
Succinct Zero Knowledge Proofs and
Arguments
Overview and techniques

Alexandros Zacharakis
20 May, 2021

Department of Information and Communication Technologies, University Pompeu Fabra

1

Part 1: High Level Overview

Modeling of proofs

• Central question in TCS: Model theorems and proofs
• Still not a good understanding
• Theorems as set membership (L = {p | p encodes a prime number },

x ∈? L)
• Asysmptotic efficiency
• P: efficient (poly time) proving
• NP: efficient (poly time) verification: ∃w such that V accepts x in

poly time

2

Revolutionizing the notion of proofs

Classical proofs

π

f(x) = y! Hmmm, I accept!

3

Revolutionizing the notion of proofs

Interactive proofs

f(x) = y! Hmmm, I accept!

4

Properties

• Randomness and Interaction → adaptive verifier
• Two requirements: Completeness and Soundness

• The verifier always accepts valid statements
• The verifier rejects invalid statements except with negligible

probability

• Arguments: Soundness only against polynomial adversaries
• Knowledge Soundness: P knows a witness

L = {g, h | ∃x s.t. h = gx}

• Zero Knowledge
• Fascinating and counterintuitive concept
• V learns nothing but that the statement is true
• V∗ interact with P and outputs some knowledge.
• ZK if there exists S whose outputs is “identical”

5

(Almost) removing interaction ...again

Interaction has cons:

• V needs to be online
• Proofs are not publicly verifiable (ZK)

But... NIZK do not exist in the standard model.

Ways to remove it:

• Using idealized models → (Fiat-Shamir).
• 2 round IPs (setup & prove).

6

Extra property: succinctness

• Succinctness
• λ sec. param., x input, w witness.
• Proof size poly(λ)o(|w|)
• Verification time poly(λ)(|x|+ o(|w|)).
• E.g. O(λ) communication and O(λ · |x|) verification (!).

7

zk-SNARGs/zk-SNARKs

• zk: zero knowledge
• N: non-interactive
• S: succinct
• ARG (ARK): arguements (of knowledge)

But...

SNARGs do not exist under falsifiable assumptions!

8

Some notation first

Implicit notation for groups:

• Let G be a group and g a fixed generator.
• [x] is the element gx.

Example:
[1], [a], [b], [ab] ∈ DDH

≡

g, ga, gb, gab ∈ DDH

This emphasizes the underlying linear algebra

9

Efficient falsifiable assumptions

• Well defined game between (PPT) challenger C and adversary A.
• After the game we can efficiently decide if A wins or loses.

Example: DLOG

1. C samples a group gk = (G, p, g)← GroupGen(1λ).
and uniform h = [x]← G.

2. x′ ← A(gk, h).
3. C compares with [x′] with h.
A wins if h = [x′](= [x]) and loses otherwise.

10

Non-Falsifiable assumptions: knowledge of exponents

• Consider a tuple g = [1], g1 = [a].
• An adversary A computes a DDH tuple

g = [1], g1 = [a], g2 = [b], g3 = [ab]
• This is easy!

1. Sample b ∈ Zp

2. Compute g2 = b[1] = [b] and g3 = b[a] = ab

KEA states this is the only way this can be done:

∀ PPT A ∃ PPT E s.t.

Pr
[
[b], [ab]← A([1], [a])

]
≈ Pr

[
b← E([1], [a])

]

11

Falsifiable vs non-falsifiable assumptions

• Black box vs non-black box or what vs how:
• Falsifiable: assume no PPT A can do computation X
• Non-falsifiable: assume how every PPT A does computation X

• Less understanding of non-falsifiable assumptions.

• Concrete meaning? (and so efficiency?)
• Falsifiable:

1. consider the best known attack
2. consider the resources needed to perform it
3. set λ accordingly

• Non-falsifiable: there is no similar notion. How big λ?

• We have to1 resort to (1) non-falsifiable assumptions or (2) heuristic
methods!

1What about subclasses of NP? E.g. P?

12

The general framework

1. Start from a computation model (in this talk arithmetic circuits)
2. Translate it to an algebraic statement
3. Construct a proof for the statement:

• Using probabilistic methods
• Restricting the Prover capabilities (i.e. can only compute affine

functions)

4. Compile it with cryptographic tools to enforce prover behavior

+: Separate combinatorial, probabilistic and cryptographic work

+: Easier understanding and analysis

+: Modular approach

• Not always clear how.
• Important to understand.

13

Information theoretic part: PCPs model

π

• P constructs PCP string π

• V can see random parts of π and decides
PCP Theorem: PCP[log n, 1] = NP
• Completeness: ∀x ∈ L V accepts.
• Soundness: ∀x /∈ L V rejects w.o.p.

14

Cryptographic compilation: Vector Commitments

Vector commitment

• P commits to c = Com(ck, x⃗ := (x1, . . . , xn)⊤)

• P gives openings xi1 , . . . , xik and PoD π

• V asserts opening: 0/1← Verify(ck, c, xi1 , . . . , xik , π).

Security guarantee: Position binding:

• No (PPT) P can produce xi1 , . . . xik ̸= yi1 , . . . yik and πx, πy s.t.

Verify(ck, c, xi1 , . . . , xik , πx) = Verify(ck, c, yi1 , . . . , yik , πy) = 1.

Construction: CRHF & Merkle trees

15

Cryptographic compiler

Natural approach to “compile” PCPs to SNARGs:

• P commits to PCP string c = Com(π⃗).
• V queries PCP by asking πi1 , . . . , πik .
• P sends them with proof of correct opening w.r.t. c

Binding: Infeasible to decommit (πi1 , . . . , πik) ̸= (π′i1 , . . . , π
′
ik). Effective

as a PCP sting!

• If c and PoD are sublinear the proof is sublinear!
• Use FS to make it non-interactive.
• First succinct arguments.
• Problem: too complex and concretely inefficient.

+: transparent setup, (plausibly) PQ -: Bad concrete efficient

16

Extention: interactive oracle proofs

Interaction is powerful!
PCP1

PCP2

PCPr

f(x) = y! Hmmm, I accept!
1. Construct an interactive protocol.
2. Replace P → V messages with PCPs.
3. V queries PCPs in each round.

• Public coin V → non-interactive.
• Compiled using vector commitments as well!

17

Preprocessing

• Let C be an arithmetic circuit.
• L = {C, x | ∃w s.t. C(x,w) = 1}.
• Minimum requirement: V should know statement!
• In general |C| = poly(|w|)!
• To overcome:

1. Uniformity assumption on circuits.
2. Preprocessing.

18

NIZK with preprocessing

• Not completely non-interactive.
• Two round protocols:

1. First message depends on C, independent of x
2. Second depends on x

• First message reusable! Reference string.
• Can use for many x1, x2, . . . “non-interactively”.
• Different parties, same reference string.

19

NIZK with preprocessing

crs crs

π

x, w
x

20

Reference string trust?

1. • Best trust is no trust!
• Transparent: uniformly distributed.

2. • But... structure ⇒ efficiency.
• Structured reference string.
• Produced with trapdoor (toxic waste).
• Trapdoor allows faking proofs!

• Use MPC to create SRS.
• Assumption: one honest party.

21

Toxic waste

22

Minimizing trust: Updateable s.r.s

• Use MPC that allows participation of many parties.
• Non-interactive style MPC:

• Party i gets srsi−1.
• Computes and announces srsi.
• Proves correct computation.

• One honest update guarantees trust.
• Thousands can participate!
• Impossibility: allows only limited structure...

23

Minimizing trust: Updateable s.r.s

srs1 srs2

srs3

srs4srs5

π2π1

π4π5

π3

24

Minimizing trust: Updateable s.r.s

srs1 srs2

srs3

srs4srs5

π2π1

π4π5

π3

25

Universal s.r.s

• Updateable or not, costly process.
• Ideally, should be run once.
• Universal: for any* circuit.
• Bugs, updates etc will not require recreation.

26

Universal s.r.s

• Create universal parameters srsU. (needs trust!)
• For any C (|C| ≤ n) derive srsC from srsU.

• No trust.
• E.g. deterministically from C, srsU.

• Prove and verify statements using srsC.

A good compromize of trust vs efficiency:

Universal and Updateable srs.

• Notion of holographic proofs.

27

Post-processing?

• Preprocessing: one costly round for future cheap uses
• Why not the other way as well? Postprocessing?

Let π1, π2, . . . be (expensive to check) proofs

• Check part of πi.
• Defer rest part assuming it correct.
• Much later aggregate deferred parts.

Very powerful technique!

• Accumulated proofs and proof composition.
• Prove that a proof verifies.
• (Specific) NIZK with linear verification ⇒ NIZK with (aggregated)

sublinear verification!
• Hot new topic!

28

Some techniques for constructing
SNARKs

It’s all about aggregation

• Implicitly or explicitly every snark aggregates equations.
1. Linear: ai =

∑
wici for known wi.

2. Quadratic: ci = aibi.
3. Combinations.

• Every arithmetic circuit can be written as constraints.
• We will review some techniques for it.

29

Algebraic reduction

x1 x2 w1

c1

c3

c2

c1 = ℓ1 · r1 ℓ1 = x1 + x2 r1 = w1 + 0
c2 = ℓ2 · r2 ℓ2 = x1 + x2 r2 = c1 + 0
c3 = ℓ3 · r3 ℓ3 = 0 + c2 r3 = c1 + w3

c1 = (x1 + x2)w1

c2 = (x1 + x2)c1

c3 = c2(c1 + w3)

c⃗ = ℓ⃗ ◦ r⃗

ℓ⃗ = L ·

 x⃗
w⃗
c⃗

 r⃗ = R ·

 x⃗
w⃗
c⃗

30

Algebraic reduction

More generally:

1. quadratic: c = ℓ ◦ r,
2. linear: ℓ = Lc, r = Rc

or equivalently
c = (L · c) ◦ (R · c)

31

Heavy machinery: Schwartz-Zippel lemma

Lemma
Let p ∈ F[X1,X2, . . . ,Xk] be a non-zero polynomial with individual
degree d. Then

Pr
s1,...,sk←F

[p(s1, s2, . . . , sk) = 0] ≤ dk
|F|

For univariate polynomials: non-zero p ∈ F[X] can have at most d roots.

Allows polynomial testing:

for s⃗← F p(s1, . . . , sk) = 0 ⇒F p(X1, . . . ,Xk) ≡ 0

32

Detour: pairing groups

• (G,GT, p, e)← GroupGen(1λ).
• Fix P generator of G, e(P,P) generator of GT.
• Implicit notation.
• e is a bilinear operation G×G→ GT

e([a]1, [b]2) = e([1]1, [b]2)a = e([a]1, [1]2)b = e([1]1, [1]2)ab

33

Detour: pairing groups

Checking Diffie-Hellman relations:

• Claim: A ∈ G1,B ∈ G2,C ∈ G1:

A = [a]1 B = [b]2 C = [ab]1

• We can efficiently check this in pairing groups!
• Effectively used as DDH oracle.
• Let C = [c] for some c. Then

T1 = e(A,B) = e([a]1, [b]2) = e([1]1, [b]2)a = e([1]1, [1]2)ab

T2 = e(C, [1]2) = e([c]1, [1]2) = e([1]1, [1]2)c

• T1 = T2 iff ab = c!

34

Detour: pairing groups

• In DLOG setting:
• linear operations in the exponent.
• CDH, DDH hard.
• DLOG setting ≡ linear algebra in exponent

• In pairing setting:
• Additionally check quadratic relations!

Example: Given a1, a2, a3, a4, a5 in the exponent test

3a1a3 + 8a2 = 5a1a4 + 3a2a5

• in DLOG setting imposible... DDH
• in pairing setting, if a1, a2 encoded in G1, and a3, a4, a5 in G2

e(3[a1]1, [a3]2)e(8[a2]1, [1]2) = e(5[a1]1, [a4]2) + 3e([a2]1, [a5]2)

35

Lagrange basis

Basis for F[X] with degree less than n.

• Monomial basis:
{
1,X, . . . ,Xn−1}

• Lagrange basis w.r.t. set S of size n: {λs1(X), λs2(X), . . . , λsn(X)}

The main property of Lagrange basis is it is orthogonal:

∀si, sj ∈ S : λsi(sj) =

{
1, if i = j
0, otherwise

Concretely (but not importantly)

λsi(X) =
∏

sj∈S\si

X− sj
si − sj

36

Lagrange basis

• Let λ⃗(X) = (λ1(X), . . . , λn(X))⊤.
• Let c⃗ = (c1, . . . , cn)⊤.

The polynomial

p(X) = c⃗⊤λ⃗(X) = c1λ1(X) + . . .+ cnλn(X)

is the unique polynomial with:

• degree less than n
• for all si ∈ S: p(si) = ci

Let t(X) =
∏

si∈S(X− si) be the vanishing polynomial in S.

37

Lagrange basis

Lemma
Let a⃗, b⃗, c⃗ ∈ Fn and a(X) = a⃗⊤λ⃗(X), b(X) = b⃗⊤λ⃗(X) c(X) = c⃗⊤λ⃗(X)

Then, c⃗ = a⃗ ◦ b⃗ iff ∃h(X) s.t. a(X)b(X) = c(X) + h(X)t(X).
Proof.
(⇒)

• Consider p(X) = a(X)b(X)− c(X).
• For all si ∈ S: p(si) = a(si)b(si)− c(si) = aibi − ci = 0.
• Each si is a root. Equivalently:

p(X) = (X− s1) . . . (X− sn)h(X) = t(X)h(X)

(⇐)

• for all si t(si) = 0.
• Thus a(si)b(si) = c(si) ⇐⇒ aibi = ci.

38

Proving quadratic constraints using Lagrange basis

• Let a⃗, b⃗, c⃗
• Claim: ∀i aibi = ci.

• let

a(X) = λ⃗(X)⊤a⃗, b(X) = λ⃗(X)⊤b⃗, c(X) = λ⃗(X)⊤c⃗,

Constraints hold ⇐⇒ p(X) = a(X)b(X)− c(X)− h(X)t(X) ≡ 0
Enough to sample s and check p(s) = 0.

Note: this is a trivial statement. It becomes interesting when c⃗, a⃗ and c⃗, b⃗
are linearly related. The next is only for educational purposes.

39

Proving quadratic constraints using Lagrange basis

• Sample s← F and compute

[1]1,2, [s]1,2 . . . , [sn−1]1,2, [T]2 = [t(s)]2
• Note: [λi(s)] computable by [1], . . . , [s]n−1.

• P computes

[A]1 = [λ(s)]⊤1 a⃗, [B]2 = [λ(s)]⊤2 b⃗, [C]1 = [λ(s)]⊤1 c⃗,

h(X) s.t. a(X)b(X) = c(X) + h(X)t(X)
[H]1 = [h(s)]1

• Verifier checks

e([A]1, [B]2) = e([C]2, [1]2)e([H]1, [T]2)

a(s)b(s)− c(s) + h(s)t(s) = 0

40

Proving quadratic constraints using Lagrange basis

• Assume we could extract a⃗, b⃗, c⃗, h⃗ from verifying proof.
• We have computed h(s) s.t.:

h(s) = p(s)/t(s) where p(s) = a(s)b(s)− c(s)

• If additionally a⃗ ◦ b⃗ ̸= c⃗ then t(X) does not divide p(X).

One can reduce this to a (falsifiable) assumption.

• How to extract a⃗, b⃗, c⃗?
• Note that proof contains much less information that a⃗, b⃗, c⃗.
• We resort to non-falsifiable assumptions.

41

Extracting the witness

• Include in the srs: ([αλi(s)]1, [α]2).
• P gives everything twice

V = [v]1, V′ = [αv]1

• Consider ([V]1, [V′]1) an encoding of v.
• V checks an encoding is valid by testing

e([V]1, [α]2) = e([V′]1, [1]2)

e([v]1, [α]2) = e([v′]1, [1]2) ⇐⇒ e([1]1, [1]2)αv = e([1]1, [1]2)v′

n-power Knowledge of Exponent:

For all PPT A with input ([1]1, [s]1, . . . , [s]q, [α]1, [αs]1, . . . , [αsn]1, [α]2
that outputs [A]1, [αA]1, there exists a PPT extractor E that outputs ai
such that A =

∑
aisi.

Only way to compute encodings is to “know” linear combinations
42

Adding zero knowledge

• Usually easy task.
• General strategy: have P give uniform elements that make the proof

verify
• Include in srs [T]1 = [t(s)]1 as well.

• P computes

[A]1 = [λ(s)]⊤1 a⃗+ra[T]1, [B]2 = [λ(s)]⊤2 b⃗+rb[T]2,

[C]1 = [λ(s)]⊤1 c⃗+rc[T]1,
h(X) s.t. a(X)b(X) = c(X) + h(X)t(X)

[H]1 = [h(s)]1+(rarb − rc)[T]1
• Verifier checks

e([A]1, [B]2) = e([C]2, [1]2)e([H]1, [T]2)

• All elements are uniform conditioned on the verification equation.

43

Aggregating linear equations

• Let w⃗i be m public vectors with dimension n.
• The claim is ai = w⃗⊤i c⃗.
• Concatenating w⃗i to a matrix we can write a⃗ = Wb⃗.
• Strategy:

1. Collapse all m equations to 1. Aggregation!
2. Prove the aggregated equation holds.

44

Collapsing the equations

• First rewrite ai − w⃗⊤i c⃗ = 0
• Embed each equation as a coefficient of a monomial.
• The i-th equation is Yi−1(ai − w⃗i

⊤c⃗) = 0
• Add all the equations: ∑

Yi−1(ai − w⃗i⃗c) = 0 (1)

• Consider the above as a polynomial P(Y).
• Equations hold ⇐⇒ P(Y) ≡ 0.
• Polynomial identity testing! sample y← F and check P(y) = 0.
• By Schwartz-Zippel lemma equations are satisfied w.o.p.
• Note: denoting y⃗ = (1, y, . . . , yn−1)⊤, the check can be thought as

y⃗⊤(W⃗c⃗− a⃗) = 0

45

Tool: Pedersen commitment

• Commitment scheme withM = Fn, C = G.
• ck := [⃗r]← Gn, [ρ]← G.
• [c] = [⃗r]⊤m⃗+[ρ]z
• To open P just gives m⃗, z.

Security:

• Computationally binding under DLOG.
• Perfectly hiding: [ρ]z perfectly randomized commitment.

46

Inner product argument

Consider the non-hiding version (ρ = 0)
L⃗r,⃗s =

{
[c], [d], z | ∃⃗a, b⃗ s.t. [c] = [⃗r]⊤a⃗ ∧ [d] = [⃗s]⊤b⃗ ∧ z = a⃗⊤b⃗

}
• Let n be the vector size.
• Call n the size of the statement.
• Strategy: reduce it to x′ ∈ L⃗r′ ,⃗s′ with size n′.
• Apply recursively!

47

IPA with the folding technique

• The commitment key is r⃗
• Denote r⃗L, r⃗R the leftmost and rightmost n/2 elements.
• Similarly a⃗L, a⃗R for the committed values.
• V has [c], [d], z
• P has also witness a⃗, b⃗

48

IPA with the folding technique

• P commits to the “cross terms”

[c−1] = [⃗rL]⃗aR, [c1] = [⃗rR]⃗aL

[d−1] = [⃗sL]⃗bR, [d1] = [⃗sR]⃗bL

z−1 = a⃗Lb⃗R, z1 = a⃗Rb⃗L

• V sends a random challenge x← F.
• P and V compute the new statement:

[⃗r′] = [⃗rL] + x[⃗rR], [⃗s′] = [⃗sL] + x−1 [⃗sR]

[c′] = x−1[c−1]1 + [c] + x[c1]1, [d′] = x[c−1]1 + [c] + x−1[c1]1

z′ = z−1x + z + z1x−1

• P computes the new witness

a⃗′ = a⃗L + a⃗Rx−1, b⃗′ = b⃗L + b⃗Rx

• The “folded” statement is of half size!
• When the statement is small (e.g. O(1)) P simply sends the witness.

49

Completeness of recursion step

1. [c′] is a commitment to a⃗′ w.r.t. r⃗′:

r⃗′⊤a⃗′ = (⃗rL + x⃗rR)
⊤(⃗aL + a⃗Rx−1)

= r⃗⊤L a⃗L + r⃗⊤L a⃗Rx−1 + r⃗⊤R a⃗Lx + r⃗⊤R a⃗R

= c−1x−1 + c + c1x = c′

2. [d′] is a commitment to b⃗′ w.r.t. s⃗′ (identically)

3. z′ = a⃗′⊤b⃗′:

a⃗′⊤b⃗′ = (⃗aL + a⃗Rx−1)⊤(⃗bL + b⃗Rx)
= a⃗⊤L b⃗L + a⃗⊤L b⃗Rx + a⃗⊤R b⃗Lx−1 + a⃗⊤R b⃗R)

= z−1x + z + z1x−1 = z′

50

Soundness of the reduction step

Strategy: induction!

• Assume we can extract a witness for the (i + 1)-th iteration.
• We will extract a witness for the i-th iteration.
• Since in the end P sends witness, base case trivially holds.
• Basic tool: Rewind the prover.
• Get enough transcripts to extract i-th level witness.

51

Soundness of the reduction step

Consider we extract at level i.

• We get the cross term commitments.
• By I.H. for any uniform x, we get a⃗′, b⃗′ valid witness for next

iteration i + 1.
• Rewind for 3 challenges.
• By linear algebra calculations we can get valid witness a⃗, b⃗
• Intuition:

• The prover gives the cross terms before seeing the challenge.
• The messages “behave” similarly to degree 3 polynomials.
• We can “interpolate” them in the exponent.

Only strategy for adversary: use different representations for the
elements w.r.t. commitment keys

Infeasible by binding property (soundness under DLOG)!

52

Protocol Properties:

• Transparent!
• log n rounds.
• Oλ(log n) communication: 6 elements per round
• Oλ(n) prover (no expensive interpolation)
• Oλ(n) verifier:

in each round compute the new key...
• Public coin: can turn to non-interactive using FS!

53

Exercise:

Consider a commitment key [⃗r] with n = 2ν elements. Assume P and V
execute an iteration of the IP protocol and verifier uses randomness
x1, x2, . . . , xν . Find an expression for the final (one element) key at the
end of the protocol.

54

Back to aggregating m linear equations

Prove commitments to a⃗ and b⃗ satisfy a⃗ = Wb⃗.

• srs = [⃗r]1
• P claims:

1. [γ] is commitment to c⃗: [γ] = [⃗r]⊤c⃗.
2. [α] is commitment to a⃗: [α] = [⃗r]⊤a⃗.
3. a⃗− W⃗c⃗ = 0⃗ for public W⃗.

• V sends challenge y. Let y⃗ = (1, y, . . . yn−1)⊤.
• P will convince it that y⃗⊤(⃗a− W⃗c⃗) = y⃗⊤a⃗− (⃗y⊤W⃗)⃗c = 0.
• This reduces easily to two inner products!
• Let

[υ] = [⃗r]⊤y⃗, [ω] = [⃗r]⊤(⃗y⊤W⃗),

• Verifier can compute these commitments on its own!
• The two claims are

([υ], [⃗a], k) ∈ L⃗r, ([ω], [⃗c], k) ∈ L⃗r,

55

What about Zero knowledge?

• Many ways to achieve it.
• Should use hiding commitments.
• Can randomize P messages.
• We demonstrate a technique using Σ protocols.

56

What about Zero knowledge?

Simple HVZK protocol for

L⃗r,ρ =
{
([γ], a⃗, k) | ∃⃗c, z s.t. [γ] = [⃗r]⊤c⃗+[ρ]z ∧ a⃗⊤c⃗ = k

}

• V has [⃗r], [ρ], [γ], a⃗, k. P has witness c⃗, z.
• The protocol goes as follows:

1. P samples d⃗← Fn, σ ← F and sends

[δ] = [⃗r]⊤d⃗+[ρ]σ, ℓ = a⃗⊤d⃗

2. V sends x← F
3. P replies with

z⃗ = x⃗c + d⃗, ϕ = cρ+ σ

4. V checks

r⃗⊤z⃗ + ρϕ = [δ] + x[γ] : z⃗ is a commitment to [δ] + c[γ]

a⃗⊤z⃗ = k + xℓ : = a⃗⊤(c + xd⃗)

57

What about Zero knowledge?

• Simple to verify it is
1. Complete
2. Special sound
3. HVZK

• Hint: modify Σ protocol proofs.
• We can compress the last step!

• Prover gives a trivial (non-ZK) prove that

r⃗⊤z⃗ + ρϕ = [δ] + c[γ]

a⃗⊤z⃗ = k + xℓ
• Equivalently,

1. (⃗z⊤, ϕ) is an opening of [δ] + c[γ]
2. (⃗a⊤, 0) is an opening of some commitment [ϵ]

3. The inner product of the openings is k + cℓ
• Instead of doing the last step do logarithmic IP.
• Need not be ZK!

58

Exercise:

A polynomial commitment allows a prover to (succinctly) commit to a
polynomial p(X) of degree less than n and later reveal one (or many)
openings k = p(x). It should be

• Binding: P cannot produce (1) commitment c, (2) two different
openings y1 ̸= y2 for some point x and (3) a verifying proof.

• Hiding: the opening/proof reveals nothing more than the fact the
p(x) = y.

1. Use Pedersen commitment + IPA to construct a (non-hiding) P.C.
with commitment size Oλ(1) and opening proof Oλ(log n).

2. Use the sigma protocol technique to make it hiding (under FS
transform).

59

Multivariate sumcheck protocol

• Celebrated result! (IP=PSPACE)
• Let p ∈ F[X1, . . . ,Xn] be a multivariate polynomial with individual

degree d.
• P claims

∑
b⃗∈{0,1}n p(⃗b) = k.

• Inductive IP.
• Use structure of the polynomial.

60

Multivariate sumcheck protocol

• P sends
p1(X) =

∑
(b2,...bn)∈{0,1}n−1

p(X, b2, . . . , bn)

• V asserts p1(0) + p1(1) = k. It sends s1 ← F to P.
• P sends

p2(X) =
∑

(b3,...bn)∈{0,1}n−2

p(s1,X, b2, . . . , bn)

• V asserts p2(0) + p2(1) = p1(s1). It sends s2 ← F to P.

...

• V asserts pn(0) + pn(1) = pn−1(sn−1).
• V samples sn and checks pn(sn) = p(s1, . . . , sn).

61

Multivariate sumcheck protocol: soundness

• Consider round 1.
• Assume

∑
p(X1, . . . ,Xn) ̸= k

• Since p1(0) + p1(1) ̸= k the prover has to send:

p∗1(X) ̸= p1(X) such that p1(0) + p1(1) ̸= k

• Two cases:
1. p∗

1 (s1) = p1(s1): SZ lemma ⇒ d
F probability

2. P has to lie at next round for p2:
otherwise p2(0) + p2(1) = p1(s1) ̸= p1(s1)

• Continue inductively.
• In the last round P cannot cheat! V computes last evaluation on its

own!
• Soundness error ≤ n·d

F

62

Multivariate sumcheck protocol: soundness

• Consider round 1.
• Assume

∑
p(X1, . . . ,Xn) ̸= k

• Since p1(0) + p1(1) ̸= k the prover has to send:

p∗1(X) ̸= p1(X) such that p1(0) + p1(1) ̸= k

• Two cases:
1. p∗

1 (s1) = p1(s1): SZ lemma ⇒ d
F probability

2. P has to lie at next round for p2:
otherwise p2(0) + p2(1) = p1(s1) ̸= p1(s1)

• Continue inductively.
• In the last round P cannot cheat! V computes last evaluation on its

own!
• Soundness error ≤ n·d

F

63

Multivariate sumcheck protocol: soundness

• n rounds.
• OF(d) communication.
• OF(d) verifier computation per round and 1 evaluation of p.
• Public coin.

64

Univariate sumcheck protocol

• We want a similar approach for univariate polynomials.
• p ∈ F[X] of degree less than n
• For S ⊆ F:

∑
s∈S p(s) = 0.

• Useful tool for universal SNARKs.
• We will consider S with structure.

65

Lagrange basis for multiplicative subgroups

• Consider a subgroup H ⊆ F of size n.
• Let λ⃗(X) be the Lagrange basis associated to H.
• Then:

λi(X) =
hi
n
(Xn − 1)
(X− hi)

t(X) = Xn − 1 λi(0) =
1
n

• Easy to verify properties!
• Efficiency: λi(X), t(X) computable in OF(log n).

66

Univariate sumcheck protocol

Theorem
Let S ⊆ H. Then

∑
s∈S p(s) = σ iff ∃h(X), r(X) with deg(r) ≤ n− 1 s.t.

p(X)n− σ = Xr(X) + t(X)h(X)

Derieved protocol from polynomial commitments (High level):

• P commits to p(X). Claims
∑

s∈S P(X) = σ.
Also sends commitments to h(X), r(X).

• V sends x← F.
• P opens px = p(x), hx = h(x), rx = r(x) and proofs of opening.
• V asserts

pxn− σ = xrx + t(x)hx

67

68

	Part 1: High Level Overview
	Some techniques for constructing SNARKs

