GIAN Course on Distributed Network Algorithms

Spanning Tree
Constructions

Spanning Trees —~_ Attactive ,infrastructure”: sparse
subgraph (,,loop-free backbone®)

connecting all nodes. E.g., cheap flooding.

Q\ 9

Cycle-free subgraph spanning all nodes.

Spanning Trees

Is this a spanning tree?

Spanning Trees

No, not cycle-free!

Spanning Trees

Is this a spanning tree?

Spanning Trees

No, not spanning
this node!

Spanning Trees

Is this a spanning tree?

Spanning Trees

No, disconnected:
spanning forest,
not spanning tree!

Spanning Trees

Is this a spanning tree?

Spanning Trees

Yes, a spanning
tree ©

10

Applications

Efficient Broadcast and Aggregation Algebraic Gossip

. Ny T
e ek

R S T I s |

1 Disseminating
multiple messages in
large communication
network

1 Random
communication
pattern with

(1 Used in Ethernet network to avoid Layer-2 forwarding neighbors

loops: Spanning Tree Protocol _
1 Gossip: based on

] In ad-hoc networks: efficient backbone: broadcast and : .
local interactions

aggregate data using a linear number of transmissions

11

Types of Spanning Trees

BFS

root

1 a.k.a. shortest distance spanning
tree (may also be weighted)

1 Spanning tree includes shortest
paths from a given root to all nodes

d Interesting e.g. for fast broadcast

H
J

Minimum link cost spanning tree

Interesting, e.g., for least routing
cost or energy cost

How to compute a
spanning tree in the

LOCAL model?

A Fundamental Communication Primitive: ConvergeCast

~~ '
~<o
~<o
S~
~ao
~~o
~

13

A Fundamental Communication Primitive: ConvergeCast

o
Combination of broadcast
from root to leaves and
information aggregation from

leaves to root!

1
1
1
1
1
1
1
1
1
1
1
1
1
1

14

A Funglemseesial Canmnanmiaatign Primitive: ConvergeCast

,Want to know average

temperature!”

15

A Fungaseental Camanauniaatign Primitive: ConvergeCast
,Want to know average

temperature!“

Broadcast along spanning
tree: O(n) rather than
O(m) messages!

Broadcast
Round 1 "

A Fungaseental Camanauniaatign Primitive: ConvergeCast
,Want to know average

({4
!

temperature

Broadcast along spanning
tree: O(n) rather than
O(m) messages!

Broadcast
Round 2 .

A Fungaseental Camanauniaatign Primitive: ConvergeCast
,Want to know average

({4
!

temperature

Broadcast along spanning
tree: O(n) rather than
O(m) messages!

Broadcast
Round 3 "

A Fungaseental Camanauniaatign Primitive: ConvergeCast
,Want to know average

temperature!“

et dRy.

| - Broadcast along spanning
1 tree: O(n) rather than
O(m) messages!

O(n) messages for broadcast! 19

A Fiindamaental Cammiin

ication Primitive: ConvergeCast

But how to aggregate
information now in O(n) ‘
messages?!

20

—| But how to aggregate

messages?!

Aggregate from leaves

toward root, with in-network

processing!

information now in O(n) ||

A Evundamontal Cammuinjcation Primitive: ConvergeCast

~
~
~
~
I~
~
~
~
~
~

~
~
~
~
~
~
~
~

21

A Fundamental Communication Primitive: ConvergeCast

Temp! \

Aggregate
Round 1 2

A Fundamental Communication Primitive: ConvergeCast

Aggregate
Round 1 s

A Fundamental Communication Primitive: ConvergeCast

Inner nodes should not
send yet: avoid multiple
messages over same

spanning tree link! Temp!

Temp! \ e '

Aggregate
Round 1 2

A Fundamental Communication Primitive: ConvergeCast

Aggregate
Round 2 s

A Fundamental Communication Primitive: ConvergeCast

Aggregate
Round 3 2

A Fundamental Communication Primitive: ConvergeCast

\ “N\\\\‘s

Aggregate
Round 4 o

A Fundamental Communication Primitive: ConvergeCast

~‘\‘ é
<.
.
~ao
~~o
~

Finishedq! 2

A Fundamental Communication Primitive: ConvergeCast

Finished!

How good is this algorithm?
Can we do ConvergeCast

with less messages??

=7

29

A Fundamental Communication Primitive: ConvergeCast

How good is this algorithm?
Can we do ConvergeCast

with less messages?
LS

F| N |S hed | Let’s talk about lower bounds!

Recall: Local Algorithm

... receive...

31

Let us introduce some definitions

Distance between two nodes is # hops.

Radius of a node is max distance to any other node.
Radius of graph is minimum radius of any node.

Diameter of graph is max distance between any two nodes.

N

Relationship
between R and D?

32

L

Ingeneral: R< D < 2R. pns

max distance cannot be
longer than going through
this node.

Distance between two nodes is # hops.

Radius of a node is max distance to any other node.
Radius of graph is minimum radius of any node.

Diameter of graph is max distance between any two nodes.

7 X

In the complete graph, for On the line, for broder
all nodes: R=D. nodes: 2R=D.

33

Relevance: Radius

People enjoy identifying nodes of small radius in a graph!

E.g., Erdos number, Kevin Bacon number, joint Erdos-Bacon number, etc.

Erdds Number 1 Kevin Bacon Number # of People
0 1
3211
376831
1359872
347806
29593
3496
515
102
8
1

Erdos Number 2

Erdés Number 0 : i Ry
4 % B ’

Erdos Number 3

.
lan Parberry

Paul Erdos

0| Qo] =l S| || || L3]| —=

—t
=l

e /‘ g
o4 Piotr Berman
Total number of linkable actors; 2121436

Michael Saks Weighted total of linkable actors: 6401157
Average Kevin Bacon number: 3.017

34

Lower Bounds for Broadcast

= <

/

Message complexity? \ / \ 2

\/
Time complexity? z

Lower Bounds for Broadcast

Time complexity?

The radius of the source: each node needs to receive message.

36

Lower Bounds for Broadcast

= ?

C

e
Message complexity? \ / \ 7

Each node must receive message: so at least n-1.

Time complexity?

The radius of the source: each node needs to receive message.

4

How to achieve this?

37

Lower Bounds for Broadcast

A
Message complexity? \ Z = \ 7

Each node must receive message: so at least n-1.

Time complexity?

The radius of the source: each node needs to receive message.

4

How to achieve this?

X

Compute a breadth first
spanning tree! © But how? 38

ing!

Floodi

ing

Compute BFS usi

|dea

39

ldea: Compute BFS using Flooding!

Send to all
neighbors!

Round 1

40

ldea: Compute B

Choose parent

Choose parent

’
/
/
,
,
,
.
/
’
~
~
~
~
I~

for spanning tree!

for spa

~~_
~~_
-~
\ S~<
~_
\ Ny
\ /
b [
’ (.
; \ ;]
; ' \ / 1
1 \
/ ' \ ! 1
\ . i
\
/ ! \ 1 1
’ 1 \ 1
\ / ' . h 1
S ! \ ' 1
1 1
/ \
/ 1 \ ’ 1
/ ' \ / 1
, \ /
,
,
/

\
\

Choose parent
for spanning tree!

for spanning tree!

Round 1

1 / .

1 /

~e ! ’
~< ' ’
S~ i ’

~e. ,
~. . -
- e
~o et

Invariant: parent has shorter
distance to root: loop-free!

ldea: Comput

o DO ot

Send to all

Round 2

looding!

neighbors!

~X

42

P - |

ldea: Compute BFS using Fl : : :
Choose a parent: if multiple arrive

at same time, take arbitrary!

{
\
| \
1 \
' \
1 A ,I
\
| 1
\
' X /
1 \ /
1 \ ’
i \ ' 1
' \ /
1 \\ 1
' ,
1 \\ 1
1 \ ’
1 \ !
1 \ !
1 Ay !
1 N !
\ \
')
'
1
1
I
i
1
| 1
'
1 1
1 1
1
' 1
I Vi 1
N |
N I / 'I
~ 1
N ' ’ \
1
' 4 |
' /
\
1 4
\\ 1
\\ 1 /
S~ ! /
S~ 1 4
~
/_ h < I:
~ 3
~ -
~ -
~ -
~ -
~ --
~. e

arbitrary parent with ’
shorter distance!

Round 2 Invariant: parent has shorter

distance to root: loop-free!

ldea: Compute BFS using Flooding!

'

'

'

'

'

'

'

i

'

'

'

1

I

'

'

i

'

'

'

1

I

'

'

i

'

'

'

I

I

'

'

|

'

'

'

I
!

| 4
|
~o '
~ '
~~o ,
S X -
RN PP
S T
. 1\%\ ‘ -7
~

Round 3

44

ldea: Compute BFS using Flooding!

Round 3 Invariant: parent has shorter

distance to root: loop-free!

ldea: Compute BFS using Flooding!

Round 4

46

ldea: Compute BFS using Flooding!

B FS ' Invariant: parent has shorter

distance to root: loop-free!

ldea: Compute BFS using Flooding!

N

B F S ' But careful! We assumed that messages propagate in
- synchronous manner! What if not?

Bad example

Careful: in asynchronous environment, should
not make first successful sender my parent!

Bad example

How to overcome?
Dijkstra and Bellman-Ford

—=C

Careful: in asynchronous environment, should

not make first successful sender my parent!

Distributed BFS: Dijkstra Flavor

|dea: overcome asynchronous
problem by proceeding in phases!

51

Distributed BFS: Dijkstra Flavor

Phase 1

o~ 7N (Round 1)

Explore 1-neighborhood only:
set Round-Trip-Time to 1.

" -
! R
AN
! . \ 1
i , .
1 ’ \ 1
~ 1 i A
N ’ \ 1
~ ! ’
AN 1 ’ \ 1
\ N | , \
R , \ \
\ . i , N
\ ~ 1 4 \ 1
\ R ; \
N
\ N i S \ !
N N
\ . | . 1
\ N ’ N
N ,
\ S ’ \ |
\ N \
\ N
\ \ 1
\ .
\ N, !
\ \\ 1
\ N \
~< N 1
-~ N
- N
-
-~
-
-~
-~
-
~
-~
- o

|dea: overcome asynchronous
problem by proceeding in phases!

52

Distributed BFS: Dijkstra Flavor

Phase 1

(Round 2)

|dea: overcome asynchronous
problem by proceeding in phases!

53

Start Phase 2! (Prc;bégéte

AVOr

along existing spanning tree!)

|dea: overcome asynchronous

problem by proceeding in phases!

Phase 2

(Round 1)

54

Distributed BFS: Dijk{"

Start Phase 2!
| am at distance 1 from root!

Phase 2
Q (Round 2)

/ \
v’ \ !
| g . |
' e \ 1
h . \
| . . |
b . \
. \ \
! . \
' . \ 1
’ \
B / N 1
’ \
| L N 1
, \
. N |
\ 1
\
\ 1
\
N |
\
. 1
\
- Yo
\
~<_ .
~ \
~
~
-~
~
~
-~
~
~
~
\\

|dea: overcome asynchronous
problem by proceeding in phases!

95

Distributed BFS: Dijkstra Flavor

Phase 2

‘ join!
~ Q (Round 3)

1
\ 1
\ \
\ \
. 1
° \\ 1
\ 1
\ \
° \ 1
\ 1
N 1
N |
. ||
N 1
[~ -~ - \\
~ -~
~ -~
~ -~
~
~<.

Choose parent with
smaller distance!

|dea: overcome asynchronous
problem by proceeding in phases!

Distributed BFS: Dijkstra Flavor

%Phase 3! Phase 3

, |
r) ,
a ase g K ‘ i
e 4
. AN , !
.
[\ , '
' \ . 1
2 ' \ /
o | \ / 1
1 e I N < 1
P 1 ’
2 .
- ; S . !
2 .
o / 3 |
- i R 1
A i ’l S 1
\
1 N,
; X
' A
; i
i
i

Start Phase 3!
| am at distance 2 from root!

N
L v
\
S~ o \
~ .
~
~
<
~
<
<
~
~
~
~ o

|dea: overcome asynchronous
problem by proceeding in phases!

o7

General Scheme

Phase |

Phase 1+1

58

General Scheme

Phase |

Start i+1

Phase 1+1

59

(canaral Srhamao

1 For efficiency: can propagate start i messages
along pre-established spanning tree!

Start i+1

At edge | need to try all.

Phase | Phase 1+1

60

Distributed BFS: Dijkstra Flavor

Same for responses...!
(Aggregated along existing BFS)

Phase |

Phase 1+1

61

Time Complexity?

[or

N ol
=
= =
T \ ”,
1 \ .
1 \ ’,,
1 \ "’
' \ -7
1 \ .
1 \ 3
. \
f \
, \
\ ! N 3
- | \ .
\ ! >
8 ' \ ’/’
\ ! X
\ ! 3
1 \'
ﬂ‘_ -
1 -
8
\\
\\
R
N
N
R
\\
N
R
R
N
N

Phase |

Phase 1+1

62

[or

Time Complexity?

O(D) phases, take time O(D): O(D?)
where D is the radius from the root.

Phase | Phase 1+1

63

Message Complexity?

[or

N ol
=
= =
T \ ”,
1 \ .
1 \ ’,,
1 \ "’
' \ -7
1 \ .
1 \ 3
. \
f \
, \
\ ! N 3
- | \ .
\ ! >
8 ' \ ’/’
\ ! X
\ ! 3
1 \'
ﬂ‘_ -
1 -
8
\\
\\
R
N
N
R
\\
N
R
R
N
N

Phase |

Phase 1+1

64

=2, [OF Plus: test each edge
Message Complexity: once: join, ACK/NAK

—\\ at edge: total O(m).

O Q <
=

L\~
ystart” and ,,join“ propagation inside spanning
tree: O(n) per phase: O(nD) in total.

Phase | Phase 1+1

65

=2, [OF Plus: test each edge
Message Complexity: once: join, ACK/NAK

—\\ at edge: total O(m).

O (=
ystart” and ,,join“ propagation inside spanning
tree: O(n) per phase: O(nD) in total.

Pha O(nD+m) e i+

66

Distributed BFS: Dijkstra Flavor

Dijkstra: find next closest node (,on border®) to the root

Dijkstra Style

Divide execution into phases. In phase p, nodes with distance p to the root
are detected. Let T, be the tree of phase p. T, is the root plus all direct
neighbors.

Repeat (until no new nodes discovered):

1.
2.

Root starts phase p by broadcasting ,start p* within T,

Aleaf u of T, (= node discovered only in last phase) sends ,join p+1” to
all quiet neighbors v (u has not talked to v yet)

Node v hearing ,join” for first time sends back ,ACK": it becomes leave
of tree T,4; otherwise v replied ,NACK" (needed since asyncl!)

The leaves of T, collect all answers and start Echo Algorithm to the root
Root initates next phase

67

Distributed BFS: Bellman-Ford Flavor

68

Distributed BFS: Bellman-Ford Flay Idea: Don‘t go through these

~~

time-consuming phases but
blast out messages but with
distance!

69

Distributed BFS: Bellman-Ford Fla\ Idea: Don‘t go through these

,"//
1
|
|
< ™ 1
N
\\ ‘

\ S~
\ ~<
\ ~<
\ ~o e
\ ~s -
\ RS -
\ ~< e
\ . .
\
\
\
\
\ 1
\
\ 1
\ l 1
\
\ 1
N
\ 1
\
'\ 1
) 1
1
I 1
1
1
1
~
S~ |I
= 1
l= I

init to oo

time-consuming phases but
blast out messages but with

: distance!

Initialize: root distance 0, other nodes «

70

Bellman-Ford Flauv ldea: Don‘t go through these
distance 1

=

\
\
\
\
\ 1
\
\ 1
\
N 1
\ |
\
\
\

. |
a 1

1

1

a 1

1

.e |

1

1

1

1

time-consuming phases but
blast out messages but with

distance!

Start: root sends distance 1 packet to neighbors

71

Distributed BFS: Bellman-Ford Fla\ Idea: Don‘t go through these

time-consuming phases but
blast out messages but with

: distance!

:\ S 1
\ ~o
\ ~o
\ ~o
\ ~<
\ ~<
\ ~<
\ ~<
\ ~o e
\ ~s -
\ ~o L
\ ~< e
\ N .
\
\
\
\

\
\
\
\
\
\
N
\
\
\
\
I
1
So 1
1
1
I

Repeat: whenever receive new packet. check whether new
minimal distance (if so change parent), and propagate!

Distributed BFS: Bellman-Ford Flay Idea: Don‘t go through these

time-consuming phases but
blast out messages but with
distance!

Repeat: whenever receive new packet: check whether new
minimal distance (if so change parent), and propagate!

Distributed BFS: Bellman-Ford Flay Idea: Don‘t go through these

time-consuming phases but
blast out messages but with
distance!

But sooner or later, node will
learn shorter distance!

Repeat: whenever receive new packet: check whether new
minimal distance (if so change parent), and propagate!

Distributed BFS: Bellman-Ford Flavor

Bellman-Ford: compute shortest distances by flooding an all paths;
best predecessor = parent in tree

— Bellman-Ford Style

Each node u stores d, the distance from u to the root.
Initially, d,,,=0 and all other distances are 1. Root
starts algo by sending ,1” to all neighbors.

1. Ifa node u receives message ,y" with y<d,

d, =y
send ,y+1“ to all other neighbors

75

How is this defined?! Assuming a

Analysis
Y unit upper bound on per link delay!

Time Complm

Message Complexity? 7\7\ \ =

76

Analysis

simply the diameter.

X
Time Complexity? -
O(D) where D is diameter of graph. ©

By induction: By time d, node at distance d got ,d".

Clearly true for d=0 and d=1.

A node at distance d has neighbor at distance d-1 that got ,d-1" on time by
induction hypothesis. It will send ,d” in next time slot...

P

& %\ &
Z

Message Complexity? \4 ?\/}\ \ =~

O(mn) where m is number of
edges, n is number of nodes. ®

~

Because: A node can reduce its distance at most n-
1 times (recall: asynchronous!). Each of these times
it sends an upate message to all its neighbors

77

Worst propagation timeis |

Bellman-Ford with Many Messages

78

Bellman-Ford with Many Messages

root

Everyone has a new best
distance and informs neighbors!

Bellman-Ford with Many Messages

root

Everyone has a new best
distance and informs neighbors!

Discussion

Which algorithm is better?

Dijkstra has better message complexity, Bellman-Ford
better time complexity.

Can we do better?

Yes, but not in this course... ©

Remark: Asynchronous algorithms can be made

synchronous... (e.g., by central controller or better:
local synchronizers)

81

How to compute an MST?

Tree with edges of minimal total weight.

ldea: Exploit Basic Fact of MST: Blue Edges

Let T be an MST and T a subgraph of T.
Edge e=(u,v) is outgoing edge ifue T and v ¢ T .
The outgoing edge of minimal weight is called b/ue edge.

It holds: the lightest

Lemma edge across a cut must
If T is the MST and T* a subgraph of T, then be part of the MST!

the blue edge of T' is also part of T. V

N)
By contradiction: O ~~~~~~~~~~~~ e _ \

otherwise get a cheaper

MST by swapping the O/
! “ _________________
two cut edges! () . (o, Q

Gallager-Humblet-Spira

84

Gallager-Humblet-Spira / Basic idea: Grow components in

parallel and merge them at the blue
edge! Using Covergecast.

85

Gallager-Humblet-Spira / Basic idea: Grow components in

parallel and merge them at the blue

Assume some components
have already emerged:

edge! Using Covergecast.

T,

O blue for T, Q T,

@

O~ O 3\0 @

@ 6

@

s/ | °
QQ blue for T, and T,

-, N

Each component has only one blue
edge (cheapest outgoing): loops
impossible, can take them in parallel!

Gallager-Humblet-Spira / Basic idea: Grow components in

parallel and merge them at the blue
edge! Using Covergecast.

leader of T, !

X\ T,

O blue for T, T
() (O 3 QQZ ﬁ leader of T,!

OQ - QO

s/ | °
QQ blue for T, and T,

O

7\

leader of T,!

ldea: a leader in each cluster responsible
of finding blue edge with convergecast!

Gallager-Humblet-Spira: High-level View

o
000

O O
o Q % ﬁ Phase 3

ldea: components

grow in parallel
and merge in a Phase 2

loop-free manner! ,

Gallager-Humblet-Spira: High-level View

After round i, minimal
component has size at
Q least 2': doubles in
Q Q each round!
ﬁ Phase 3

O ™
Phase 1

ldea: components
grow in parallel

and merge in a Phase 2 So at most log(n)
loop-free manner! phases in total!

Gallager-Humblet-Spira: High-level View

A C -

Q But how to determine blue edge
quickly and re-elect new leader in
Q merged larger component?

Phase 3

Phase 1 w - WK@ N

Keep spanning tree in each

Minimal fragrl ~ component! Can do efficient
in round i? covergecast there.
° Total number

Di Phase 2\9 of phases?

90

Example: Agree on a New Root

How to merge T*and T“
across (u,v)?

91

Example: Agree on a New Root AR e U anel 1

across (u,v)?

T‘“

roo%

Invariant: rooted spanning

1 tree in each component!

blue edge of T Links point to root.

and T’ y 10 ™

L 4
...
(14 Yoo
..

root

blue edge of T*

92

Example: Agree on a New Root AR e U anel 1

across (u,v)?

Step 1: invert path
from root to u and v.

93

Example: Agree on a New Root

How to merge T*and T“
across (u,v)?

Step 1: invert path
from root to u and v.

Step 2: send merge
request across blue edge
(u,v). Here only blue edge

for T so one message!

Step 3: v becomes new
root overall!

94

Example: Agree on a New Root How to merge T and T

across (u,v)?
(11}
ro%;- ‘
O
Rooted again! ‘
10 .

root
Tn ’ \/ "“”..
Q 3¢y root
¢ 9\@
Tc
Step 1: invert path Step 2: send merge Step 3: v becomes new
from root to u and v. request across blue edge root overall!
(u,v). Here only blue edge

for T so one message!

95

Example: Agree on a New Root How to merge T and T
across (u,v)?

T7 What if blue link for both T°
r0o ‘ v .
é} and T? Just make tie-
breaking who becomes root,
Rooted again! uoryv, e.g., ID based!
roo 5
R
Q 1 "\ root
3{

O T
u

Step 1: invert path Step 2: send merge Step 3: v becomes new
from root to u and v. request across blue edge root overall!

(u,v). Here only blue edge
for T so one message!

96

Distributed Kruskal

ldea: Grow components by learning blue edge!
But do many fragments in parallel!

— Gallager-Humblet-Spira

Initially, each node is root of its own fragment.

Repeat (until all nodes in same fragment)
1. nodes learn fragment IDs of neighbors
2. root of fragment finds blue edge (u,v) by convergecast
3. root sends message to u (inverting parent-child)

4. if v also sent a merge request over (u,v), u or v becomes new
root depending on smaller ID (make trees directed)

5. new root informs fragment about new root (convergecast on
,MST" of fragment): new fragment ID

97

Analysis

Time Complexity? ‘

Message Complexity? \/?\4\ \//é

Each phase mainly consists of two convergecasts, so O(D) time and O(n)
messages per phase?

98

Analysis

Log n phases with O(n) time
convergecast: spanning tree is not BFS!

Time Complexity? H‘ =

The size of the smallest fragment at least doubles in each phase, so it's
logarithmic. But converge cast may take n hop

O(n log n) where n is graph size. Log n phases but in each
phase need to learn leader ID
% \ _ | of neighboring fragments, for

Message Complexity? \ ~

all neighbors!

O(m log n) where m is number of edges: at most O(1)
messages on each edge in a phase.

Really needed? Each phase mainly consists of two convergecasts, so O(n)
time and O(n) messages. In order to learn fragment IDs of neighbors, O(m)
messages are needed (again and again: ID changes in each phase).

Yes, we can do better. ©

99

Analysis

Time Complexity? =

Log n phases with O(n) time
convergecast: spanning tree is not BFS!

The size of the smallest fragment at least doubles in each phase, so it's

logarithmic. But converge cast may take n hop
O(n log n) where n is graph size. Log n phases but in each

Message Complexity? \ / all neighbors!

phase need to learn leader ID
of neighboring fragments, for

7

O(m log n) where m is number of edges: at most O(1)
messages on each edge in a phase.

Real
time
mes:

Note: this algorithm can solve leader
election! Leader = last surviving root!

100

Literature for further reading:

- Peleg's book

End of lecture

Exercise 2: License to Match

In preparation of a highly dangerous mission, the participating agents of the gargantuan Liecht-
ensteinian secret service (LSS) need to work in pairs of two for safety reasons. All members in the
LSS are organized in a tree hierarchy. Communication is only possible via the official channel: an
agent has a secure phone line to his direct superior and a secure phone line to each of his direct
subordinates. Imitially, each agent knows whether or not he 1s taking part in this mission. The
goal 1s for each agent to find a partner.

a) Devise an algorithm that will match up a participating agent with another participating agent
given the constrained communication scenario. A “match” consists of an agent knowing the
1dentity of his partner and the path in the hierarchy connecting them. Assume that there is an
even number of participating agents so that each one 1s guaranteed a partner. Furthermore,
observe that! the phone links connecting two paired-up agents need to remain open at all
times. Therefore, you cannot use the same link (i.e., an edge) twice when connecting an
agent with his partner.

b) What are the time and message (i.e., “phone call”) complexities of your algorithm?

102

