
Stefan Schmid @ T-Labs, 2011

Spanning Tree
Constructions

GIAN Course on Distributed Network Algorithms

Spanning Trees

2

Cycle-free subgraph spanning all nodes.

Spanning Tree

Attactive „infrastructure“: sparse
subgraph („loop-free backbone“)

connecting all nodes. E.g., cheap flooding.

Spanning Trees

Is this a spanning tree?

Spanning Trees

4

No, not cycle-free!

Spanning Trees

Is this a spanning tree?

Spanning Trees

6

No, not spanning
this node!

Spanning Trees

Is this a spanning tree?

Spanning Trees

8

No, disconnected:
spanning forest,

not spanning tree!

Spanning Trees

Is this a spanning tree?

Spanning Trees

10

Yes, a spanning
tree

Applications

11

Efficient Broadcast and Aggregation Algebraic Gossip

❏ Used in Ethernet network to avoid Layer-2 forwarding
loops: Spanning Tree Protocol

❏ In ad-hoc networks: efficient backbone: broadcast and
aggregate data using a linear number of transmissions

❏ Disseminating
multiple messages in
large communication
network

❏ Random
communication
pattern with
neighbors

❏ Gossip: based on
local interactions

Types of Spanning Trees

12

BFS MST

❏ a.k.a. shortest distance spanning
tree (may also be weighted)

❏ Spanning tree includes shortest
paths from a given root to all nodes

❏ Interesting e.g. for fast broadcast

❏ Minimum link cost spanning tree
❏ Interesting, e.g., for least routing

cost or energy cost

How to compute a
spanning tree in the

LOCAL model?

A Fundamental Communication Primitive: ConvergeCast

13

A Fundamental Communication Primitive: ConvergeCast

14

Combination of broadcast
from root to leaves and

information aggregation from
leaves to root!

A Fundamental Communication Primitive: ConvergeCast

15

„Want to know average
temperature!“

A Fundamental Communication Primitive: ConvergeCast

16Round 1

„Want to know average
temperature!“

Broadcast

Broadcast along spanning
tree: O(n) rather than

O(m) messages!

A Fundamental Communication Primitive: ConvergeCast

17Round 2

„Want to know average
temperature!“

Broadcast

Broadcast along spanning
tree: O(n) rather than

O(m) messages!

A Fundamental Communication Primitive: ConvergeCast

18Round 3

„Want to know average
temperature!“

Broadcast

Broadcast along spanning
tree: O(n) rather than

O(m) messages!

A Fundamental Communication Primitive: ConvergeCast

19O(n) messages for broadcast!

„Want to know average
temperature!“

Broadcast along spanning
tree: O(n) rather than

O(m) messages!

A Fundamental Communication Primitive: ConvergeCast

20

But how to aggregate
information now in O(n)

messages?!

A Fundamental Communication Primitive: ConvergeCast

21

But how to aggregate
information now in O(n)

messages?!

Aggregate from leaves
toward root, with in-network

processing!

A Fundamental Communication Primitive: ConvergeCast

22

Temp!

Round 1

Temp!

Temp!
Temp!

Temp!

Aggregate

A Fundamental Communication Primitive: ConvergeCast

23

Temp!

Round 1

Temp!

Temp!
Temp!

Wait for
children

Wait for
children

Wait for
children

Wait for
children

Wait for
children

Aggregate

A Fundamental Communication Primitive: ConvergeCast

24

Temp!

Round 1

Temp!

Temp!
Temp!

Wait for
children

Wait for
children

Wait for
children

Wait for
children

Wait for
children

Aggregate

Inner nodes should not
send yet: avoid multiple

messages over same
spanning tree link!

A Fundamental Communication Primitive: ConvergeCast

25

agg

Round 2

agg
Aggregate

A Fundamental Communication Primitive: ConvergeCast

26

agg

Round 3
Aggregate

A Fundamental Communication Primitive: ConvergeCast

27

agg

Round 4
Aggregate

A Fundamental Communication Primitive: ConvergeCast

28

agg

Finished!

A Fundamental Communication Primitive: ConvergeCast

29

agg

Finished!

How good is this algorithm?
Can we do ConvergeCast

with less messages??

A Fundamental Communication Primitive: ConvergeCast

30

agg

Finished!

How good is this algorithm?
Can we do ConvergeCast

with less messages?

Let‘s talk about lower bounds!

Recall: Local Algorithm

... compute.

... receive...

Send...

31

Let us introduce some definitions

Distance, Radius, Diameter
Distance between two nodes is # hops.
Radius of a node is max distance to any other node.
Radius of graph is minimum radius of any node.
Diameter of graph is max distance between any two nodes.

32

Relationship
between R and D?

Let us introduce some definitions

Distance, Radius, Diameter
Distance between two nodes is # hops.
Radius of a node is max distance to any other node.
Radius of graph is minimum radius of any node.
Diameter of graph is max distance between any two nodes.

33

In the complete graph, for
all nodes: R=D.

On the line, for broder
nodes: 2R=D.

In general: R ≤ D ≤ 2R.
max distance cannot be

longer than going through
this node.

Relevance: Radius

People enjoy identifying nodes of small radius in a graph!

E.g., Erdös number, Kevin Bacon number, joint Erdös-Bacon number, etc.

34

Lower Bounds for Broadcast

Message complexity?

Time complexity?

35

Lower Bounds for Broadcast

Each node must receive message: so at least n-1.

Message complexity?

The radius of the source: each node needs to receive message.

Time complexity?

36

Lower Bounds for Broadcast

Each node must receive message: so at least n-1.

Message complexity?

The radius of the source: each node needs to receive message.

Time complexity?

37

How to achieve this?

Lower Bounds for Broadcast

Each node must receive message: so at least n-1.

Message complexity?

The radius of the source: each node needs to receive message.

Time complexity?

38

How to achieve this?

Compute a breadth first
spanning tree! But how?

Idea: Compute BFS using Flooding!

39

Idea: Compute BFS using Flooding!

40

Round 1

Send to all
neighbors!

Idea: Compute BFS using Flooding!

41

Round 1

Choose parent
for spanning tree!

Choose parent
for spanning tree!

Choose parent
for spanning tree!

Invariant: parent has shorter
distance to root: loop-free!

Idea: Compute BFS using Flooding!

42

Round 2

Send to all
neighbors!

Idea: Compute BFS using Flooding!

43

Round 2

Choose a parent: if multiple arrive
at same time, take arbitrary!

arbitrary parent with
shorter distance!

Invariant: parent has shorter
distance to root: loop-free!

Idea: Compute BFS using Flooding!

44

Round 3

Idea: Compute BFS using Flooding!

45

Round 3 Invariant: parent has shorter
distance to root: loop-free!

Idea: Compute BFS using Flooding!

46

Round 4

Idea: Compute BFS using Flooding!

47

BFS! Invariant: parent has shorter
distance to root: loop-free!

Idea: Compute BFS using Flooding!

48

BFS! But careful! We assumed that messages propagate in
synchronous manner! What if not?

Bad example

49

Careful: in asynchronous environment, should
not make first successful sender my parent!

Bad example

50

How to overcome?
Dijkstra and Bellman-Ford

Careful: in asynchronous environment, should
not make first successful sender my parent!

Distributed BFS: Dijkstra Flavor

51

Idea: overcome asynchronous
problem by proceeding in phases!

Distributed BFS: Dijkstra Flavor

52

Idea: overcome asynchronous
problem by proceeding in phases!

Phase 1

Explore 1-neighborhood only:
set Round-Trip-Time to 1.

(Round 1)

Distributed BFS: Dijkstra Flavor

53

Idea: overcome asynchronous
problem by proceeding in phases!

Phase 1
(Round 2)

Distributed BFS: Dijkstra Flavor

54

Idea: overcome asynchronous
problem by proceeding in phases!

Phase 2

Start Phase 2! (Propagate
along existing spanning tree!)

(Round 1)

Distributed BFS: Dijkstra Flavor

55

Idea: overcome asynchronous
problem by proceeding in phases!

Phase 2

Start Phase 2!
I am at distance 1 from root!

(Round 2)

Distributed BFS: Dijkstra Flavor

56

Idea: overcome asynchronous
problem by proceeding in phases!

Phase 2join!

no!

join!

join!
no!

(Round 3)

Choose parent with
smaller distance!

Distributed BFS: Dijkstra Flavor

57

Idea: overcome asynchronous
problem by proceeding in phases!

Phase 3Start Phase 3!

Start Phase 3!
I am at distance 2 from root!

Start Phase 3!

General Scheme

58

Phase i Phase i+1

General Scheme

59

Phase i Phase i+1

Start i Start i+1

General Scheme

60

Phase i Phase i+1

Start i Start i+1

For efficiency: can propagate start i messages
along pre-established spanning tree!

At edge I need to try all.

Distributed BFS: Dijkstra Flavor

61

Phase i Phase i+1

join i

Same for responses…!
(Aggregated along existing BFS)

join i

Distributed BFS: Dijkstra Flavor

62

Phase i Phase i+1

Time Complexity?

Distributed BFS: Dijkstra Flavor

63

Phase i Phase i+1

Time Complexity?

O(D) phases, take time O(D): O(D2)
where D is the radius from the root.

Distributed BFS: Dijkstra Flavor

64

Phase i Phase i+1

Message Complexity?

Distributed BFS: Dijkstra Flavor

65

Phase i Phase i+1

Message Complexity?

„start“ and „join“ propagation inside spanning
tree: O(n) per phase: O(nD) in total.

Plus: test each edge
once: join, ACK/NAK
at edge: total O(m).

Distributed BFS: Dijkstra Flavor

66

Phase i Phase i+1

Message Complexity?

„start“ and „join“ propagation inside spanning
tree: O(n) per phase: O(nD) in total.

Plus: test each edge
once: join, ACK/NAK
at edge: total O(m).

O(nD+m)

Distributed BFS: Dijkstra Flavor

Divide execution into phases. In phase p, nodes with distance p to the root

are detected. Let Tp be the tree of phase p. T1 is the root plus all direct

neighbors.

Repeat (until no new nodes discovered):

1. Root starts phase p by broadcasting „start p“ within Tp

2. A leaf u of Tp (= node discovered only in last phase) sends „join p+1“ to
all quiet neighbors v (u has not talked to v yet)

3. Node v hearing „join“ for first time sends back „ACK“: it becomes leave
of tree Tp+1; otherwise v replied „NACK“ (needed since async!)

4. The leaves of Tp collect all answers and start Echo Algorithm to the root

5. Root initates next phase

Dijkstra Style

Dijkstra: find next closest node („on border“) to the root

67

Distributed BFS: Bellman-Ford Flavor

68

Distributed BFS: Bellman-Ford Flavor

69

Idea: Don‘t go through these
time-consuming phases but
blast out messages but with

distance!

Distributed BFS: Bellman-Ford Flavor

70

0

Initialize: root distance 0, other nodes ∞

∞

∞

∞

∞

∞

∞

∞

∞

Idea: Don‘t go through these
time-consuming phases but
blast out messages but with

distance!

init to∞

Distributed BFS: Bellman-Ford Flavor

71

0

∞

Start: root sends distance 1 packet to neighbors

distance 1

∞

∞

∞

∞

∞

∞

∞

Idea: Don‘t go through these
time-consuming phases but
blast out messages but with

distance!

Distributed BFS: Bellman-Ford Flavor

0

1

1

1

Repeat: whenever receive new packet: check whether new
minimal distance (if so change parent), and propagate!

∞

∞

∞

∞

∞

Idea: Don‘t go through these
time-consuming phases but
blast out messages but with

distance!

Distributed BFS: Bellman-Ford Flavor

73

0

1

∞

1

1

2

4

∞

3

Repeat: whenever receive new packet: check whether new
minimal distance (if so change parent), and propagate!

Packet may race
through network:

asynchronous!

Idea: Don‘t go through these
time-consuming phases but
blast out messages but with

distance!

Repeat: whenever receive new packet: check whether new
minimal distance (if so change parent), and propagate!

Distributed BFS: Bellman-Ford Flavor

74

0

1

∞

1

1

2

4

∞

3

Repeat: whenever receive new packet: check whether new
minimal distance (if so change parent), and propagate!

Packet may race
through network:

asynchronous!

Idea: Don‘t go through these
time-consuming phases but
blast out messages but with

distance!

Repeat: whenever receive new packet: check whether new
minimal distance (if so change parent), and propagate!

But sooner or later, node will
learn shorter distance!

Distributed BFS: Bellman-Ford Flavor

75

Each node u stores du, the distance from u to the root.

Initially, droot=0 and all other distances are 1. Root

starts algo by sending „1“ to all neighbors.
1. If a node u receives message „y“ with y<du

du := y

send „y+1“ to all other neighbors

Bellman-Ford Style

Bellman-Ford: compute shortest distances by flooding an all paths;
best predecessor = parent in tree

Analysis

Time Complexity?

Message Complexity?

76

How is this defined?! Assuming a
unit upper bound on per link delay!

Analysis

Time Complexity?

O(D) where D is diameter of graph. 

By induction: By time d, node at distance d got „d“.
Clearly true for d=0 and d=1.
A node at distance d has neighbor at distance d-1 that got „d-1“ on time by
induction hypothesis. It will send „d“ in next time slot...

Message Complexity?

O(mn) where m is number of
edges, n is number of nodes. 

77

Worst propagation time is
simply the diameter.

Because: A node can reduce its distance at most n-
1 times (recall: asynchronous!). Each of these times

it sends an upate message to all its neighbors

Bellman-Ford with Many Messages

78

„1“

root

„2“

„3“

„4“„5“

d=1

d=3

d=2

d=4

d=5

Bellman-Ford with Many Messages

79

„1“
root

„2“

„3“„4“

d=1

d=2

d=1

d=3

d=4

Everyone has a new best
distance and informs neighbors!

Bellman-Ford with Many Messages

80

„1“

root

„2“„3“

d=1

d=1

d=1

d=2

d=3

Everyone has a new best
distance and informs neighbors!

Discussion

Dijkstra has better message complexity, Bellman-Ford
better time complexity.

Can we do better?

Yes, but not in this course... 

Which algorithm is better?

Remark: Asynchronous algorithms can be made
synchronous... (e.g., by central controller or better:
local synchronizers)

81

Stefan Schmid @ T-Labs, 2011

How to compute an MST?

MST

Tree with edges of minimal total weight.

1

3

1 2

1

3

7 1

4

8

5

1

1

1

Idea: Exploit Basic Fact of MST: Blue Edges

Blue Edge

Let T be an MST and T‘ a subgraph of T.
Edge e=(u,v) is outgoing edge if u ϵ T‘ and v ∉ T‘.
The outgoing edge of minimal weight is called blue edge.

Lemma
If T is the MST and T‘ a subgraph of T, then
the blue edge of T‘ is also part of T.

It holds: the lightest
edge across a cut must

be part of the MST!

1

5

3
By contradiction:

otherwise get a cheaper
MST by swapping the

two cut edges!

Gallager-Humblet-Spira

84

Gallager-Humblet-Spira

85

Basic idea: Grow components in
parallel and merge them at the blue

edge! Using Covergecast.

Gallager-Humblet-Spira

86

blue for T1
T1

T2

T3

blue for T2 and T3

1

3

6
5

8

Each component has only one blue
edge (cheapest outgoing): loops

impossible, can take them in parallel!

Basic idea: Grow components in
parallel and merge them at the blue

edge! Using Covergecast. Assume some components
have already emerged:

Gallager-Humblet-Spira

87

Basic idea: Grow components and
merge them at the blue edge, using

Covergecast!

blue for T1
T1

T2

T3

blue for T2 and T3

1

3

6
5

8

Idea: a leader in each cluster responsible
of finding blue edge with convergecast!

leader of T2!

leader of T3!

leader of T1!

Basic idea: Grow components in
parallel and merge them at the blue

edge! Using Covergecast.

Gallager-Humblet-Spira: High-level View

Phase 1

Phase 2

Phase 3

88

Idea: components
grow in parallel
and merge in a
loop-free manner!

Gallager-Humblet-Spira: High-level View

Phase 1

Phase 2

Phase 3

89

Idea: components
grow in parallel
and merge in a
loop-free manner!

After round i, minimal
component has size at

least 2i: doubles in
each round!

So at most log(n)
phases in total!

Gallager-Humblet-Spira: High-level View

Phase 1

Phase 2

Phase 3

Minimal fragment size
in round i?

2i

90

Total number
of phases?

But how to determine blue edge
quickly and re-elect new leader in

merged larger component?

Keep spanning tree in each
component! Can do efficient

covergecast there.

T‘

7
10

3

u

v

root

1

T‘‘
root

root
T‘‘‘

91

Example: Agree on a New Root How to merge T‘ and T‘‘
across (u,v)?

Example: Agree on a New Root

T‘

7
10

3

u

v

root

1

T‘‘
root

root
T‘‘‘

92

Invariant: rooted spanning
tree in each component!

Links point to root.

blue edge of T‘

blue edge of T‘‘
and T‘‘‘

How to merge T‘ and T‘‘
across (u,v)?

T‘

7
10

3

u

v

root

1

T‘‘
root

root
T‘‘‘

93

Step 1: invert path
from root to u and v.

Example: Agree on a New Root How to merge T‘ and T‘‘
across (u,v)?

T‘

7
10

3

u

v

root

1

T‘‘
root

root
T‘‘‘

94

Step 1: invert path
from root to u and v.

Step 2: send merge
request across blue edge
(u,v). Here only blue edge

for T‘ so one message!

Step 3: v becomes new
root overall!

Example: Agree on a New Root How to merge T‘ and T‘‘
across (u,v)?

T‘

7
10

3

u

v

root

1

T‘‘

root

root
T‘‘‘

95

Step 1: invert path
from root to u and v.

Step 2: send merge
request across blue edge
(u,v). Here only blue edge

for T‘ so one message!

Step 3: v becomes new
root overall!

Rooted again!

Example: Agree on a New Root How to merge T‘ and T‘‘
across (u,v)?

T‘

7
10

3

u

v

root

1

T‘‘

root

root
T‘‘‘

96

Step 1: invert path
from root to u and v.

Step 2: send merge
request across blue edge
(u,v). Here only blue edge

for T‘ so one message!

Step 3: v becomes new
root overall!

Rooted again!

What if blue link for both T‘
and T‘‘? Just make tie-

breaking who becomes root,
u or v, e.g., ID based!

Example: Agree on a New Root How to merge T‘ and T‘‘
across (u,v)?

Distributed Kruskal

Idea: Grow components by learning blue edge!
But do many fragments in parallel!

Initially, each node is root of its own fragment.

Repeat (until all nodes in same fragment)

1. nodes learn fragment IDs of neighbors

2. root of fragment finds blue edge (u,v) by convergecast

3. root sends message to u (inverting parent-child)

4. if v also sent a merge request over (u,v), u or v becomes new
root depending on smaller ID (make trees directed)

5. new root informs fragment about new root (convergecast on

„MST“ of fragment): new fragment ID

Gallager-Humblet-Spira

97

Analysis

Time Complexity?

Each phase mainly consists of two convergecasts, so O(D) time and O(n)
messages per phase?

Message Complexity?

98

Stefan Schmid @ T-Labs, 2011

Analysis

Time Complexity?

O(n log n) where n is graph size.

Message Complexity?

O(m log n) where m is number of edges: at most O(1)
messages on each edge in a phase.

Yes, we can do better.

99

Really needed? Each phase mainly consists of two convergecasts, so O(n)
time and O(n) messages. In order to learn fragment IDs of neighbors, O(m)
messages are needed (again and again: ID changes in each phase).

The size of the smallest fragment at least doubles in each phase, so it‘s
logarithmic. But converge cast may take n hops.

Log n phases with O(n) time
convergecast: spanning tree is not BFS!

Log n phases but in each
phase need to learn leader ID
of neighboring fragments, for

all neighbors!

Stefan Schmid @ T-Labs, 2011

Analysis

Time Complexity?

O(n log n) where n is graph size.

Message Complexity?

O(m log n) where m is number of edges: at most O(1)
messages on each edge in a phase.

Yes, we can do better.

100

Really needed? Each phase mainly consists of two convergecasts, so O(n)
time and O(n) messages. In order to learn fragment IDs of neighbors, O(m)
messages are needed (again and again: ID changes in each phase).

The size of the smallest fragment at least doubles in each phase, so it‘s
logarithmic. But converge cast may take n hops.

Log n phases with O(n) time
convergecast: spanning tree is not BFS!

Log n phases but in each
phase need to learn leader ID
of neighboring fragments, for

all neighbors!

Note: this algorithm can solve leader
election! Leader = last surviving root!

End of lecture

Literature for further reading:

- Peleg‘s book

Exercise 2: License to Match

102

