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Different Variations
• Congestion Games (CGs): (i) Resources, (ii) Players choose 

subset of resources, (iii) Payoffs/Costs based on congestion
• Network CGs/Selfish routing: Available subsets of resources 

form source-destination paths 
• Atomic case: k players, each routing a unit weight
• Non-Atomic case: Infinite, “tiny” players  form demands
• Splittable case: Players can split their weight
• Example:
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Αtomic selfish routing
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A model for atomic selfish routing 
games

Formal description:
•directed graph G = (V,E)
•finite number of k players
•Player i has an origin vertex si and a destination vertex ti

•Each player wants to route 1 unit of traffic on a single path 
from si to ti

– Similar reasoning applies if we allow the player to split the traffic 
into different paths from si to ti

•for each edge e, a cost function ce()
– Assumed nonnegative and nondecreasing
– Depends on the (integer) number of traffic units crossing edge e
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A model for atomic selfish 
routing games

Consider a feasible flow f 
– Let Pi = set of all distinct paths from si to ti

– f can be specified by a vector (p1, p2, ..., pk), where for i=1,..., k, the 
path pi is the path chosen by player i (pi  Pi)

Representation as an edge flow vector:
– We can also write f as a vector along edges of the graph
– For every edge e, fe = Σp: ep fp

– Hence, in this setting, fe = number of players who selected a path 
that includes e

Social cost of a flow

C(f) = Σp fp cp(f) = Σe fe ce(fe)
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Equilibrium flows
• When is a flow f an equilibrium flow?
• When no agent has an incentive to switch his unit of traffic 

to a different path connecting si to ti

• Consider a feasible flow f given by the paths (p1, p2, ..., pk)

• Given a path p’ ≠ pi, let
• p’  pi = set of edges in common between p’ and pi

• p’\pi
 = set of edges in p’ but not in pi

• Definition: A feasible flow f = (p1, p2, ..., pk) is a Nash 
equilibrium flow if for every player i = 1, ..., k, and every 
p’  Pi, 
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PoA in atomic games
• How bad is selfish routing in atomic games?
• Difference with non-atomic games: here we can have 

multiple equilibria with different social cost
– Unlike the non-atomic case, where all equilibria have the same social 

cost
• For a class of atomic selfish routing games:

PoA = max maxf C(f)/C(f*)

• The first maximization is w.r.t. to all the games in the 
class

• The second maximization is w.r.t. all the Nash flows
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PoA in atomic games
• What is the effect of atomicity on PoA?
• We can start with linear cost functions

Example:

s t

c(x)=2

c(x)=x

• Consider 2 players, each controlling 1 unit of traffic
• Optimal solution: each player in different edge (also an equilibrium) 
• Optimal social cost = 2+1 = 3
• There is a 2nd equilibrium: both agents take the lower edge (why?)
• Hence PoA ≥ 4/3
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PoA in atomic games
• Can PoA get higher than 4/3 in atomic games?

Example:

u v
xs1 

s2

• 4 players, 2 choices per agent, a 2-hop path or a 1-hop path
• Claim: PoA ≥ 5/2  (Homework)
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PoA in atomic games
• PoA can be worse in atomic games
• But not much worse for linear cost functions...
Theorem [Christodoulou, Koutsoupias ’05]: For atomic selfish 

routing games with linear cost functions
PoA = 5/2

• [Aland et al. ’11]: Generalizations to polynomial cost 
functions analogous to the non-atomic case

• For polynomials of degree p, PoA upper-bounded by a 
function of p

– Exponential in p however
– Much slower growth in non-atomic case: O(p/ln(p))

•  Main conclusion: relatively small PoA for low degree 
polynomial cost functions
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PoA in atomic games
• Proof techniques for atomic games can be applied to 

analyzing the PoA for a much wider class of games
• Extensive literature over the last 2 decades, since 2000
• Very few PoA proofs do not follow the proof technique of 

the 5/2 upper bound
• General approach: 
                    C(f)<=αC(f*)+βC(f) => PoA<=α/(1-β)
• Ideas for reducing the PoA in a game

– Impose restrictions on the strategy space of some players
– Impose tolls

• Interesting research agenda for transportation engineering
• For more, see Chapters 11-14 of Roughgarden’s book



Establishing existence of pure equilibria

• In arbitrary games with multiple (more than 2) players, it is 
generally hard to argue about existence of pure Nash 
equilibria

• But in many classes of games derived from application 
scenarios, one can exploit the structure of the problem

• For selfish routing, pure Nash equilibria exist for both atomic 
and non-atomic games

• Can we identify properties that can guarantee existence of 
pure Nash equilibria in other multi-player games as well?

15
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Back to selfish routing

Recall description of atomic games:
•directed graph G = (V,E)
•finite number of k players
•Player i has an origin vertex si and a destination vertex ti

•Each player wants to route 1 unit of traffic on a single path 
from si to ti

•for each edge e, a cost function ce()
– Assumed nonnegative and nondecreasing
– Depends on the (integer) number of traffic units crossing edge e

•Strategy space of player i: all the si-ti paths in the graph G
– Each pure strategy corresponds to a distinct si-ti path
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Congestion Games
A generalization:
•A set of players N = {1, 2,..., n}
•A set of m resources, E = {1, 2, ..., m}
•Each resource j has a cost function cj(.) dependent on the 
number of players using it

– cj(nj) = cost incurred by resource j when the number of players 
using j equals nj

•Strategy space Si of player i: a collection of subsets of the 
resources allowable for player i

– Each pure strategy is a distinct subset of E
•Cost of player i at a strategy profile: sum the resource cost 
functions over all resources being used by the player 
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Atomic routing games as 
congestion games

Resources = edges
– Each edge has a cost function dependent on the number 

of players using it 
Strategy space of player i = all si-ti paths

– Each player selects a subset of the resources that corresponds to a 
valid si-ti path

Cost of an agent:
– Need to sum over all the cost functions of the edges (resources) 

being used

Corollary: Routing games is just a special case of congestion 
games
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Pure equilibria and congestion 
games

Congestion games have been well studied due to their wide 
applicability in various domains

Theorem [Rosenthal ’73]: Every congestion games admits a 
pure Nash equilibrium

– One of the classic results on congestion games
– Unlike routing games, a cost function does not have to be non-

decreasing in a congestion game
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Pure equilibria and congestion 
games

Proof sketch of Rosenthal’s theorem
Most important idea: 
•Consider a strategy profile s = (s1, s2,..., sn)

•With nj = number of players using resource j at profile s
•Define the function:

Analogous proof also for non-atomic games

• For each player i, let ci(s) be the cost she experiences

• ci(s) = Σ cj(nj) where the sum is over all j  si

• Crucial property: for every player i, and every possible deviation si’
Φ(s) - Φ(si’, s-i) = ci(s) - ci(si’, s-i)
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Generalizing congestion games
• Can we establish existence for a broader class of games?
• The arguments in the proof for congestion games can help 

us
– We identified a function Φ that captures improvements by a 

deviation of a single player
– The function plays the role of measuring the difference in a player’s 

utility before and after a deviation for any player
– One single function capturing the deviation gain of every player

• Other games may also possess this property
• This is an example where a proof technique gives rise to a 

new definition
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Potential games
• Definition: a game G is an exact potential game if there 

exists a function Φ, s.t. for every strategy profile s = (s1, 
s2,..., sn), for every player i and every strategy si’ of pl. i:

 Φ(si, s-i) - Φ(si’, s-i) = ci(si, s-i) - ci(si’, s-i)
• a game is an ordinal potential game if there exists a 

function Φ, s.t. for every s = (s1, s2,..., sn), for every pl. i and 
every strategy si’ of pl. i:

Φ(si, s-i) > Φ(si’, s-i) iff ci(si, s-i) > ci(si’, s-i)

• We refer to a game as a potential game if it is either an 
exact or an ordinal potential game

– The function F is called a potential function
– Not always easy to find



Potential games
Examples
•Congestion games

• Using the potential function in Rosenthal’s theorem

•Network cost-sharing games: games that regard the sharing of 
cost for building a network

• See chapter 14 in 20LAGT

•Location games: games where players need to decide where 
to locate a store or a service point

• See chapter 15 in 20LAGT

Finding a potential function is the only general methodology 
we know for proving that a multi-player game has pure Nash 
equilibria 23



Another Example: The MAX-CUT game

Note: we can adjust the definitions and use the utility function 
of a player rather than the cost

Example:
•Undirected graph G = (V,E) representing a social group 
(colleagues, student mates, etc)
•Each player is a node v in V
•An edge (u, v) means u “does not like” v (and vice versa)
•Suppose each player has to choose among 2 suggested 
excursions (or 2 activities in general)
•For simplicity: strategy of node i: si  {Black,White}
•Utility of node i at profile s: # neighbors of different color

24



Another Example: The MAX-CUT game

Lemma: for every graph G, the corresponding game is a 
potential game

Proof:
•Consider a profile s = (s1, s2,..., sn) with si  {B, W}
•Under the profile s, the players are partitioned in 2 sets, 
T1, and T2

•Define Φ(s) = size of the cut determined by T1, and T2          

= # edges crossing the cut
•Claim: Φ(s) is a potential function for this game

25
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Potential games
• Theorem: every finite potential game admits a pure Nash 

equilibrium
• Proof: the profile minimizing Φ is an equilibrium (or 

maximizing Φ if we use utilities instead of costs)
– Let s = (s1, s2,..., sn) be a global minimum of Φ
– Suppose it is not a Nash equilibrium, so some player i can improve 

by deviating 
– new profile: s’ = (si’, s-i)
– Φ(s’) - Φ(s) = ci(s’) – ci(s) < 0
– Thus, Φ(s’) < Φ(s) , contradicting that s minimizes Φ 

• More generally, the set of pure Nash equilibria is exactly the 
set of local minima of the potential function

– Local minimum = no player can improve the potential function by a 
unilateral deviation



Best Response Dynamics and its 
variants

27



Reaching an equilibrium

• Suppose that we have a multi-player game with pure Nash 
equilibria

• How do we expect the players to find an equilibrium?
• Meaningful question for games that are played repeatedly
• If a player does not have a dominant strategy what would 

she do?
• Probably start with some initial strategy
• As she observes the other players’ actions, she can adjust her own in 

the next rounds
• Essentially each player is applying some learning algorithm to 

determine her next move
• We can observe a dynamic behavior of each player in a sequence of 

rounds based on her observations for the other players
28



Best response dynamics
Vanilla version
–Each player starts with some arbitrary strategy

– Let s = (s1, s2,..., sn) current profile
– If there exists a player who is not currently playing a 

best response, switch that player’s strategy to his best 
response

• If there are multiple such players, pick one arbitrarily
• If there are multiple best responses for a player pick one 

arbitrarily
– Update current profile

–Terminate when no player can improve (thus a Nash 
equilibrium)

29

• We can define several variations of the basic version
• Introduce specific criteria for breaking ties
• Better response vs best response
• Synchronous vs asynchronous



Best response dynamics

Visualization of dynamics

30

• We can think of best response dynamics as a walk in a graph
• Directed graph, G = (V, E)
• V = set of all strategy profiles
• There is an edge from a profile s to s’ if there exists a best 

response move by some player at s that results in s’

Convergence of best response dynamics
•It is not obvious whether this process converges or not
•If the process does not converge, the corresponding graph has a 
directed cycle (possibly more)
•If the process converges from any initial profile, the graph has 
no cycles



Examples

-1,1 1,-1

1,-1 -1,1

3,3 0,4

4,0 1,1

Matching penniesPrisoner’s dilemma

col

col

rowrow

• The first two have no cycles
• Can we come up with conditions that guarantee 

convergence of the dynamics?
• For sure, games with no pure equilibria do not converge
• Q: Are the first two games potential games?

2,1 0,0

0,0 1,2

Battle of the sexes



Convergence of best response dynamics

Theorem: In a finite potential game, and for any initial strategy 
profile, best response dynamics converge to a pure equilibrium
•In every iteration, some player makes an improvement move
•Hence, the potential function strictly decreases
•Since the strategy space is finite, the potential function cannot 
decrease forever

• It will halt at a local minimum of the potential, i.e., an equilibrium

32



Back to the MAX-CUT game

Corollary: best response dynamics converge to an 
equilibrium for the MAX-CUT game

How do we implement best response dynamics here?
•Consider a profile s = (s1, s2,..., sn) with si  {B, W}
•Under the profile s, the players are partitioned in 2 sets, 
T1, and T2

•If s is not an equilibrium, some player has a better move, 
i.e., by switching his strategy, he increases the size of the 
cut between the black and white sets
•Claim: Best response dynamics are equivalent to the 
greedy ½-approximation for the MAX-CUT problem!

33



Speed of convergence

• How fast do best response dynamics converge in potential 
games?

• We measure it with the number of iterations needed
• In worst case, it can be very slow
• A best response move may decrease the potential function 

only by a tiny amount
• It may require exponentially many (in terms of the number 

of players) iterations to converge

34
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Approximate best response 
dynamics

Relax the convergence requirements:
•We can compromise with convergence to an approximate 
equilibrium
•Convenient version of approximation: for potential games, a 
profile s = (s1, s2,..., sn) is an ε-equilibrium if for every player i 
and every deviation si’:

      ci(si’, s-i) ≥ (1-ε) ci(s)

•No deviation can produce a significant drop in the cost
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Approximate best response 
dynamics

• We can also impose only moves that provide significant 
improvement

• ε-move: a deviation si’ from the current profile s.t. ci(si’, s-i) < 
(1-ε) ci(s)

ε-best response dynamics (basic version):
– Each player starts with some arbitrary strategy

– Let s = (s1, s2,..., sn) be the current profile
– While the current profile is not an ε-equilibrium:

• Pick a player who has an ε-move
• Break ties arbitrarily if there are multiple such players or multiple 

ε-moves
• Update current profile
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Approximate best response 
dynamics

• A slight adjustment to a better version:
ε-best response dynamics (maximum-gain):

– Each player starts with some arbitrary strategy
– Let s = (s1, s2,..., sn) be the current profile
– While the current profile is not an ε-equilibrium:

• Pick a player who has an ε-move
• If there are multiple players who have an ε-move, pick the player 

i who can obtain the largest cost decrease in ci(s)
• Update current profile
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Approximate best response 
dynamics

• An application to atomic selfish routing games:
Consider an atomic routing games where:

– All players have the same origin and destination vertex
– There exists an α ≥ 1, s.t. for every edge e of the graph, 

ce(f+1)  [ce(f), αce(f)] (α-bounded jump condition)
Then, the max-gain variant of ε-best response dynamics 

converges to an ε-equilibrium in polynomial time
• In particular, at most kα/ε ln(Φ(s0)/Φmin) iterations
• s0 = initial profile
• Φmin = minimum of Φ
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Beyond best response dynamics
• Several other variations have been considered
• Rich interaction between machine learning and game 

theory
• We can think of each player as using a learning algorithm
• This leads to a probabilistic algorithm for each player  
• Important example: no-regret dynamics

– Each player maintains a probability distribution on his pure 
strategies based on past performance

– Multiplicative weight updates in each step
– Players try to bound the regret of their strategy against playing the 

best pure strategy
– Average regret -> 0
– Convergence to a different equilibrium concept (coarse correlated 

equilibria)
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Dynamics and equilibrium 
concepts

• For more on no-regret dynamics see Chapter 17 in 20LAGT
• At the end, what would be an appropriate stability 

concept? 
• Nash equilibria seem appropriate only for 0-sum games
• But still the driving force behind any other concept
• Considerations for studying alternative equilibrium notions:

– Computational complexity
– Convergence of natural learning algorithms (this would mean that 

players actually have a chance to reach such a state)
• Still a question under investigation...
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