Εθνικό Μετσόβιο Πολυτεχνείο

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Προχωρημένα Θέματα Κρυποτογραφίας 2020-21

(ΣΗΜΜΥ, ΑΛΜΑ, ΕΜΕ)

Διδάσκοντες: Π. Γροντάς, Ν. Λεονάρδος, Α. Παγουρτζής

Επισκέπτες ομιλητές: Α. Ζαχαράκης, Β. Ζήκας, Δ. Ζήνδρος, Π. Παπακωνσταντίνου, Ο. Χαρδούβελης

3η Σειρά Ασκήσεων

(ZK SNARKs, Proofs-of-Work)

Exercise 1. (by A. Zacharakis)

Consider a commitment key $[\mathbf{r}]$ with $n=2^{\nu}$ elements. Assume \mathcal{P} and \mathcal{V} execute an iteration of the IP protocol and verifier uses randomness $x_1, x_2, \ldots, x_{\nu}$. Find an expression for the final (one element) key at the end of the protocol.

Exercise 2. (by A. Zacharakis)

Informally, a polynomial commitment allows a prover to (succinctly) commit to a polynomial p(X) of degree less than n and later reveal one (or many) openings k = p(x). It should be

- Binding: \mathcal{P} cannot produce (1) commitment c, (2) two different openings $y_1 \neq y_2$ for some point x and (3) a verifying proof.
- Hiding: the opening/proof reveals nothing more than the fact the p(x) = y.
- 1. Use Pedersen commitment + IPA to construct a (non-hiding) P.C. with commitment size $\mathcal{O}_{\lambda}(1)$ and opening proof $\mathcal{O}_{\lambda}(\log n)$.
- 2. Use the sigma protocol technique to make it hiding (under FS transform).

Exercise 3. (by D. Zindros)

Consider a chain C with $2^{20}+6$ blocks, and define the sequence μ as follows:

$$\mu[2^i-1]=i \text{ for all } i\geq 0$$

$$\mu[0{:}2^i-1]=\mu[0{:}2^i-1]^R \text{ for all } i$$

where s^R denotes the reverse of the sequence s.

Recall that C[i:j] denotes the subsequence of C from the zero-based index i (inclusive) to index j (exclusive), so C[0:3] = [C[0], C[1], C[2]], and C[:-2] is C with its last 2 elements removed. For each i, let the block C[i] have a level whose value is given by $\mu[i]$ (and this is the maximum level that it has attained).

- 1. Draw a graph of the sequence $\mu[:2^6]$
- 2. How many distinct elements are in the interlink of C[-7] and how many in C[-6]?
- 3. What is the size of a NIPoPoW proof with $k = 2^{20} + 5$ and m = 1?

- 4. What is the size of a NIPoPoW proof with k=1 and $m=2^{20}+5$?
- 5. If we choose a block uniformly at random from C[:-6], what is the probability of it being of level at least 18?
- 6. For k=6 and m=8, what is the size of the NIPoPoW on C?

Deadline and instructions. Please submit your answers by July 15, 2021. Please cite any assumptions and sources you have used.

Οι απαντήσεις θα πρέπει να υποβληθούν έως τις 15/7/2021, σε ηλεκτρονική μορφή. Να αναφέρετε όποιες υποθέσεις και πηγές χρησιμοποιήσετε. Για απορίες / διευκρινίσεις: επικοινωνήστε με τους διδάσκοντες στην παρακάτω διεύθυνση:

For any questions please contact: atc2021@corelab.ntua.gr