Algorithmic Game Theory

(Network) Congestion Games, Selfish Routing and Potential Games

> Vangelis Markakis markakis@gmail.com

Different Variations

- Congestion Games (CGs): (i) Resources, (ii) Players choose subset of resources, (iii) Payoffs/Costs based on congestion
- Network CGs/Selfish routing: Available subsets of resources form source-destination paths
- Atomic case: k players, each routing a unit weight
- Non-Atomic case: Infinite, "tiny" players form demands
- Splittable case: Players can split their weight
- Example:

Different Variations

- Congestion Games (CGs): (i) Resources, (ii) Players choose subset of resources, (iii) Payoffs/Costs based on congestion
- Network CGs/Selfish routing: Available subsets of resources form source-destination paths
- Atomic case: k players, each routing a unit weight
- Non-Atomic case: Infinite, "tiny" players form demands
- Splittable case: Players can split their weight
- Example:

Different Variations

- Congestion Games (CGs): (i) Resources, (ii) Players choose subset of resources, (iii) Payoffs/Costs based on congestion
- Network CGs/Selfish routing: Available subsets of resources form source-destination paths
- Atomic case: k players, each routing a unit weight
- Non-Atomic case: Infinite, "tiny" players form demands
- Splittable case: Players can split their weight
- Example:

Atomic selfish routing

A model for atomic selfish routing games

Formal description:

- •directed graph G = (V,E)
- •finite number of k players
- •Player i has an origin vertex s_i and a destination vertex t_i
- •Each player wants to route 1 unit of traffic on a single path from s_i to t_i
 - Similar reasoning applies if we allow the player to split the traffic into different paths from s_i to t_i
- •for each edge e, a cost function $c_e()$
 - Assumed nonnegative and nondecreasing
 - Depends on the (integer) number of traffic units crossing edge e

A model for atomic selfish routing games

Consider a feasible flow f

- Let P_i = set of all distinct paths from s_i to t_i
- f can be specified by a vector (p₁, p₂, ..., p_k), where for i=1,..., k, the path p_i is the path chosen by player i (p_i ∈ P_i)

Representation as an edge flow vector:

- We can also write f as a vector along edges of the graph
- For every edge e, $f_e = \sum_{p: e \in p} f_p$
- Hence, in this setting, f_e = number of players who selected a path that includes e

Social cost of a flow

$$C(f) = \sum_{p} f_{p} c_{p}(f) = \sum_{e} f_{e} c_{e}(f_{e})$$

Equilibrium flows

- When is a flow f an equilibrium flow?
- When no agent has an incentive to switch his unit of traffic to a different path connecting s_i to t_i
- Consider a feasible flow f given by the paths (p₁, p₂, ..., p_k)
- Given a path $p' \neq p_i$, let
 - $p' \cap p_i$ = set of edges in common between p' and p_i
 - p'\p_i = set of edges in p' but not in p_i
- Definition: A feasible flow f = (p₁, p₂, ..., p_k) is a Nash equilibrium flow if for every player i = 1, ..., k, and every p' ∈ P_i,

$$\sum_{e \in p_i} c_e(f_e) \le \sum_{e \in p' \cap p_i} c_e(f_e) + \sum_{e \in p' \setminus p_i} c_e(f_e + 1)$$

- How bad is selfish routing in atomic games?
- Difference with non-atomic games: here we can have multiple equilibria with different social cost
 - Unlike the non-atomic case, where all equilibria have the same social cost
- For a class of atomic selfish routing games:

$PoA = max max_f C(f)/C(f^*)$

- The first maximization is w.r.t. to all the games in the class
- The second maximization is w.r.t. all the Nash flows

- What is the effect of atomicity on PoA?
- We can start with linear cost functions

Example:

- Consider 2 players, each controlling 1 unit of traffic
- Optimal solution: each player in different edge (also an equilibrium)
- Optimal social cost = 2+1 = 3
- There is a 2nd equilibrium: both agents take the lower edge (why?)
- Hence $PoA \ge 4/3$

• Can PoA get higher than 4/3 in atomic games?

Example:

- 4 players, 2 choices per agent, a 2-hop path or a 1-hop path
- Claim: PoA \geq 5/2 (Homework)

- PoA can be worse in atomic games
- But not much worse for linear cost functions...

Theorem [Christodoulou, Koutsoupias '05]: For atomic selfish routing games with linear cost functions

PoA = 5/2

- [Aland et al. '11]: Generalizations to polynomial cost functions analogous to the non-atomic case
- For polynomials of degree p, PoA upper-bounded by a function of p
 - Exponential in p however
 - Much slower growth in non-atomic case: O(p/ln(p))
- Main conclusion: relatively small PoA for low degree polynomial cost functions

- Proof techniques for atomic games can be applied to analyzing the PoA for a much wider class of games
- Extensive literature over the last 2 decades, since 2000
- Very few PoA proofs do not follow the proof technique of the 5/2 upper bound
- General approach:

 $C(f) \le \alpha C(f^*) + \beta C(f) \implies PoA \le \alpha/(1-\beta)$

- Ideas for reducing the PoA in a game
 - Impose restrictions on the strategy space of some players
 - Impose tolls
- Interesting research agenda for transportation engineering
- For more, see Chapters 11-14 of Roughgarden's book

Establishing existence of pure equilibria

- In arbitrary games with multiple (more than 2) players, it is generally hard to argue about existence of pure Nash equilibria
- But in many classes of games derived from application scenarios, one can exploit the structure of the problem
- For selfish routing, pure Nash equilibria exist for both atomic and non-atomic games
- Can we identify properties that can guarantee existence of pure Nash equilibria in other multi-player games as well?

Back to selfish routing

- Recall description of atomic games:
- •directed graph G = (V,E)
- •finite number of k players
- •Player i has an origin vertex s_i and a destination vertex t_i
- •Each player wants to route 1 unit of traffic on a single path from s_i to t_i
- •for each edge e, a cost function $c_e()$
 - Assumed nonnegative and nondecreasing
 - Depends on the (integer) number of traffic units crossing edge e
- •Strategy space of player i: all the s_i-t_i paths in the graph G
 - Each pure strategy corresponds to a distinct s_i-t_i path

Congestion Games

A generalization:

- •A set of players N = {1, 2,..., n}
- •A set of m resources, E = {1, 2, ..., m}
- •Each resource j has a cost function $c_j(.)$ dependent on the number of players using it
 - c_j(n_j) = cost incurred by resource j when the number of players using j equals n_j

•Strategy space Sⁱ of player i: a collection of subsets of the resources allowable for player i

- Each pure strategy is a distinct subset of E

•Cost of player i at a strategy profile: sum the resource cost functions over all resources being used by the player

Atomic routing games as congestion games

Resources = edges

 Each edge has a cost function dependent on the number of players using it

Strategy space of player i = all s_i-t_i paths

Each player selects a subset of the resources that corresponds to a valid s_i-t_i path

Cost of an agent:

 Need to sum over all the cost functions of the edges (resources) being used

Corollary: Routing games is just a special case of congestion games

Pure equilibria and congestion games

Congestion games have been well studied due to their wide applicability in various domains

Theorem [Rosenthal '73]: Every congestion games admits a pure Nash equilibrium

- One of the classic results on congestion games
- Unlike routing games, a cost function does not have to be nondecreasing in a congestion game

Pure equilibria and congestion games

- Proof sketch of Rosenthal's theorem
- Most important idea:
- •Consider a strategy profile s = (s₁, s₂,..., s_n)
- •With n_i = number of players using resource j at profile s
- •Define the function:

$$\Phi(s) = \sum_{j \in E} \sum_{i=1}^{n_j} c_j(i)$$

ana -

- For each player i, let c_i(s) be the cost she experiences
 - $c_i(s) = \Sigma c_j(n_j)$ where the sum is over all $j \in s_i$
- Crucial property: for every player i, and every possible deviation s_i'

$$\Phi(s) - \Phi(s_{i}^{\prime}, s_{-i}) = c_{i}(s) - c_{i}(s_{i}^{\prime}, s_{-i})$$

Analogous proof also for non-atomic games

Generalizing congestion games

- Can we establish existence for a broader class of games?
- The arguments in the proof for congestion games can help us
 - We identified a function Φ that captures improvements by a deviation of a single player
 - The function plays the role of measuring the difference in a player's utility before and after a deviation for any player
 - One single function capturing the deviation gain of every player
- Other games may also possess this property
- This is an example where a proof technique gives rise to a new definition

Potential games

- Definition: a game G is an exact potential game if there exists a function Φ, s.t. for every strategy profile s = (s₁, s₂,..., s_n), for every player i and every strategy s_i' of pl. i:
 Φ(s_i, s_{-i}) Φ(s_i', s_{-i}) = c_i(s_i, s_{-i}) c_i(s_i', s_{-i})
- a game is an ordinal potential game if there exists a function Φ, s.t. for every s = (s₁, s₂,..., s_n), for every pl. i and every strategy s_i' of pl. i:

 $\Phi(s_i, s_{-i}) > \Phi(s_i', s_{-i}) \text{ iff } c_i(s_i, s_{-i}) > c_i(s_i', s_{-i})$

- We refer to a game as a potential game if it is either an exact or an ordinal potential game
 - The function F is called a potential function
 - Not always easy to find

Potential games

Examples

•Congestion games

• Using the potential function in Rosenthal's theorem

•Network cost-sharing games: games that regard the sharing of cost for building a network

• See chapter 14 in 20LAGT

•Location games: games where players need to decide where to locate a store or a service point

• See chapter 15 in 20LAGT

Finding a potential function is the only general methodology we know for proving that a multi-player game has pure Nash equilibria

Another Example: The MAX-CUT game

Note: we can adjust the definitions and use the utility function of a player rather than the cost

Example:

- •Undirected graph G = (V,E) representing a social group (colleagues, student mates, etc)
- •Each player is a node v in V
- •An edge (u, v) means u "does not like" v (and vice versa)
- •Suppose each player has to choose among 2 suggested excursions (or 2 activities in general)
- •For simplicity: strategy of node i: $s_i \in \{Black, White\}$
- •Utility of node i at profile s: # neighbors of different color

Another Example: The MAX-CUT game

Lemma: for every graph G, the corresponding game is a potential game

Proof:

- •Consider a profile $s = (s_1, s_2, ..., s_n)$ with $s_i \in \{B, W\}$
- •Under the profile s, the players are partitioned in 2 sets, $\rm T_{1},$ and $\rm T_{2}$
- •Define $\Phi(s)$ = size of the cut determined by T_1 , and T_2

= # edges crossing the cut

•Claim: $\Phi(s)$ is a potential function for this game

Potential games

- <u>Theorem</u>: every finite potential game admits a pure Nash equilibrium
- <u>Proof</u>: the profile minimizing Φ is an equilibrium (or maximizing Φ if we use utilities instead of costs)
 - Let $s = (s_1, s_2, ..., s_n)$ be a global minimum of Φ
 - Suppose it is not a Nash equilibrium, so some player i can improve by deviating
 - new profile: $s' = (s_i', s_{-i})$
 - $\Phi(s') \Phi(s) = c_i(s') c_i(s) < 0$
 - Thus, $\Phi(s') < \Phi(s)$, contradicting that s minimizes Φ
- More generally, the set of pure Nash equilibria is exactly the set of local minima of the potential function
 - Local minimum = no player can improve the potential function by a unilateral deviation

Best Response Dynamics and its variants

Reaching an equilibrium

- Suppose that we have a multi-player game with pure Nash equilibria
- How do we expect the players to find an equilibrium?
- Meaningful question for games that are played repeatedly
- If a player does not have a dominant strategy what would she do?
 - Probably start with some initial strategy
 - As she observes the other players' actions, she can adjust her own in the next rounds
 - Essentially each player is applying some learning algorithm to determine her next move
 - We can observe a dynamic behavior of each player in a sequence of rounds based on her observations for the other players

Best response dynamics

Vanilla version

-Each player starts with some arbitrary strategy

- Let $s = (s_1, s_2, ..., s_n)$ current profile
- If there exists a player who is not currently playing a best response, switch that player's strategy to his best response
 - If there are multiple such players, pick one arbitrarily
 - If there are multiple best responses for a player pick one arbitrarily
- Update current profile

-Terminate when no player can improve (thus a Nash equilibrium)

- We can define several variations of the basic version
 - Introduce specific criteria for breaking ties
 - Better response vs best response
 - Synchronous vs asynchronous

Best response dynamics

Visualization of dynamics

- We can think of best response dynamics as a walk in a graph
- Directed graph, G = (V, E)
- V = set of all strategy profiles
- There is an edge from a profile s to s' if there exists a best response move by some player at s that results in s'

Convergence of best response dynamics

- It is not obvious whether this process converges or not
- •If the process does not converge, the corresponding graph has a directed cycle (possibly more)
- •If the process converges from any initial profile, the graph has no cycles

- Can we come up with conditions that guarantee convergence of the dynamics?
- For sure, games with no pure equilibria do not converge
- Q: Are the first two games potential games?

Convergence of best response dynamics

Theorem: In a finite potential game, and for any initial strategy profile, best response dynamics converge to a pure equilibrium

- •In every iteration, some player makes an improvement move
- •Hence, the potential function strictly decreases
- •Since the strategy space is finite, the potential function cannot decrease forever
 - It will halt at a local minimum of the potential, i.e., an equilibrium

Back to the MAX-CUT game

Corollary: best response dynamics converge to an equilibrium for the MAX-CUT game

How do we implement best response dynamics here? •Consider a profile $s = (s_1, s_2, ..., s_n)$ with $s_i \in \{B, W\}$

•Under the profile s, the players are partitioned in 2 sets, $\rm T_{1},$ and $\rm T_{2}$

•If s is not an equilibrium, some player has a better move, i.e., by switching his strategy, he increases the size of the cut between the black and white sets

•Claim: Best response dynamics are equivalent to the greedy ½-approximation for the MAX-CUT problem!

Speed of convergence

- How fast do best response dynamics converge in potential games?
- We measure it with the number of iterations needed
- In worst case, it can be very slow
- A best response move may decrease the potential function only by a tiny amount
- It may require exponentially many (in terms of the number of players) iterations to converge

Relax the convergence requirements:

•We can compromise with convergence to an approximate equilibrium

•Convenient version of approximation: for potential games, a profile $s = (s_1, s_2, ..., s_n)$ is an ε -equilibrium if for every player i and every deviation s_i ':

 $c_i(s_i', s_{-i}) \ge (1-\varepsilon) c_i(s)$

•No deviation can produce a significant drop in the cost

- We can also impose only moves that provide significant improvement
- ε-move: a deviation s_i' from the current profile s.t. c_i(s_i', s_{-i}) < (1-ε) c_i(s)
- ε-best response dynamics (basic version):
 - Each player starts with some arbitrary strategy
 - Let $s = (s_1, s_2, ..., s_n)$ be the current profile
 - [–] While the current profile is not an ϵ -equilibrium:
 - Pick a player who has an ε-move
 - Break ties arbitrarily if there are multiple such players or multiple ε-moves
 - Update current profile

- A slight adjustment to a better version:
- ε-best response dynamics (maximum-gain):
 - Each player starts with some arbitrary strategy
 - Let $s = (s_1, s_2, ..., s_n)$ be the current profile
 - [–] While the current profile is not an ε -equilibrium:
 - Pick a player who has an ε-move
 - If there are multiple players who have an ε-move, pick the player i who can obtain the largest cost decrease in c_i(s)
 - Update current profile

• An application to atomic selfish routing games:

Consider an atomic routing games where:

- All players have the same origin and destination vertex
- There exists an α ≥ 1, s.t. for every edge e of the graph, c_e(f+1) ∈ [c_e(f), αc_e(f)] (α-bounded jump condition)
- Then, the max-gain variant of ε-best response dynamics converges to an ε-equilibrium in polynomial time
 - In particular, at most $k\alpha/\epsilon \ln(\Phi(s^0)/\Phi_{min})$ iterations
 - s^o = initial profile
 - Φ_{\min} = minimum of Φ

Beyond best response dynamics

- Several other variations have been considered
- Rich interaction between machine learning and game theory
- We can think of each player as using a learning algorithm
- This leads to a probabilistic algorithm for each player
- Important example: no-regret dynamics
 - Each player maintains a probability distribution on his pure strategies based on past performance
 - Multiplicative weight updates in each step
 - Players try to bound the regret of their strategy against playing the best pure strategy
 - Average regret -> 0
 - Convergence to a different equilibrium concept (coarse correlated equilibria)

Dynamics and equilibrium concepts

- For more on no-regret dynamics see Chapter 17 in 20LAGT
- At the end, what would be an appropriate stability concept?
- Nash equilibria seem appropriate only for 0-sum games
- But still the driving force behind any other concept
- Considerations for studying alternative equilibrium notions:
 - Computational complexity
 - Convergence of natural learning algorithms (this would mean that players actually have a chance to reach such a state)
- Still a question under investigation...