same utility, given the other player’s strategy

• The theorem yields a way to check if a profile is a Nash 
equilibrium

• And helps us understand why some profiles cannot form an 
equilibrium
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Support properties at Nash equilibria

Generalizing the support theorem for multi-player games

Theorem: Consider a game with n players. The profile (p1, p2, 
..., pn) is a Nash equilibrium if and only if for every player i, it 
holds that

i. "j, k Î Supp(pi), ui(ej, p-i) = ui(ek, p-i)
ii. "j Î Supp(pi) και "k Ï Supp(pi), ui(ej, p-i) ≥ ui(ek, p-i)
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Example
Use the support theorem to check if the profile (p, 
q) with p = (3/4, 0, 1/4), q = (0, 1/3, 2/3) is an 
equilibrium in the following game

1, 2 3, 3 1, 1
3, 2 0, 1 2, 5
2, 4 5, 1 0, 7

s1

s2

s3 

t1 t2 t3
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Finding Nash equilibria
Corollary: If we knew the support of the strategies in one 
equilibrium profile, then we could compute a Nash equilibrium 
in polynomial time
In other words: if we only knew which rows and columns are 
needed in an equilibrium, we could then compute the 
probabilities of the mixed strategies  
Proof:

– Suppose that someone guesses the support for both players
– All the conditions of the support theorem are linear functions of p1, 

p2,..., pn, q1, q2,...,qm

– We would also need to add that Σi pi = 1, Σi qi = 1
– By solving a single linear program (or a system of linear inequalities) 

we can compute the probabilities of the mixed strategies
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Finding Nash equilibria
• At the end, finding a Nash equilibrium is a combinatorial 

problem
• It suffices to find the right supports
• Brute-force algorithm:

– Enumerate all possible pairs of supports for the two players
– For each pair of supports, check if the corresponding linear program 

has a solution
• Complexity of brute-force in nxm games: prohibitive!

– 2n choices for pl. 1
– 2m choices for pl. 2
– We need to run O(2n+m) linear programs
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Finding Nash equilibria
• Can we reduce it to solving only a few linear programs?
• Or a single LP?
• Probably no...
• Note: If the problem is solvable in polynomial time, then it can 

be reduced to a 0-sum game, by what we said in previous 
lecture

• It turns out that finding Nash equilibria is a special case of a 
“linear complementarity problem” [Cottle, Dantzig, 1960s]
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Finding Nash equilibria
Linear Complementarity Problems (LCP)
• They arise in various contexts in Operations Research
• A class of non-linear programs
• Non-linear constraints for Nash equilibria:

– By the support theorem, we need to express the fact that if pi > 0 at an 
equilibrium, then the i-th pure strategy gives maximum payoff among all 
pure strategies

• We cannot express such “if” statements with a linear program
• Instead: let w be the expected payoff of pl. 1 at an equilibrium 

(p, q)
• Support theorem Þ if pi > 0, then u1(ei, q) = w
• Equivalently: pi × (u1(ei, q) – w) = 0  [complementarity condition]
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Nash equilibria as a LCP
• Variables:

– p1, p2, ..., pn, q1, q2,...,qm: for the probabilities of the mixed strategies
– w, w’: for the expected utilities of the 2 players

• Constraints:
– Σi pi = 1, Σi qi = 1 
– p1 ≥ 0, p2 ≥ 0, ..., q1 ≥ 0,..., qm ≥ 0
– w ≥ u1(ei, q) for i=1,..., n
– w' ≥ u2(p, ej) for j=1,..., m
– pi × (u1(ei, q) – w) = 0, for i=1,..., n
– qj × (u2(p, ej) – w’) = 0, for j=1,..., m

• Algorithm for solving LCPs: [Lemke, Howson ’64] 
– Exponential time in worst case, but relatively ok on average
– Based on ideas similar to simplex but for non-linear problems

• see GAMBIT http://www.gambit-project.org/ 15



Finding Nash equilibria
• So far, we have only seen exponential time algorithms...
• In what cases can the support theorem help us in having 

better algorithms? 
• 2x2 games:

– If there is a mixed strategy equilibrium then the support for pl. 1 
must contain both rows

– The support of pl. 2 must contain both columns 
– Applying the support theorem, it must hold that

u1(e1, q) = u1(e2, q), and u2(p, e1) = u2(p, e2)
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Applying the support theorem to
Bach-or-Stravinsky (BoS)

2, 1 0, 0

0, 0 1, 2

B S

B

S

If there exists a Nash equilibrium with mixed strategies, in the form ((p1, 
1-p1), (q1, 1-q1)), with p1, q1 Î (0, 1), it should hold that

• 2q1 = 1- q1Þ q1 = 1/3
• p1 = 2(1- p1) Þ p1 = 2/3
• The conditions for pl. 1 give us the mixed strategy of pl. 2
• Similarly the conditions for pl. 2 give the strategy of pl. 1
• Hence we have the mixed equilibrium ((2/3, 1/3), (1/3, 2/3))
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From 2x2 to 2xn games

• What are the Nash equilibria in this game?
• There is no Nash equilibrium with pure strategies, hence, there 

must be one with mixed strategies
• We will start with pl. 1

– i.e., with the player who has 2 pure strategies

• We are looking for a strategy p = (p1, p2) = (p1, 1 – p1) of pl. 1
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3, -2 1, 2 4, 6 2, 8

1, 12 5, 10 2, 4 3, -4

t1 t2 t3 t4

s1

s2



Analysis of 2xn games

• Step 1: We look at pl. 2 and compute the terms
– u2(p, e1) = f1(p1) = -14p1 + 12, 
– u2(p, e2) = f2(p1) = -8p1 + 10, 
– u2(p, e3) = f3(p1) = 2p1 + 4 
– u2(p, e4) = f4(p1) = 12p1 - 4
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Analysis of 2xn games

– f1(p1) = -14p1 + 12, 
– f2(p1) = -8p1 + 10, 
– f3(p1) = 2p1 + 4 
– f4(p1) = 12p1 - 4

p111/3

-4
20

-2

0

2

4

6

8

4/5
f4

f3

f1

f2

Step 2: Graphical representation

10

12

3/5



Analysis of 2xn games

– Because pl. 2 will play a best 
response, we look at 
max{f1(p1), f2(p1), f3(p1), f4(p1)}

– Candidate strategies for pl. 1 
only at the intersection points 
of the max function

– 3 candidate strategies for pl. 
1: (1/3, 2/3), (3/5, 2/5), (4/5, 
1/5)

p111/3

-4
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Step 3: Candidate strategies for pl. 1
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Analysis of 2xn games

• Step 4: We check all the candidate strategies to see if they can 
yield an equilibrium

1st candidate strategy of pl. 1: (1/3, 2/3)
– We will search for a strategy of pl. 2 in the form: q = (q1, 1 – q1, 0, 0)
– Since from the diagram, the 1st and 2nd columns are the best responses 

of pl. 2 to the strategy of pl. 1
– From the support theorem, it must hold that u1(e1, q) = u1(e2, q)
– 3q1 + 1-q1 = q1 + 5(1-q1) Þ q1 = 2/3
– Since we found a valid probability, we have found a Nash equilibrium 22
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Analysis of 2xn games

• Step 4: We check all the candidate strategies to see if they can 
yield an equilibrium

2nd candidate strategy of pl. 1: (3/5, 2/5)
– We will search for a strategy of pl. 2 in the form: q = (0, q2, 1 – q2, 0)
– Since from the diagram, the 2nd and 3rd columns are the best responses 

against the strategy of pl. 1
– From the support theorem, it should hold that u1(e2, q) = u1(e3, q)
– By solving this, we get q2 = 1/3
– Since we found a valid probability, we have found one more equilibrium23
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Analysis of 2xn games

• Step 4: We check all the candidate strategies to see if they can 
yield an equilibrium

3rd candidate strategy of pl. 1: (4/5, 1/5)
– We will search for a strategy of pl. 2 of the form: q = (0, 0, q3, 1 – q3)
– In a similar way, we get q3 = 1/3
– Hence we have a 3rd Nash equilibrium
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Analysis of 2xn games

• In total: 3 Nash equilibria
– ((1/3, 2/3), (2/3, 1/3, 0, 0))
– ((3/5, 2/5), (0, 1/3, 2/3, 0))
– ((4/5, 1/5), (0, 0, 1/3, 2/3,))
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A modified example

• Suppose we change some of the payoffs of pl. 1 (here we 
changed the 2nd column)

• Which parts of the analysis change?
– Observation: The candidate mixed strategies of pl. 1 were determined by 

the payoff matrix of pl. 2!
– Hence, steps 1-3 remain exactly the same
– Again, 3 candidate strategies for pl. 1
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A modified example

• Step 4: We check all the candidate strategies to see if they can 
yield an equilibrium

1st candidate strategy of pl. 1: (1/3, 2/3)
– We will search for a strategy of pl. 2 in the form: q = (q1, 1 – q1, 0, 0)
– From the support theorem, it must hold that u1(e1, q) = u1(e2, q)
– 3q1 + 5(1-q1) = q1 + 1-q1 Þ q1 = 2
– Not a valid probability!
– Hence, this candidate strategy does not yield an equilibrium
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A modified example

• Step 4: We check all the candidate strategies to see if they can 
yield an equilibrium

2nd candidate strategy of pl. 1: (3/5, 2/5)
– We will search for a strategy of pl. 2 in the form : q = (0, q2, 1 – q2, 0)
– From the support theorem, it should hold that u1(e2, q) = u1(e3, q)
– 5q2 + 4(1-q2) = q2 + 2(1-q2) Þ q2 = -1
– Not a valid probability
– Hence, no equilibrium
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A modified example

• Step 4: We check all the candidate strategies to see if they can 
yield an equilibrium

3rd candidate strategy of pl. 1: (4/5, 1/5)
– Since we have not found any other equilibrium, Nash’s theorem 

guarantees that now we will find one
– We will search for a strategy of pl. 2 of the form: q = (0, 0, q3, 1 – q3)
– In the modified example, columns 3 and 4 have not changed
– Hence, we will arrive at the same result: q3 = 1/3
– Unique Nash equilibrium: ((4/5, 1/5), (0, 0, 1/3, 2/3,)) 29
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Back to nxm games
• Summarizing known algorithms:

– Brute-force, based on the support theorem, worst case: need to solve 
Ο(2n+m) linear programs

– [Lemke, Howson ’64], worst case: still exponential
– Other approaches: [Kuhn ’61, Mangasarian ’64, Lemke ’65], also 

exponential worst case running time

• Polynomial time algorithms only for special cases
– 0-sum games
– 2xn games
– Games with constant rank payoff matrices

• We are not aware of any polynomial time algorithm for general 
nxm normal form games!
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Algorithms for normal form games
• Could it be that the problem is NP-complete?
• Probably not

– [Megiddo, Papadimitriou ’89]: strong evidence that it cannot be NP-complete
– If it were Þ NP = co-NP (highly unlikely to be true)

• It is NP-complete if we add more requirements
– E.g. Find a Nash equilibrium that maximizes the sum of the utilities

[Gilboa, Zemel ’89, Conitzer, Sandholm ’03]
– A different problem than just finding a Nash equilibrium

• Further issues
– There exist games, with integer payoff matrices, and with ≥ 3 players, 

where the probabilities in their Nash equilibria are irrational numbers 
[Nash ’51]

– Hence, we cannot even represent the mixed strategies by a finite number 
of bits
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Back to the proof of Nash’s theorem
• Theorem [Nash 1951]: Every finite game possesses at least one 

equilibrium when we allow mixed strategies

• Nash’s proof reduces to using Brouwer’s fixed point theorem

• Brouwer’s theorem reduces to using Sperner’s lemma
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Brouwer’s theorem

• Brouwer’s theorem: Let f:D➝D, be a continuous 
function, and suppose D is convex and compact. 
Then there exists x such that f(x) = x
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Flip?

Illustrations of Brouwer’s theorem

Suppose D is a disc
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Rotate?

Illustrations of Brouwer’s theorem

Suppose D is a disc



Sperner’s lemma
In 2 dimensions

• Let D be the 2-dimensional simplex 
– D = {(x1, x2, x3): x1 + x2 + x3 = 1, xi ≥ 0, for i=1, 2, 3 }
– D is a triangle

• Consider a triangulation of D
• Color all the vertices of the small triangles, using 3 colors such 

that:
– The 3 vertices of D have a different color
– Along each edge of D, we use only the colors of the 2 

vertices of the edge (1 color forbidden)
– No restriction for the interior of D
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Sperner’s
Lemma: Any 
such coloring has 
at least one 
trichromatic 
triangle !

Sperner’s lemma



Algorithms for normal form games
Let us look at the computational problems:
• SPERNER: Given a coloring satisfying the conditions of Sperner’s

lemma, find a trichromatic triangle
• BROUWER: Given a function satisfying the conditions of 

Brouwer’s theorem, find a fixed point
• NASH: Given a finite normal form game, find a Nash equilibrium

What is common with all 3?
• They are search problems, where we know a solution always 

exists
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Complexity classes for search 
problems

Informal descriptions
• FP (Function P): The version of P for search problems
• FNP (Function NP): The version of NP for search problems
• TFNP (Total FNP): The class of search problems that always have 

a solution

Fact: FP ⊆ TFNP ⊆ FNP 
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Complexity classes for search 
problems

• TFNP has several interesting subclasses
• Depending on how the proof of existence is established
• PLS (Polynomial time Local Search)
• PPA (Polynomial time Parity Argument)
• PPAD (Polynomial time Parity Argument, Directed)
• PPP (Polynomial time Pigeonhole Principle)
• And more…

In fact, our problems belong to one of these subclasses
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The class PPAD
[Papadimitriou ’94]
Ø Consists of problems where the existence of a solution can be 

established by a particular kind of parity argument 
Ø Namely, PPAD contains all problems that can be reduced to:
END OF THE LINE:
• We are given a directed graph with in-degree(u), out-degree(u) ≤ 1 

for every vertex u
• The graph is given implicitly by two circuits P, C 

– (u,v) is an edge iff u = P(v) and v = C(u)
– i.e., we are only allowed to ask queries for the successor or the 

predecessor of a node (at most polynomially many queries)
• We are also given a source node (in-degree=0)
• Goal: Find the sink, or another source

– existence of such a node is guaranteed, by a parity argument: the total 
number of sources and sinks is even
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The class PPAD

...

you are 
given this

Q: Is there an 
efficient algorithm 
for finding another 
unbalanced node 
without actually 
following the path?



Complexity of finding a Nash 
equilibrium

• Open problem for many years
• Eventually:

– The problem belongs to PPAD
• Membership in PPAD is established via the Lemke-Howson algorithm

– [Daskalakis, Goldberg, Papadimitriou, September 2005]: PPAD-complete 
for 4-player games, conjectured that for 2 players there is an efficient 
algorithm

– [Chen, Deng, November 2005]: PPAD-complete even for 2-player games! 
– [Chen, Deng, Teng, February 2006]:  PPAD-complete even for some 

approximate versions of equilibria
– Current belief is that problems in PPAD are not poly-time solvable
– Finding an exact Nash equilibrium is most probably intractable 
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Other PPAD-complete problems
How can we define BROUWER as a computational problem?
• Consider a function f that satisfies the conditions of Brouwer’s theorem

– It may not be easy to succinctly describe f as input to the algorithm
– Also, the fixed point may contain irrational numbers

• Thus, the function is given implicitly via a circuit (only allowed to ask queries 
for the value of the function at any point of the domain)

• Goal: Find an approximate fixed point: a point x such that |f(x) – x| < ε
Theorem: BROUWER is PPAD-complete

Finding a Nash equilibrium is equivalent to finding approximate 
fixed points of continuous functions

– Note that the proof of Nash’s theorem only showed that finding an 
equilibrium is at most as difficult as finding fixed points
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Approximate Nash equilibria
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Approximate Nash equilibria

• Since the problem of computing equilibria is hard, we can consider 
possible relaxations of the initial definition

• Recall the definition of Nash equilibria: A profile of mixed 
strategies (p, q) is a Nash equilibrium if
– u1(p, q) ≥ u1(ei, q) for every pure strategy ei of pl. 1
– u2(p, q) ≥ u2(p, ej) for every pure strategy ej of pl. 2
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Approximate Nash equilibria
• Definition: A profile of mixed strategies (p, q) is an ε-Nash 

equilibrium if
– u1(p, q) ≥ u1(ei, q) – ε, for every pure strategy ei of pl. 1
– u2(p, q) ≥ u2(p, ej) – ε, for every pure strategy ej of pl. 2

• In words: a profile of strategies is an ε-Nash equilibrium if no 
player can gain more than ε by deviating

• When we study ε-Nash equilibria, we usually normalize the 
utilities to be in [0, 1]
– Thus also ε Î [0, 1]
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Example of approximate Nash 
equilibria

2/3, 1/3 0, 0

0, 0 1/3, 2/3

B S

B

S

Consider the profile (p, q) = ((0.6, 0.4), (0.4, 0.6))
• u1(p, q) = 0.6 x 0.4 x 2/3 + 0.4 x 0.6 x 1/3 = 0.24
• u1(e1, q) = 0.4 x 2/3 = 0.267 = u1(p, q) + 0.027
• u1(e2, q) = 0.6 x 1/3 = 0.2 < 0.24
• Similar analysis for pl. 2
• Hence, this profile is a 0.027-Nash equilibrium

None of the players can gain more than 0.027 by deviating to another 
strategy 48
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Approximate Nash equilibria
A stronger notion of approximation
• In words: a profile of strategies (p, q) is an ε-well-
supported Nash equilibrium if any strategy from Supp(p) 
is an approximate best response to q and vice versa
• Formally: (p, q) is an ε-well-supported Nash 
equilibrium if:
- u1(ei, q) ≥ u1(ek, q) – ε, for every i Î Supp(p) and 
every k Î {1, 2, ..., n}
- u2(p, ej) ≥ u2(p, ek) – ε, for every i Î Supp(q) and 
every k Î {1, 2, ..., n}

Fact: An ε-well-supported Nash equilibrium is also an 
ε-Nash equilibrium (but not vice versa)
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Searching for Approximate Equilibria

• We will focus on the simpler version of ε-Nash equilibria
• At the same time, we also want to focus on strategy 
profiles that are simple, and easy to describe

Definition: A k-uniform strategy is a strategy where all 
probabilities are integer multiples of 1/k
e.g.  (3/k, 0, 0, 1/k, 5/k, 0,…, 6/k)

Important observation: Support size of a k-uniform strategy ≤ k

Can we have approximate equilibria with k-uniform 
strategies for small values of k? 
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A Subexponential Algorithm 
(Quasi-PTAS) 

Theorem [Lipton, Markakis, Mehta ’03]: Consider a nxn game. 
For any e in (0,1), and for every k ³ 9logn/e2, there exists a pair 
of k-uniform strategies (p, q) that forms an e-Nash equilibrium

Lesson learnt: there is no need to use a big support!
• For 0-sum games already proved in [Althofer ’94, Lipton, Young ’94]

Proof idea: 
• Use of the ”Probabilistic Method”
• Sample a mixed strategy for each player according to the distribution 

of a Nash equilibrium 
• Feasible because of Nash’s theorem

• Then prove that with positive probability the desired property holds
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A Subexponential Algorithm 
(Quasi-PTAS) 

Theorem [Lipton, Markakis, Mehta ’03]: Consider a nxn game. 
For any e in (0,1), and for every k ³ 9logn/e2, there exists a pair 
of k-uniform strategies (p, q) that forms an e-Nash equilibrium

Corollary : We can compute an e-Nash equilibrium in  time

Proof of Corollary: There are nO(k) pairs of supports to 
look at. Verify the ε-equilibrium condition.
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Generalizations
• The same property holds for ε-well-supported equilibria 

as well [Kontogiannis, Spirakis ’10]

• For m-player games with n pure strategies per player, 
the same technique yields an algorithm for approximate 
Nash equilibria with 

- support size:  k = O(m2 log(m2 n)/e2)

- running time: exponential in logn, m, 1/e

• Previously known approximations: 

- [Scarf ’67]: exponential in n, m, log(1/e)) (via fixed 
point approximations)
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An application
[McCarthy, Laan, Wang, Vayanos, Sinha, Tambe ’18]

• Threat Screening Games: Games for modeling decision problems 
related to screening at airports, borders, and other areas

• Motivated by a collaboration with the US Transportation Security 
Administration

• Use of mixed strategies for selecting how to screen quite popular 
during last years

• Main practical result: Simulations for screening in a large airport 
(comparable to the Los Angeles International Airport) show that 
approximate equilibria with k-uniform small support strategies 
behave very well and have the potential to be deployed in 
practice
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Moving on...
• How good is an algorithm with running time nO(logn/ε^2) ?

• For sure better than exponential

• Better than nn or 2n

• But still not polynomial running time

• For what values of ε can we have polynomial time 
algorithms?
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Polynomial Time Approximation Algorithms

For e = 1/2:

Proposition: Τhis is a 1/2-approximate equilibrium with 
support size ≤ 2 for both players!

[Feder, Nazerzadeh, Saberi ’07]: For e < 1/2, we need in worst 
case, support at least W(log n)

i

k

j

• Pick arbitrary row i

• Let j = BR(i) = best response to i

• Find k = BR(j), pl. 1 plays i or k
with prob. 1/2 each

• Pl. 2 just plays j

Aij, Bij

Akj, Bkj
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Polynomial Time Approximation Algorithms

Better than ½-approximations in polynomial time

[Daskalakis, Mehta, Papadimitriou ’07]: polynomial time 
algorithm for e = 1-1/φ = (3-Ö5)/2 » 0.382 (φ = golden ratio) 

- Βased on sampling + Linear Programming

- Need to solve polynomial number of linear programs

- Not a very fast algorithm

- Polynomial time algorithm but still a large number of linear 
programs to be solved
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Polynomial Time Approximation Algorithms

Recall: 0-sum games can be solved in polynomial time 
(equivalent to linear programming)

- Given a game defined by the arrays (A, B), start 
with an equilibrium of the 0-sum game (A-B, B-A)

- If incentives to deviate are “high”, players adjust 
their strategies via best response moves

[Bosse, Byrka, Markakis ’07]: a different LP-based method with 
the same approximation of 0.382

• Needs to solve only 1 linear program
• Similar idea in [Kontogiannis, Spirakis ’07] for well-

supported approximation
• A small tweak can also yield a better approximation of 0.36
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A 0.382-approximation algorithm 

1. Find an equilibrium x*, y* of the 0-sum game (A - B, B - A)

2. Let g1, g2 be the maximum gain by deviating to a pure 
strategy for row and column player. Suppose g1 ³ g2

3. If g1£ a, output x*, y*

4. Else: let b1 = best response to y*, b2 = best response to b1

5. Output:

x = b1

y = (1 - d2) y* + d2 b2

Theorem: The algorithm with a = 1-1/φ and d2 = (1-g1) / (2-g1) 
achieves a (1-1/φ)-approximation 

Parameters of the algorithm: a, d2 Î [0,1]
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A 0.382-approximation algorithm 

Worst case scenario 
achieved at the intersection 
of the 2 curves
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Yet another approach

• [Spirakis, Tsaknakis ’07]: algorithm with the currently best 
known approximation of ε = 0.339
– yet another LP-based method
– Needs to solve a polynomial number of linear programs

• Big open problem:
– Can we find algorithms for lower values of ε, closer to 0? 
– Is it possible to have a poly-time algorithm for any constant ε>0? 

• Probably not... [Rubinstein ’16]

• So far, there have been improvements for several special 
classes of games
– Low-rank matrices, sparse matrices, symmetric games, win-lose 

games, …
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Progress on other notions of approximation

• e-well-supported equilibria:
– [Kontogiannis, Spirakis ’10]: Polynomial time only for ε = 2/3, based 

also on solving 0-sum games
– More recently improved to 0.6528 [Czumaj et al. ’18]

• Even stronger notion of approximation: require that the 
profile found is geometrically close to an exact Nash 
equilibrium 
– [Etessami, Yannakakis ’07]: mostly negative results 

• Open problem to provide more positive results, even for 
special cases, for these concepts as well
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Post-Mortem

• Difficult to find exact Nash equilibria for an arbitrary 2-player game

• A bit less difficult to find approximate Nash equilibria
– But still challenging and not yet well understood

• Is it a catastrophe if we do not have efficient algorithms for every 
game?
– Players in practice may also be able to adjust their strategies and gradually 

converge to an equilibrium by observing each other’s actions
– Still, “if your laptop cannot find an equilibrium, then neither can the 

market”, quote from Kamal Jain (2003)

• Despite the high complexity, the notion of a Nash equilibrium 
remains among the most important notions in game theory
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Post-Mortem

• Take-home story: Nash equilibria form a good starting point 
from a conceptual point of view

• But when intractable, we should think towards alternative and 
tractable variations of equilibrium concepts 

• E.g.:
– Suitable approximations, esp. for specific classes of games
– Equilibria that are reachable by local updates of the players 
– More suggestions in [Papadimitriou, Piliouras ’18]


