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Part 1: High Level Overview



Modeling of proofs

= Central question in TCS: Model theorems and proofs
= Still not a good understanding

= Theorems as set membership (£ = {p| p encodes a prime number },
x€7 L)

= Asysmptotic efficiency
= P: efficient (poly time) proving

= NP: efficient (poly time) verification: 3w such that V' accepts x in
poly time



Revolutionizing the notion of proofs

Classical proofs

fx) = y! Hmmm, | accept!



Revolutionizing the notion of proofs

Interactive proofs
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= Randomness and Interaction — adaptive verifier
= Two requirements: Completeness and Soundness

= The verifier always accepts valid statements
= The verifier rejects invalid statements except with negligible
probability

= Arguments: Soundness only against polynomial adversaries

= Knowledge Soundness: P knows a witness
L={g h|3Ixst. h=g}

= Zero Knowledge
= Fascinating and counterintuitive concept
= )V learns nothing but that the statement is true
= V" interact with P and outputs some knowledge.
= ZK if there exists S whose outputs is “identical”



(Almost) removing interaction ...again

Interaction has cons:

= ) needs to be online

= Proofs are not publicly verifiable (ZK)

But... NIZK do not exist in the standard model.

Ways to remove it:

= Using idealized models — (Fiat-Shamir).

= 2 round IPs (setup & prove).



Extra property: succinctness

= Succinctness
= )\ sec. param., x input, w witness.
= Proof size poly(\)o(|w])
= Verification time poly(A)(|x| + o(|w])).
= E.g. O(\) communication and O(A - |x]) verification (!).



zk-SNARGs/zk-SNARKSs

= zk: zero knowledge

= N: non-interactive

= S: succinct

= ARG (ARK): arguements (of knowledge)

But...
SNARGs do not exist under falsifiable assumptions! [GW11]



Some notation first

Implicit notation for groups:

= Let G be a group and g a fixed generator.
= [x] is the element g*.

Example:
[1], [a], [b], [ab] € DDH

g2 ¢" c DDH

This emphasizes the underlying linear algebra



Efficient falsifiable assumptions

= Well defined game between (PPT) challenger C and adversary A.

= After the game we can efficiently decide if A wins or loses.
Example: DLOG

1. C samples a group gk = (G, p, g) + GroupGen(1*).
and uniform h = [x] + G.

2. X + A(gk, h).

3. C compares with [X] with h.
A wins if h=[X](= [x]) and loses otherwise.
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Non-Falsifiable assumptions: knowledge of exponents

= Consider a tuple g =[1], g1 = [4].
= An adversary A computes a DDH tuple
g=[1], & = [a], &2 = [b], g3 = [ab]
= This is easy!
1. Sample b € Z,
2. Compute g» = b[1] = [b] and g3 = b[a] = ab

KEA states this is the only way this can be done:
VY PPT A3 PPT € sit.

Pr [[], [26] - A(L], [a])| ~ Pr |b < &([1, [4])
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Falsifiable vs non-falsifiable assumptions

= Black box vs non-black box or what vs how:

= Falsifiable: assume no PPT A can do computation X
= Non-falsifiable: assume how every PPT A does computation X

= Less understanding of non-falsifiable assumptions.

= Concrete meaning? (and so efficiency?)
= Falsifiable:

1. consider the best known attack
2. consider the resources needed to perform it
3. set A\ accordingly

= Non-falsifiable: there is no similar notion. How big A\?

= We have to® resort to (1) non-falsifiable assumptions or (2) heuristic
methods!

1What about subclasses of NP? E.g. P?

12



The general framework

1. Start from a computation model (in this talk arithmetic circuits)
2. Translate it to an algebraic statement

3. Construct a proof for the statement:

= Using probabilistic methods
= Restricting the Prover capabilities (i.e. can only compute affine
functions)

4. Compile it with cryptographic tools to enforce prover behavior

+: Separate combinatorial, probabilistic and cryptographic work
+: Easier understanding and analysis

+: Modular approach

= Not always clear how.

= Important to understand.
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Information theoretic part: PCPs model

= P constructs PCP string 7

= ) can see random parts of 7 and decides
PCP Theorem: PCP[logn,1] = NP

= Completeness: Vx € £V accepts.

= Soundness: Vx ¢ L V rejects w.o.p.
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Cryptographic compilation: Vector Commitments

Vector commitment

= P commits to ¢ = Com(ck, X := (x1,...,%,) ")
= P gives openings Xj, ..., x; and PoD 7w
=V asserts opening: 0/1 < Verify(ck, ¢, x, ..., X, 7).

Security guarantee: Position binding:

= No (PPT) P can produce xj,...xj, # Yi,,- .Y and my, m, s.t.
Verify(ck, ¢, Xy, . . ., X;,, mx) = Verify(ck, ¢, yi,, ..., i, my) = 1.

Construction: CRHF & Merkle trees
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Cryptographic compiler

Natural approach to “compile” PCPs to SNARGs:

= P commits to PCP string ¢ = Com(7).
= V queries PCP by asking 7, ..., m,.
= P sends them with proof of correct opening w.r.t. ¢
Binding: Infeasible to decommit (7, ..., m;) # (7}, ..., ). Effective
as a PCP sting!
= |f c and PoD are sublinear the proof is sublinear!
= Use FS to make it non-interactive.
= First succinct arguments.

= Problem: too complex and concretely inefficient.

+: transparent setup, (plausibly) PQ -: Bad concrete efficient
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Extention: interactive oracle proofs

Interaction is powerful!

PORTTTT]---LTTTT]

PCRT T ]---[1111] x
P<PHHHHHH @

fix) =y Hmmm, | accept!

1. Construct an interactive protocol.
2. Replace P — V messages with PCPs.
3. V queries PCPs in each round.

= Public coin V — non-interactive.
= Compiled using vector commitments as well!

[BCS16; Ben+18; Ame+17; Ben+19] .



Preprocessing

= Let C be an arithmetic circuit.
= L={Cx|3ws.t. C(x,w)=1}.

= Minimum requirement: V' should know statement!

In general |C| = poly(|w])!
= To overcome:

1. Uniformity assumption on circuits.
2. Preprocessing.
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NIZK with preprocessing

= Not completely non-interactive.
= Two round protocols:

1. First message depends on C, independent of x
2. Second depends on x

= First message reusable! Reference string.
= Can use for many xi, X2, ... “non-interactively”.

= Different parties, same reference string.

[Grol0; Gen+13; Par+13; Dan+14; Bit+13; Grol6]
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NIZK with preprocessing
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Reference string trust?

1. = Best trust is no trust!
= Transparent: uniformly distributed.

2. = But... structure = efficiency.
= Structured reference string.
= Produced with trapdoor (toxic waste).
= Trapdoor allows faking proofs!

= Use MPC to create SRS.

= Assumption: one honest party.
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Toxic waste




Minimizing trust: Updateable s.r.s

= Use MPC that allows participation of many parties.
= Non-interactive style MPC:

= Party i gets srsi_1.

= Computes and announces sts;.

= Proves correct computation.

= One honest update guarantees trust.
= Thousands can participate!

= |mpossibility: allows only limited structure...
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Minimizing trust: Updateable s.r.s

SrSy . ST'S9 .
. Us| T2

ST'S3 3

n S1S5 . ST'S4 .

U T4
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Minimizing trust: Updateable s.r.s

ST'Sy SS9 i
st Up
ST'S3 3
STSs SISy
s Uyt
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Updateable or not, costly process.
= |deally, should be run once.
= Universal: for any* circuit.

= Bugs, updates etc will not require recreation.
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= Create universal parameters srsy. (needs trust!)
= For any C (|C| < n) derive srsc from srsy.

= No trust.
= E.g. deterministically from C, srsy.

= Prove and verify statements using srsc.

A good compromize of trust vs efficiency:

Universal and Updateable srs.

= Notion of holographic proofs.

[Gro+18; Mal+19; DRZ20; Chi+20; Cam+20; RZ21]
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Post-processing?

= Preprocessing: one costly round for future cheap uses

= Why not the other way as well? Postprocessing?
Let 71, o, ... be (expensive to check) proofs

= Check part of ;.
= Defer rest part assuming it correct.

= Much later aggregate deferred parts.
Very powerful technique!

= Accumulated proofs and proof composition.
= Prove that a proof verifies.

= (Specific) NIZK with linear verification = NIZK with (aggregated)
sublinear verification!

= Hot new topic!
[BGH19; COS20; Biin+20b; Biin+20a]
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Some techniques for constructing
SNARKSs




It’s all about aggregation

= |mplicitly or explicitly every snark aggregates equations.
1. Linear: a; = > wic; for known w;.
2. Quadratic: ¢; = a;b;.
3. Combinations.

= Every arithmetic circuit can be written as constraints.

= We will review some techniques for it.
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Algebraic reduction

a=0-n i =xi+x n=w+0
a=40n b =x1+x rn=ca+0
a=¥0n 63 =0+c rn=c+ws
d=/lo7f
a = (x+x)w
X X
@ =(a+x)a f=L-|w| 7=R-|w
¢ B

= caa+w)
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Algebraic reduction

More generally:

1. quadratic: c=/{or,

2. linear: { = Lc, r= Rc

or equivalently
c=(L-c)o(R-¢)
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Heavy machinery: Schwartz-Zippel lemma

Lemma
Let p € F[Xy, Xz, ..., Xk] be a non-zero polynomial with individual

degree d. Then

For univariate polynomials: non-zero p € F[X] can have at most d roots.

Allows polynomial testing:

for 5« F p(s1,...,sc) =0 =g p(Xg,....,X) =0

32



Detour: pairing groups

(G1, G, G, p, ) + GroupGen(1*).
= Fix Py, P> generators of Gy, Gy, e(P1, P2) generator of Gr.
= |mplicit notation.

= eis a bilinear operation G; x G, — G

e([al1, [b]2) = e([11, [6]2)* = e([als, [1]2)" = e([1]1, [1]2)*

33]



Detour: pairing groups

Checking Diffie-Hellman relations:
= Claim: A€ G1,Be Gy, Ce Gy:

A= [3]1 B = [b]2 C= [ab]1

We can efficiently check this in pairing groups!

Effectively used as DDH oracle.

Let C = [¢] for some c. Then
Ty = (A, B) = e([als, [b]2) = e([1]1, [b2)" = e([1]1, [1]2)*

T2 = e(C [1]2) = e([d1, [1]2) = e([1]1, [1]2)°
T1 = T2 iff ab= cl
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Detour: pairing groups

= In DLOG setting:

= linear operations in the exponent.
= CDH, DDH hard.
= DLOG setting = linear algebra in exponent

= In pairing setting:

= Additionally check quadratic relations!
Example: Given ai, as, as, a4, as in the exponent test

3aiaz + 8ar, = bajas + 3azas

= in DLOG setting imposible... DDH

= in pairing setting, if a1, a; encoded in G1, and a3, a4, a5 in G,

e(3[a1]1, [as]2)e(8[a2]1, [1]2) = e(5[a1]1, [aa]2)e(3[22]1, [as]2)
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Lagrange basis

Basis for F[X] with degree less than n.

= Monomial basis: {1,X,..., X"}
= Lagrange basis w.r.t. set S of size n: {\g,(X), As,(X), ..., As,(X)}

The main property of Lagrange basis is it is orthogonal:

1,  ifi=j
Vsi,si € St Ag(s)) = y
0, otherwise
Concretely (but not importantly)
X—s
)‘S/'(X) = H s — SJ'
i3

5;€5\si
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Lagrange basis

s Let X(X) = (M (X), ..., (X)) T

» Leté=(c,...,cn)".

The polynomial
p(X) = E"X(X) = ahi(X) + ... + codn(X)
is the unique polynomial with:

= degree less than n

» foralls; €S p(s) =c¢

Let t(X) = [[,cs(X — si) be the vanishing polynomial in S.
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Lagrange basis

Lemm_:fl B o B
Let 3,b,¢ € F" and a(X) = 37 X(X), b(X) = BT X(X) ¢(X) = " X(X)
Then, €= 3o biff 3Ih(X) s.t. a(X)b(X) = c(X) + h(X)t(X).

Proof.
(=)

= Consider p(X) = a(X)b(X) — ¢(X).
» Forall s;€S: p(s;) = a(s;)b(s;) — c(s;) = aibj — ¢; = 0.
= Each s; is a root. Equivalently:
p(X) = (X = s1) ... (X = sa)H(X) = t(X)h(X)
(<)
= for all s; t(s;)) = 0.

= Thus a(s;)b(s;) = c(s;) < aibi=c;.

38



Proving quadratic constraints using Lagrange basis

= Let 3,b,2

= Claim: Vi a,-b,- = C;j.
= et
a(X)=XX)"3  bX)=X(X)Th, (X)=X(X"¢

Constraints hold <= p(X) = a(X)b(X) — c(X) — h(X)t(X) =0
Enough to sample s and check p(s) = 0.

Note: this is a trivial statement. It becomes interesting when ¢, 3 and E,B
are linearly related. The next is only for educational purposes.
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Proving quadratic constraints using Lagrange basis

= Sample s < F and compute
112, [sl12 -+ [ a2, [T]2 = [t(9)]2
= Note: [\(s)] computable by [1],..., [s]" 1.
= P computes
A=) 5 [Ba=N)a b [Ch=RE)E
h(X) s.t. a(X)b(X) = c(X) + h(X)t(X)
[Hl, = [A(s)]x

= Verifier checks

e([Al1, [Bl2) = e([C2, [1]2)e([H]1, [T]2)
a(s)b(s) — c(s) + h(s)t(s) =0

40



Proving quadratic constraints using Lagrange basis

= Assume we could extract 3, B, ¢, h from verifying proof.

= We have computed h(s) s.t.:

h(s) = p(s)/t(s) where p(s) = a(s)b(s) — c(s)
= If additionally 3o b # & then t(X) does not divide p(X).
One can reduce this to a (falsifiable) assumption.

= How to extract 3, b, &?
= Note that proof contains much less information that 3, B, c.

= We resort to non-falsifiable assumptions.

41



Extracting the witness

= Include in the srs: ([a\(s)]1,[a]2).
= P gives everything twice

V=[M1, V =lavh
= Consider ([V]1,[V]1) an encoding of v.
= )V checks an encoding is valid by testing
e([Vl1, [al2) = e([V]1, [1]2)
e([M1, [a]2) = e([VI, [1]2) <= e([L]s, [1]2)* = e([1]s, [1]2)"
n-power Knowledge of Exponent:

For all PPT A with input ([1]1, [s]1,-- -, [$"]1, [a]1, [@s]1, - - -, [as]1, [a]2)
that outputs [A]1, [aA]1, there exists a PPT extractor £ that outputs a;
such that A=Y a;s’.

Only way to compute encodings is to “know” linear combinations

42



Adding zero knowledge

= Usually easy task.
= General strategy: have P give uniform elements that make the proof
verify

= Include in srs [T]; = [t(s)]1 as well.

= P computes
[Als = O d+n[Th,  [Bl = [\(s)]3 b+rs[ T,
[Cr = NS e+rel T,
K (X) s.t. (a(X)+ rat(X))(b(X) + rpt(X)) = c(X) + rct(X) + A (X)t(X)
[Hl: = [H(s)lx
= Verifier checks
e([Al1; [Bl2) = e([Cl2, [1]2)e([H]1, [T]2)
= All elements are uniform conditioned on the verification equation.
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Aggregating linear equations

= Let w; be m public vectors with dimension n.

» The claimis a; = W ¢

= Concatenating w; to a matrix we can write 3 = Wh.
= Strategy:

1. Collapse all m equations to 1. Aggregation!
2. Prove the aggregated equation holds.

a4



Collapsing the equations

= First rewrite a; — WTE— 0

= Embed each equation as a coefficient of a monomial.
= The ith equation is Y (a; — w; &) =0

= Add all the equations:

> Y (a - wie) =0 (1)

= Consider the above as a polynomial P(Y).

= Equations hold <= P(Y)=0.

= Polynomial identity testing! sample y + F and check P(y) = 0.

= By Schwartz-Zippel lemma equations are satisfied w.o.p.

= Note: denoting y = (1,y,...,y" )T, the check can be thought as

—

yT(We-3) =0
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Tool: Pedersen commitment

= Commitment scheme with M =F", C = G.
ck =[] + G", [p]+ G.
[d = [AT m+[p]z

= To open P just gives m, z.

Security:

= Computationally binding under DLOG.

= Perfectly hiding: [p]z perfectly randomized commitment.

46



Inner product argument of [Boo+16]

Consider the non-hiding version (p = 0)

Lz ={ld.[d.z33,Bst. [d=[ATanld =[5z =3T5}
= Let n be the vector size.
= Call n the size of the statement.
= Strategy: reduce it to X' € L z with size n'.

= Apply recursively!
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IPA with the folding technique

= The commitment key is ¥

= Denote 7, rr the leftmost and rightmost n/2 elements.
= Similarly 3, 3g for the committed values.

= V has [d, [d], z

= P has also witness 3, b

48



IPA with the folding technique

= P commits to the “cross terms”

[c.1] = [A)adr,  [a] = [FrlaL
[d_i] = [Bi)br.  [dh] = [Sklby
i, = 5LBR, zZ1 = 5RBL

= ) sends a random challenge x < F.
= P and V compute the new statement:

[P1=[F+ X%l [8]=[5]+ x "[5A]
[d] = x"eals + [d + Aal, [d] = X[c_1]1 + [d + x al

Z =z ix+z+zx "
= P computes the new witness
-y = - -1 7 g T
a = a;+arx , b = b + brx

= The “folded” statement is of half size!

= When the statement is small (e.g. O(1)) P simply sends the witness.
49



Completeness of recursion step

1. [¢] is a commitment to &@ w.r.t. r:

ST = N N - N _
r a (rL+XrR)T(aL+aRx l)

=T = —T—=> -1 T = T =
rpag+r arx ~ + rgrarx—+ rgagr

=cix ‘+ctax=<
2. [d] is a commitment to & w.rt. § (identically)
=T =
3.Z2=4a Vb
EITE/ = (5L + 3RX_1)T(BL + BRX)
= 5[[_2;[_ + EZBRX+ 3‘RF E[_X71 + EEBR)

=z 1 x+z+ zlx_1 =7
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Soundness of the reduction step

Strategy: induction!

= Assume we can extract a witness for the (i+ 1)-th iteration.
= We will extract a witness for the i-th iteration.

= Since in the end P sends witness, base case trivially holds.

= Basic tool: Rewind the prover.

= Get enough transcripts to extract i-th level witness.
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Soundness of the reduction step

Consider we extract at level /.

= We get the cross term commitments.
= By LLH. for any uniform x, we get @, b valid witness for next
iteration i+ 1.

= Rewind for 3 challenges.

= By linear algebra calculations we can get valid witness 3, b

= Intuition:
= The prover gives the cross terms before seeing the challenge.
= The messages "“behave” similarly to degree 3 polynomials.
= We can “interpolate” them in the exponent.

Only strategy for adversary: use different representations for the
elements w.r.t. commitment keys

Infeasible by binding property (soundness under DLOG)!
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Protocol Properties:

= Transparent!
= log n rounds.
= O,(log n) communication: 6 elements per round
= O,(n) prover (no expensive interpolation)
= Ox(n) verifier:
in each round compute the new key...

= Public coin: can turn to non-interactive using FS!

Used in many works: [Bin+18], [Wah+18], ...
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Exercise:

Consider a commitment key [f] with n = 2" elements. Assume P and V
execute an iteration of the IP protocol and verifier uses randomness
X1,X2, .- .,%,. Find an expression for the final (one element) key at the

end of the protocol.
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Back to aggregating m linear equations

Prove commitments to 3 and b satisfy 3 = Wb.

» srs= [y
= P claims:

1. [y] is commitment to & [y] =[] ¢

2. [a] is commitment to 3: [o] = [A a.

3. 3— WCc =0 for public W.
= V sends challenge y. Let y = (1,y,...y" 1)T.
= P will convince it that yT (3 — Wé) = yT3— (T W)é=0.
= This reduces easily to two inner products!
= Let

L=y,  Wl=[TG'W),

= Verifier can compute these commitments on its own!

= The two claims are

(vl [&l, k) € Lz, ([w];[d], k) € L,
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What about Zero knowledge?

= Many ways to achieve it.
= Should use hiding commitments.
= Can randomize P messages.

= We demonstrate a technique using X protocols [AC20].
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What about Zero knowledge?

Simple HVZK protocol for

Lz, ={(7],3. k) | 3¢ zst. [y] = AT e+[plzn 3 ¢= k}

= V has [7], [p], [7], &, k. P has witness ¢, z.
= The protocol goes as follows:
1. P samples d+ F", o < FF and sends

[6]=[A"dtlplo, ¢=3"d

2. Vsends x+ F
3. P replies with

4. 'V checks

7' Z+4 pp = [6] + x[7] : Zis a commitment to [6] 4+ 4]

ST

E| z:k+x£:=37(c+x;l)
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What about Zero knowledge?

= Simple to verify it is
1. Complete
2. Special sound
3. HVZK
= Hint: modify ¥ protocol proofs.
= We can compress the last step!
= Prover gives a trivial (non-ZK) prove that

72+ 6 = 3] + ]
i'Z=k+xt

= Equivalently,

1. (Z7,¢) is an opening of [8] + c[]

2. (37,0) is an opening of some commitment [e]

3. The inner product of the openings is k + ¢/
= Instead of doing the last step do logarithmic IP.
= Need not be ZK!
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Exercise:

A polynomial commitment allows a prover to (succinctly) commit to a
polynomial p(X) of degree less than n and later reveal one (or many)
openings k = p(x). It should be

= Binding: P cannot produce (1) commitment ¢, (2) two different
openings y; # y» for some point x and (3) a verifying proof.

= Hiding: the opening/proof reveals nothing more than the fact the
p(x) = y.

1. Use Pedersen commitment + IPA to construct a (non-hiding) P.C.
with commitment size O(1) and opening proof O, (log n).

2. Use the sigma protocol technique to make it hiding (under FS
transform).
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Multivariate sumcheck protocol

= Celebrated result! (IP=PSPACE)

= Let p € F[Xi,..., X,] be a multivariate polynomial with individual
degree d.

= P claims 3 g1y p(b) = k.
= |nductive IP.

= Use structure of the polynomial.
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Multivariate sumcheck protocol

= P sends
pl(X) = Z P(X, b27"’:bn)

(b2,...bn)€{0,1}"1
= V asserts p1(0) + p1(1) = k. It sends s; < F to P.
= P sends

pa(X) = Z p(s1, X, ba, ..., by)

(bs,...b,)€{0,1}"2

=V asserts pa(0) + p2(1) = pi(s1). It sends s, <~ F to P.

=V asserts p,(0) + pn(1) = pp—1(Sn—1).

= )V samples s, and checks p,(s,) = p(s1, - .., Sn)-
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Multivariate sumcheck protocol: soundness

= Consider round 1.
= Assume > p(Xi,...,X,) # k
= Since p1(0) + p1(1) # k the prover has to send:

p1(X) # p1(X) such that p;(0) + pi(1) = k

= Two cases:
L. pi(s1) = pi(s1): SZ lemma = £ probability
2. P has to lie at next round for py:
otherwise p2(0) + p2(1) = pi(s1) # pi(s1)
= Continue inductively.

= In the last round P cannot cheat! VV computes last evaluation on its

own!

= Soundness error < %’
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Multivariate sumcheck protocol

= n rounds.

= Op(d) communication.

= Op(d) verifier computation per round and 1 evaluation of p.
= Public coin.

Both explicitly used for SNARGS (e.g. [Wah+18; Xie+19]) and
inspiration for other techniques.
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Univariate sumcheck protocol [Ben+19; RZ21]

We want a similar approach for univariate polynomials.

p € F[X] of degree less than n
For SCTF: Y .sp(s) =0.
Useful tool for universal SNARKs.

We will consider S with structure.
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Lagrange basis for multiplicative subgroups

= Consider a subgroup H C F of size n.
= Let A(X) be the Lagrange basis associated to H.
= Then:

MO =Ty =X A=

(X —1) 1
n

= Easy to verify properties!
= Efficiency: \i(X), t(X) computable in Og(log n).
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Univariate sumcheck protocol

Theorem
Let SCH. Then )’  sp(s) = o iff 3n(X), (X) with deg(r) < n—1 s.t.

p(X)n — o = X X) + t(X)h(X)

Derieved protocol from polynomial commitments (High level):

= P commits to p(X). Claims >°__cP(X) = 0.
Also sends commitments to h(X), r(X).
= )V sends x + F.
= P opens py = p(x), hy = h(x), . = r(x) and proofs of opening.
= ) asserts
pxn — 0 = xry + t(x)hy
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