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ABSTRACT. In a congestion game, several players simultaneously
aim at allocating sets of resources, e.g., each player aims at allocating
a shortest path between a source/destination pair in a given network
or, to give another example, each player aims at allocating a mini-
mum weight spanning tree in a given graph. The cost (length, delay,
weight) of a resource (edge) is a function of the congestion, i.e., the
number of players allocating the resource. In this paper, we survey
recent results about the complexity of computing Nash equilibria for
congestion games and the convergence time towards Nash equilibria.

1 Introduction

Congestion games lie in the intersection between optimization and game
theory. In optimization, one seeks for an optimal solution among a set of
feasible solutions usually specified in a concise way, e.g., the set of feasible
solutions is the set of paths between a specified source/destination pair in
a given network and the objective is to find a path of minimum length.
In game theory, several players simultaneously seek at maximizing their
individual payoff. Each player can choose among different strategies and its
payoff depends on the choices of all players. A Nash equilibrium is a selection
of strategies for all players such that none of the players can unilaterally
improve its payoff. In a Nash equilibrium, each player has thus chosen an
optimal strategy in the form of a best response to the choices of the other
players. Suppose several players simultaneously want to allocate a shortest
path in a given network and the length of an edge depends on the number of
players using the edge. This kind of game is a so-called network congestion
game, a particular variant of congestion games.

More generally, a congestion game T is a tuple (N, R, (X;)ien, (dr)rer)
where N' = {1,...,n} denotes the set of players, R = {1,...,m} the set
of resources, ¥; C 2% the strategy space of player i, and d, : N — Z a
cost function associated with resource r. S = (S1,...,S5,) is a state of
the game in which player ¢ chooses strategy S; € ¥;. For a state S, we
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define the congestion n..(S) on resource r by n,.(S) = |{i | r € S;}|. We
assume that players act selfishly and aim at choosing strategies S; € 3;
minimizing their individual cost, where the cost d;(S) of player i is given by
5:(9) = X cs, de(ne(S)).

Given any state S = (S1,...,5,), an improvement step of player i is a
change of its strategy from S; to S/ such that the cost of player ¢ decreases,
ie., (SZ(S ) SZ) < 61(5), where S @ Sz/ = (Sl, ey Siq, Sz/’ P Sn)
A classical result of Rosenthal [6] shows that sequences of improvement
steps by possibly different players do not run into cycles but reach a Nash

equilibrium after a finite number of steps.

PROPOSITION 1 (Finite Improvement Property). For every congestion
game, every sequence of improvement steps is finite.

Proof. The proposition is shown by a potential function argument. Rosen-
thal’s potential function ¢ : X1 X -+ X X, — Z is defined by

nr(s)

G(S) =Y Y d(i) .

reR i=1

Let n&z)(S ) denote the number of those players using resource r that have
an index from {1,...,i}, and let 8/(S) = 3, g, dr(n”(S)), that is, 8/(S) is
a virtual cost that player ¢ would have if the players with index i +1,...,n
would not exist. We exchange the two sums in the definition of the potential,

and obtain . .

B(8) = D3 dnf(8) = D aU(S)
i=1res; i=1

This formulation of the potential has the following intuitive interpretation.

Players together with their strategy are “inserted” one after the other into

the game, and the potential accounts for the cost of each player’s strategy

at the insertion time of the player.

Now suppose player n can decrease its cost by switching to another strat-
egy. For this player, the virtual cost 4/ (S) is the same as the true cost
5,(S). Hence, if this player decreases its cost by an unilateral move then
the potential is decreased by the same amount. Of course, this is not a
special property of player n as the potential can be computed by inserting
the players in any order so that any player can be assumed to be the last
player.

Consequently, as the potential of any state in a fixed congestion game is
upper- and lower-bounded by some finite quantity and every improvement
step decreases the potential at least by one, the length of any sequence of
improvement steps must be finite as well. |



Congestion Games 3

Nash equilibria are the only fixed points of the dynamics defined by
improvement steps. Hence, the finite improvement property immediately
implies the existence of pure Nash equilibria in congestion games, where pure
means that these equilibria do not involve randomized (mixed) strategies.
In the following, we drop the attribute pure and the term Nash equilibrium
always refers to a pure Nash equilibrium.

Games that admit an exact potential function, i.e., a potential function
with the property that an improvement of an individual player decreases
the potential by exactly the same amount as the player’s cost, are called
potential games. Rosenthal’s potential function is exact and, hence, con-
gestion games are potential games. Monderer and Shapley [2] have shown
that every potential game can be represented in form of a congestion game.
Thus, congestion games are essentially the only class of games for which one
can show the existence of pure equilibria with an exact potential function.

2 The Connection to Local Search

Rosenthal’s potential function allows to interprete congestion games as local
search problems. In general, a local search problem II is given by its set
of instances Zry. For every instance I € 7y, we are given a finite set of
feasible solutions F(I), an objective function ¢ : F(I) — Z, and for every
feasible solution S € F(I), a neighborhood N(S,I) C F(I). The so-called
transition graph contains a node v(S) for every feasible solution S € F(I)
and a directed edge from a node v(Sy) to a node v(Sz) if Sy is in the
neighborhood of S; and if the objective value ¢(S3) is strictly better than
the objective value ¢(S1). The sinks of this graph are the local optima. In
case of a congestion game, the set of feasible solutions corresponds to the set
of states, the objective function is defined by Rosenthal’s potential function
and the neighborhood of a state S consists of those states that deviate from
S only in one player’s strategy. Sequences of improvement steps correspond
to paths in the transition graph and the sinks of this graph are the Nash
equilibria of the game.

Given a congestion game, how difficult is it to compute a Nash equilib-
rium? — One way to find a Nash equilibrium is to use a heuristic following
the local search paradigm, i.e., start at any state and perform improvement
steps until a Nash equilibrium is reached. Observe that the number of states
is exponential in the number of players, even if there are only two alterna-
tive strategies for each player. Thus, there might be instances for which
a heuristic following this paradigm takes an exponential number of steps.
Notice that, even if there are states for which all improvement paths have
exponential length, there might be other, indirect algorithmic approaches
for computing Nash equilibria efficiently. Fabrikant et al. [3] had the striking
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idea to relate the complexity of finding Nash equilibria for congestion games
to the complexity of computing local optima for other local search problems.
In particular, they considered problems from the class PLS (Polynomially
Local Search). A local search problem II belongs to PLS if the following
polynomial time algorithms exist:

1. an algorithm A which computes for every instance I of II an initial
feasible solution S € F(I),

2. an algorithm B which computes for every instance I of II and every
feasible solution S € F(I) the objective value ¢(S),

3. an algorithm C which determines for every instance I of II and every
feasible solution S € F(I) whether S is locally optimal or not and
finds a better solution in the neighborhood of S in the latter case.

Let us give some illustrative examples. In the MAX-SAT (maximum sat-
isfiability) problem, we are given a Boolean formula in conjunctive normal
form with a positive integer weight for each clause. A solution is an assign-
ment of the value 0 or 1 to all variables. Its weight, to be maximized, is the
sum of the weights of all satisfied clauses. The restriction to instances with
at most k literals in each clause is called MAX-kSAT. A natural neighbor-
hood for this problem is the Flip-neighborhood, where two assignments are
neighbors if one can be obtained from the other by flipping the value of a sin-
gle variable. In a variation of this problem, called POS-NAE-MAX-kESAT,
one assumes that clauses contain only positive literals and the objective is
to maximize the weighted sum of those clauses whose literals do not all have
the same value. Another illustrative example is the MAXCUT problem. An
instance of this problem consists of a simple undirected graph G = (V, E)
with non-negative edge weights. A feasible solution is a partition of V' into
two sets A and B. Two solutions are neighboring with respect to the Flip-
neighborhood if one can be obtained from the other by moving a single
vertex from one set to the other. The objective is to maximize the weight
of the cut (A, B), i.e., the weight of the edges between the two sets A and
B. Remarkably, MAXCUT is equivalent to POS-NAE-MAX-2SAT.

Johnson et al. [5] introduced the notion of a PLS-reduction. A problem IIy
from PLS is PLS-reducible to a problem Il5 from PLS if there are polynomial-
time computable functions f and g such that:

1. f maps instances I of II; to instances f(I) of Ils,

2. g maps pairs (Sa,I) with Sy denoting a solution of f(I) to solutions
Sl of I,

3. for all instances I of IIy, if S5 is a local optimum of instance f(I) then
g(Sa,1) is a local optimum of I.
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A local search problem II from PLS is PLS-complete if every problem in
PLS is PLS-reducible to II. Schéffer and Yannakakis [7] have shown that
MAX-ESAT as well as POS-NAE-MAX-ESAT are PLS-complete, for ev-
ery k > 2. As MAXCUT is equivalent to POS-NAE-MAX-2SAT it is
PLS-complete, too. For further examples and a comprehensive overview on
the complexity of local search we refer the reader to [8].

Fabrikant et al. [3] show that computing a Nash equilibrium in congestion
games is PLS-complete, even if the class of congestion games is restricted
to symmetric games. They use a reduction from POS-NAE-MAX-3SAT.
We present a similar reduction from MAXCUT.

THEOREM 2. Computing a Nash equilibrium in (symmetric) congestion
games is PLS-complete.

Proof. Let us first ignore the symmetry requirement. Given an instance
of MAXCuUT, we construct a congestion game as follows. For each edge e of
weight w, we have two resources rgA) and rgB), with cost 0 if used by only
one player and cost w if used by more players. The players correspond to the

nodes. Player v has two strategies: one strategy contains all rgA)’s for edges

e incident to v, and another that contains all rgB)’s for the same edges.
The first strategy corresponds to assigning v to the set A and the latter
strategy corresponds to assigning v to B. This one-to-one correspondence
between the assignments of the nodes in the MAXCuT-instance and the
strategies of the players in the congestion game has the property that the
local optima of the MAXCuT-instance coincide with the Nash equilibria
of the congestion game. Hence, our construction is a PLS-reduction from
MaxCuT to (possibly asymmetric) congestion games.

It remains to present a reduction from the general to the symmetric
case. Suppose we are given a general congestion game with strategy spaces
¥q,..., 2, CR. We extent R by additional resources r1, ..., r, with cost 0
if used by one player and cost M, otherwise, where M is a large number. For
ie N, let 3} = {SU{r;}S € 3;}. The symmetric game has the common
strategy space ¥ = ¥} U...UX!. If M is chosen sufficiently large then
any equilibrium of this game has one player using a strategy from X;. This
property yields an obvious correspondence between the Nash equilibria of
the symmetric and the asymmetric game, and, hence, gives a PLS-reduction.

|

Hence, designing an efficient algorithm computing Nash equilibria for
(symmetric) congestion games requires to discover a general approach for
local optimization. It might sound unlikely but one cannot rule out a priori
that there exists an algorithm that efficiently computes local optima for
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every PLS-problem. Let us point out, however, that such an algorithm
cannot just use the local search paradigm, i.e., start at any state and perform
improvement steps until a local optimum is found. This is because there
are instances of PLS-problems, e.g., instances of MAXCuUT, whose transition
graph contains nodes (solutions) that have an exponential distance to any
sink (local optimum). In fact, the PLS-reduction presented above preserves
this property as the transition graph of the congestion game is isomorphic
to the transition graph of the MAXCuT-instance. Consequently, there are
congestion games with states such that all improvement paths that lead
from these states to a Nash equilibrium have a length that is exponential
in the number of players.

3 Matroid Congestion Games

Now we study the impact of combinatorial structure on congestion games.
In particular, we investigate for which classes of congestion games improve-
ment steps converge quickly towards a Nash equilibrium. Suppose players
iteratively use best responses until they reach a Nash equilibrium, that is,
we consider sequences of improvement steps in which the player changing
its strategy always switches to an alternative strategy of minimal cost. As
best responses are just a special variant of improvement steps, our analysis
above shows that there exist congestion games with best response sequences
of exponential length. The combinatorial structure underlying these bad ex-
amples is based on the MAXCUT problem. In the following, we study which
kind of combinatorial structure yields fast convergence.

We take a local perspective, that is, we study which property of the
strategy spaces of individual players can guarantee that best responses reach
a Nash equilibrium in a number of steps that is polynomial in the number
of players and resources. Singleton games are characterized by the property
that the strategy space of each player consist only of strategies that contain
a single resource. For this class of games, Ieong et al. [4] show that any
sequence of improvement steps reaches a Nash equilibrium after at most
n?m best responses. Ackermann et al. [1] generalize their analysis towards
matroid congestion games, i.e., to congestion games in which the strategy
space of each player corresponds to the basis of a matroid. An illustrative
example are spanning tree congestion games. In such a game, each of the
players wants to build a minimum cost spanning tree of a given graph and
the cost of an edge depends in some arbitrary way on the number of players
that use the edge in their spanning tree. Matroid games are not restricted to
spanning trees and need not be symmetric. Even simple matroid structures
like uniform matroids that are rather uninteresting from an optimization
point of view lead to rich combinatorial structures when various players
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with possibly different strategy spaces are involved. The rank rk(T") of a
matroid congestion game I is defined to be the maximum rank over all
players’ matroids.

THEOREM 3. Let ' be a matroid congestion game. Then players reach a
Nash equilibrium after at most n> m rk(I') < n?m? best response improve-
ment steps.

Proof. Let L be a sorted list of all cost values that can occur on single
resources. Suppose L lists the values d.(i), for r € R and 1 < ¢ < n, in non-
decreasing order. For each resource r, define an alternative cost function
d, : N — N where, for each possible congestion ¢, JT(z) equals the rank of
the cost value d,.(7) in L. Equal cost values receive the same rank.

LEMMA 4. Consider any state S. Let S} € ¥; be a best response to S of
any player i € N. Then S} decreases the cost of player i with respect to the
alternative cost functions d.

Proof. We make use of a special property of matroids: The best response
S¥ can be decomposed in a sequence of (1,1)-exchange steps in each of which
the player exchanges only one resource in its strategy and does not increase
the cost with respect to the original cost functions d. Suppose resource r
is exchanged in one of these exchange steps against a resource r’ and the
original cost of 7’ is smaller than the original cost of r. Then also the alter-
native cost of r’ is smaller than the alternative cost of r since the original
cost value of 7" occurs in L before the original cost value of r. Further-
more, if both resources have the same original cost then they also have the
same alternative cost. Hence, over all exchange steps the alternative cost
decreases because there must be at least one exchange step in which the
original cost decreases. ]

Now we consider Rosenthal’s potential function with respect to the alter-
native cost. Lemma 4 yields that the potential decreases whenever a player
makes a best response. Since there are at most n - m different cost values,

d, (i) <m-m for all resources r € R and for all possible congestion values i.
As a consequence,

nr(S5) nr(S)
b(S) = Z Z d, (i) < Z Z nm < n®*mrk(T) ,
rer i=1 reR i=1

where the latter inequality holds as each of the n players occupies at most
rk(T") resources. Now the theorem follows since each best response decreases
the potential by at least one and the potential cannot drop below zero. M
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It is remarkable that the positive result above holds regardless of the
global structure of the game and for any kind of cost functions. Ackermann
et al. [1] also show that this analysis is essentially tight in the sense that the
matroid property is the maximal property that yields such a result. Their
analysis identifies a sub-structure, called (1,2)-exchange, that can be found
in any inclusion-free non-matroid set system.

LEMMA 5. Consider any instance T of a minimization problem over an
inclusion-free non-matroid set system X over a set of resources R. There
exist three resources a,b,c € R with the property that, if the weights of the
other resources are set appropriately, an optimal solution of I contains the
resource a but not the resources b and c if w, < wp + we, and it contains b
and ¢ but not a if w, > wp + Wwe.

This substructure allows to construct exponentially long improvement
sequences of best responses, which implies the following result.

THEOREM 6. Let ¥ be an inclusion-free non-matroid set system over a
set of resources R. For every n € N, there exists a congestion game T’
with 4n players each of which having a strategy space isomorphic to X, and
O(n - |R]|) resources with non-negative and non-decreasing cost functions
such that there exists a best response sequence of length 2.

Observe that the assumption that ¥ is inclusion-free is natural when all
cost values are non-negative as, in this case, supersets are dominated by
subsets. Hence, we can conclude that the matroid property is the maximal
property on the individual players’ strategy spaces that guarantees polyno-
mial convergence of best responses in congestion games.

4 Network Congestion GGames

In a network congestion game, we are given a directed graph and, for each
player, a source and a destination node. Every player seeks for a minimum
delay path connecting its source with its destination. The delay of an edge
depends on the number of players using that edge. Typically, it is assumed
that the delay functions are non-decreasing. In the symmetric variant of
the game, all players have the same source and the same destination. In
this special case, one can compute a Nash equilibrium with the help of a
min-cost flow algorithm [3].

THEOREM 7. There is a polynomial time algorithm for computing Nash
equilibria in symmetric network congestion games with non-decreasing delay
functions.

Proof. The congestion game is reduced to a min-cost flow problem as
follows. Each edge e is replaced by n parallel edges e, ..., e, between the
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same nodes. Edge e; is assigned cost d (i), for 1 < i < n. All edges
have capacity 1. Observe, if a min-cost flow solution uses some of the
edges eq, ..., e,, then it sends an integral amount of flow along these edges.
If it sends k units of flow along these edges, then it uses the k cheapest
edges. W.l.o.g., these are the edges eq,...,e; as the delay functions are
non-decreasing. Thus, the cost for sending the flow along these edges is
de(1) + ... + dc(k), which corresponds to the potential that Rosenthal’s
potential function assigns to edge e if k players use this edge. Consequently,
we can translate the optimal solution of the min-cost flow problem into a
state of the congestion game whose potential corresponds to the cost of the
flow. Hence, the min-cost flow solution corresponds to a Nash equilibrium
that globally minimizes Rosenthal’s potential function. |

Let us remark that the result above does not imply that one can reach
a Nash equilibrium in symmetric network congestion games with best re-
sponses efficiently. In fact, there exist instances of symmetric network con-
gestion games with non-decreasing delay functions that have states with an
exponential distance to any Nash equilibrium in the transition graph [1].
This is a remarkable result as it yields an example of a local search problem
of rich combinatorial structure for which one cannot find a local optimum
efficiently with a direct approach following the local search paradigm but
there is an indirect method based on min-cost flow that finds a local opti-
mum efficiently.

One might wonder whether there is such an indirect method also for the
general (asymmetric) case. Unfortunately, this is probably not the case as
Fabrikant et al. [3] have shown that the problem of finding Nash equilib-
ria in general network congestion games is PLS-complete. Their analysis
is quite complicated. Ackermann et al. [1] present a shorter analysis that
additionally shows that the problem is PLS-complete even if the delay func-
tions are linear. The analysis leading to this result makes a detour first
showing PLS-completeness for another variant of congestion games.

Threshold games are a special class of congestion games. Assume that
the set of resources R is divided into two disjoint subsets R, and R.,,. The
set Rou contains a resource r; for every ¢ € A. This resource has a fixed
cost T; called the threshold of player ¢. Each player ¢ has only two strategies,
namely a strategy S¢** = {r;} with r; € R,., and a strategy Si* C R,,.
The preferences of player ¢ can be described in a simple and intuitive way:
Player ¢ prefers to choose strategy Si" against strategy S;"* if the cost of
Si» is smaller than the threshold T;. Quadratic threshold games are a quite
restrictive subclass of threshold games. In this variant, the set R.,,, contains
exactly one resource r;; for every unordered pair of players {¢, j} C N. For
every player i € N of a quadratic threshold game, Si* = {r;; | j € N'\ {i}}.
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THEOREM 8. Computing a Nash equilibrium of a quadratic threshold game
is PLS-complete.

Proof. We prove the theorem by a PLS-reduction from MAXCuT. Consider
an instance of MAXCUT that, w.l.o.g., consists of a complete weighted graph
G = (V,E) with non-negative edge weights w;;. The MAXCUT problem
can be described in terms of a game, the so-called party affiliation game
in which players correspond to nodes that can choose whether they belong
to partition A or B. Edges reflect some symmetric kind of anti-sympathy,
that is, a node seeks to choose one of the two sets such that the weighted
number of edges leading to the other set is maximized. The Nash equilibria
of the party affiliation game coincide with the local optima of the MAaXCuT
instance with respect to the flip-neighborhood.

The preferences of the players in the party affiliation game can be de-
scribed in the following way that points out what could be a suitable thresh-
old for a player. For player i, let W, denote the sum of the weights of all of
its incident edges and Wi(B) the sum of the weights of the edges that connect
1 with nodes in partition B. Player i prefers strategy A against strategy B
if WZ—(B) > %Wi, it prefers strategy B against strategy A if WZ-(B) < %Wi,
and it is indifferent if WZ—(B) = %Wi.

Now we show how to represent the party affiliation game in the form of a
quadratic threshold game. Both games involve the same number of players.
We identify the players in the two games. With each edge e = {i,j}, we
associate the resource r;; € R,,. The delay of this resource is 0 if the
resource is used by only one player and its delay is w;; if it is used by two
players. We identify strategy B of player i in the party affiliation game
with strategy S;* in the congestion game. Player i’s strategy A in the party
affiliation game corresponds to strategy Sy** in the threshold game, and the
delay of this strategy is T; = %Wi. Observe that the players’ preferences in
both games are identical so that we have described a PLS-reduction. |

Now we are ready to show the PLS-completeness of asymmetric network
congestion games by a reduction from quadratic threshold games.

THEOREM 9. Computing a Nash equilibrium for a general network con-
gestion game with non-decreasing, linear delay functions is PLS-complete.

Proof. Let I' be a quadratic threshold game. We map I' to an asymmetric
network routing game. The network consists of the lower-left triangle of an
nxn grid (including the vertices on the diagonal) in which the column edges
are directed downwards and the row edges are directed from left to right.
For every player 7 in I', we introduce a player i in the network congestion
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game whose source node s; is the i-th node in the first column and whose
target node ¢; is the i-th node in the last row. For every player i € N, we
add an edge from s; to t;, called threshold edge. Due to the directions of
the grid edges, the threshold edge of player ¢ can only be used by player <.

Our first goal is to define delay functions in such a way that there are
only two relevant strategies for player i: the shortcut edge (s;,t;) or the
row-column path from s; to t;, i.e., the path from s; along the edges of row
7 until column ¢ and then along the edges of column i to ¢;. All other paths
shall have such high delays that they are dominated by these two paths,
regardless of the other players choices. We achieve this goal by assigning
the constant delay function 0 to all column edges and the constant delay
function D - ¢ to all row edges in row i, where D denotes a large integer.
Furthermore, for the time being, we assume that the shortcut edge (s;,t;)
has the constant delay D - - (i — 1). This way, each player ¢ has only
two undominated strategies: its shortcut edge or its row-column path. The
delays of these two alternative routes are so far identical.

Now we define additional delay functions for the nodes, that is, we view
also the nodes as resources. (It is easy to see how the nodes can be replaced
by gadgets such that all resources are edges.) For 1 < i < j < n, the node
in column ¢ and row j is identified with the resource r;; € R, from the
quadratic threshold game. In particular, we assume that the node has the
same cost function as the corresponding resource from the threshold game.
This way, the row-column path of player ¢ corresponds to the strategy S;»
of the threshold game. Furthermore, we increase the delay on the shortcut
edge of player ¢ from D-i- (i —1) to D -i- (i — 1) + T, where T; is the cost
of resource r; € R;, from the threshold game. This way, the shortcut edge
of player ¢ corresponds to the strategy Sy** of the threshold game.

If D is chosen sufficiently large then all strategies except for the row-
column paths and the shortcut edges are dominated and, hence, can be
ignored. The remaining strategy spaces of the players and the corresponding
delay functions are isomorphic to the strategies and cost functions of the
threshold game. In particular, also the Nash equilibria of the two games
coincide. Thus, our construction is a PLS-reduction. Finally, observe that
all delay functions can be described in terms of linear functions as each of
the resources is used by at most two of the players. |

5 Conclusions

Finding a Nash equilibrium in general congestion games is PLS-complete
and, hence, as hard as solving any other local optimization problem in this
class. Assuming, however, that the strategy spaces of all players correspond
to the bases of matroids, Nash equilibria can be found in polynomial time
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just by repeated best responses. The technical reason behind this result is
the (1, 1)-exchange property of matroids that allows to decompose best re-
sponses into a sequence of exchanges of single resources that do not increase
the cost. In fact, the matroid property is the maximal condition on the in-
dividual players’ strategy spaces that ensures polynomial convergence time.
In instances of optimization problems over (inclusion-free) non-matroid set
systems one can identify a substructure called (1,2)-exchange. With this
substructure as a basic building block, one can construct congestion games
with exponentially long best response paths.

Is there a similar structural characterization of those classes of congestion
games that are PLS-complete? — In fact, the strategy space of each player
in a quadratic threshold game corresponds to a (1, k)-exchange, where k
grows linearly with the number of players. Despite their simple structure,
threshold games are a natural and interesting class of games. Our main
interest, however, stems from the fact that threshold games are a good
starting point for PLS-reductions because of their simple structure. We have
demonstrated the applicability of this approach by showing reductions from
quadratic threshold games to network congestion games. Let us remark that
this approach has more applications. Further reductions from quadratic
threshold games to so-called market sharing games and overlay network
design games can be found in [1].
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