Ehrenfeucht-Fraïssé Games

Automata and Computational Models

National Technical University of Athens

Outline

Motivation

Ehrenfeucht-Fraïssé Games

Exercises

Definition of the language

- A vocabulary \(\tau = \langle R_1^{a_1}, ..., R_k^{a_k}, c_1, ..., c_s \rangle\) is a tuple of relational symbols and constant symbols.
- A structure with vocabulary τ* is a tuple A = ⟨A, R₁^A, ..., R_k^A, c₁^A, ..., c_s^A⟩, where A is the universe, a nonempty set.

*It is also called a τ -structure.

The vocabulary of graphs is $\tau_g = \langle E^2, s, t \rangle$.

A specific "graph structure" is the structure $\mathcal{G} = \langle \{1, 2, 3\}, E^{\mathcal{G}} = \{(1, 2), (2, 3), (3, 2)\}, 1^{\mathcal{G}}, 3^{\mathcal{G}} \rangle$

*We will write E(1,2) or even 1E2.

The vocabulary of strings is $au_{\mathcal{S}} = \langle \leqslant^2, S^1_a, S^1_b \rangle$

A specific "string structure" is the structure $S = \langle \{1, 2, 3, 4, 5\}, \\ \leqslant^{S} = \\ \{(1, 1), (1, 2), (1, 3), ..., (1, 5), (2, 2), (2, 3), ..., (2, 5), ..., (5, 5)\}, \\ S^{S}_{a} = \{1, 4\}, \\ S^{S}_{b} = \{2, 3, 5\} \rangle \\ 1 \ 2 \ 3 \ 4 \ 5 \\ a \ b \ b \ a \ b \\ \end{cases}$

*We will write $1 \leq 3$, $S_a(1)$, $S_b(5)$ etc.

For any vocabulary τ , define the **first order language** $\mathcal{L}(\tau)$ to be the set of formulas built up from:

- the relation and constant symbols of τ ,
- ▶ the logical relation symbol =,
- ▶ the boolean connectives $\neg, \land, \lor, \rightarrow$,
- variables $\{x, y, z, ...\}$ and
- quantifiers \forall, \exists .

- The formula ∀x∃y(x ≤ y ∧ S_a(y)) is a first order formula in the language of strings: For every position, there is a following position that has an a.
- The formula ∃x∀y(¬E(x, y) ∧ ¬E(y, x)) is a first order formula in the language of graphs. There is a vertex such that it is not connected to any other vertex by neither an incoming nor an outgoing edge.
- What about the following formulas?

1.
$$\exists x \exists y (\neg (x = y) \land S_a(x) \land S_a(y))$$

2. $\forall x (E(x,x) \lor \forall y (\neg (x = y) \rightarrow E(x,y))$

Exercise: Write the following properties using first order formulas in the vocabulary $\tau_S = \langle \leqslant^2, S_a^1, S_b^1 \rangle$ of strings:

1. *first* \leq (x): x is the first of all elements in the universe

2. $last_{\leq}(x)$: x is the last of all elements in the universe

3.
$$succ \leq (x, y)$$
: y is the successor of x

Truth in a structure

For a structure \mathcal{A} and a formula ϕ , we write $\mathcal{A} \models \phi$ iff " ϕ is true in \mathcal{A} " or " \mathcal{A} satisfies ϕ ".

Example 1: Can we say that $\mathcal{G} \models \exists x \forall y (\neg E(x, y) \land \neg E(y, x))$?

Truth in a structure

For a structure \mathcal{A} and a formula ϕ , we write $\mathcal{A} \models \phi$ iff " ϕ is true in \mathcal{A} " or " \mathcal{A} satisfies ϕ ".

Example 1: Can we say that $\mathcal{G} \models \exists x \forall y (\neg E(x, y) \land \neg E(y, x))$?

No! So we write $\mathcal{G} \not\models \exists x \forall y (\neg E(x, y) \land \neg E(y, x)).$

 \mathcal{S} is the structure that corresponds to string abbab.

Example 2: Can we say that $S \models \forall x \exists y (x \leq y \land S_a(y))$?

 \mathcal{S} is the structure that corresponds to string abbab.

Example 2: Can we say that $S \models \forall x \exists y (x \leq y \land S_a(y))$?

Example 3: Can we say that $S \models \forall x \exists y (x \leq y \land S_b(y))$?

 \mathcal{S} is the structure that corresponds to string abbab.

Example 2: Can we say that $S \models \forall x \exists y (x \leq y \land S_a(y))$?

Example 3: Can we say that $S \models \forall x \exists y (x \leq y \land S_b(y))$?

Example 4: Can we say that

$$\mathcal{S} \models \exists x \exists y (\neg (x = y) \land S_a(x) \land S_a(y)) ?$$

A step forward...

- A formula can define a language!
- ► For example, the formula $\forall x [last_{\leq}(x) \rightarrow S_a(x)]$ defines the language of strings that end with an *a*, which is a regular language.

Definition 1

Let \mathcal{L} be a logic and C a class of τ -structures. A property P is \mathcal{L} -definable on C if there is a sentence ψ such that for every structure $\mathcal{A} \in C$

 $\mathcal{A} \models \psi$ iff \mathcal{A} has property P.

Motivation

- What is the expressive power of first order logic?
- Can we define all regular languages in first order logic?
- If not, which logic has the expressive power to define all regular languages?

- Ehrenfeucht-Fraïssé games help us to prove that the property EVEN is not first-order definable.
- The regular language that contains the strings in Σ = {a} with even length is not first-order definable.

Theorem 2 (Büchi)

A language is definable in Monadic Second Order Logic (MSO) iff it is regular

- Monadic Second Order Logic is an extension of First Order Logic.
- Second order: We also have second-order variables ranging over sets and relations on the universe and quantification over such variables.
- Monadic: The second-order variables have arity one. In other words, the second order variables correspond to sets.

The property EVEN is definable in MSO on strings

A structure S corresponds to a string with even length if it satisfies the following formula ϕ_{EVEN} :

$$\exists X \left(\begin{array}{c} \forall x \; (\operatorname{first}(x) \to X(x)) \\ \wedge \; \forall x \; (\operatorname{last}(x) \to \neg X(x)) \\ \wedge \; \forall x \forall y \; \operatorname{succ}_{\boldsymbol{\xi}}(x, y) \to (X(x) \leftrightarrow \neg X(y)) \end{array} \right)$$

Example:

 $S_2 = \langle \{1, 2, 3, 4, 5, 6\}, \leq, S_a = \{1, 2\}, S_b = \{3, 4, 5, 6\} \rangle$, which corresponds to aabbbb, satisfies ϕ_{EVEN} .

 $X = \{1, 3, 5\}$ is the set described.

Investigating the expressive power of First Order Logic

 Goal: Prove that a property of finite structures is not definable in FO. Investigating the expressive power of First Order Logic

- Goal: Prove that a property of finite structures is not definable in FO.
- **Tool:** Ehrenfeucht-Fraïssé games.

The game is played by two players called S(or spoiler) and D(or duplicator).

- The game is played by two players called S(or spoiler) and D(or duplicator).
- The game is played on two structures A and B over the same vocabulary *τ*.

- The game is played by two players called S(or spoiler) and D(or duplicator).
- The game is played on two structures A and B over the same vocabulary *τ*.
- The game is played for a predetermined positive integer k number of rounds.

In each round i, S picks an element of one of the two structures. Then D picks an element of the other structure.

- In each round i, S picks an element of one of the two structures. Then D picks an element of the other structure.
- ▶ Each round produces a pair (a_i, b_i) where $a_i \in \mathbf{A}, b_i \in \mathbf{B}$

- In each round i, S picks an element of one of the two structures. Then D picks an element of the other structure.
- ▶ Each round produces a pair (a_i, b_i) where $a_i \in \mathbf{A}, b_i \in \mathbf{B}$
- D wins the run if the mapping

$$a_i \mapsto b_i, 1 \leq i \leq k \text{ and } c_i^A \mapsto c_i^B, 1 \leq j \leq s$$

is a partial isomorphism form A to B.

Otherwise S wins the run.

- D has a k-round winning strategy on A and B if he can play in a way that guarantees a winning position after k rounds no matter how S plays.
- Then we write $\mathbf{A} \equiv_k \mathbf{B}$.

▶ D has a winning strategy for the 2-move game.

- ▶ D has a winning strategy for the 2-move game.
- ► S has a winning strategy for the 3-move game.

Why does S have a winning strategy for the 3-move game?

- Why does S have a winning strategy for the 3-move game?
- ▶ We can find a sentence that is true for **B** and false for **A**

 $\exists x \exists y \exists z ((x \neq y) \land (x \neq z) \land (y \neq z) \land \neg E(x, y) \land \neg E(x, z) \land \neg E(y, z))$

- Why does S have a winning strategy for the 3-move game?
- ▶ We can find a sentence that is true for **B** and false for **A**

 $\exists x \exists y \exists z ((x \neq y) \land (x \neq z) \land (y \neq z) \land \neg E(x, y) \land \neg E(x, z) \land \neg E(y, z))$

Or a sentence that is true for A and false for B

 $\forall x \forall y \exists z ((x \neq y \land (E(x, y) \lor E(y, z)))$

- Why does S have a winning strategy for the 3-move game?
- ▶ We can find a sentence that is true for **B** and false for **A**

 $\exists x \exists y \exists z ((x \neq y) \land (x \neq z) \land (y \neq z) \land \neg E(x, y) \land \neg E(x, z) \land \neg E(y, z))$

Or a sentence that is true for A and false for B

$$\forall x \forall y \exists z ((x \neq y \land (E(x, y) \lor E(y, z)))$$

What do these sentences have in common? They have quantifier rank 3.

The Ehrenfeucht-Fraïssé Theorem

Theorem 3

The following are equivalent:

1. A and B agree on all first-order formulas of quantifier rank k

2. $\mathbf{A} \equiv_k \mathbf{B}$ (the duplicator has a k-round winning strategy)

The Ehrenfeucht-Fraïssé Theorem

Theorem 3

The following are equivalent:

1. A and B agree on all first-order formulas of quantifier rank k 2. $A \equiv_k B$ (the duplicator has a k-round winning strategy)

 $\sum n = k \mathbf{D}$ (the duplicator has a k round withing strategy)

How can we use this theorem to prove that a property is not definable in FO?

Method

- Suppose we have property P.
- For $k \in \mathbb{N}$, find two structures A_k and B_k such that:
 - 1. $\mathbf{A} \equiv_k \mathbf{B}$
 - 2. \mathbf{A}_k has property P and \mathbf{B}_k does not have property P
- Then A_k and B_k agree on all first-order formulas with quantifier rank k, but they don't agree on P.
- So P cannot be defined by a first order formula with quantifier rank k.
- Do this for every k.

The EVEN CARDINALITY query is not *FO* definable on the class of all finite graphs.

The EVEN CARDINALITY query is not *FO* definable on the class of all finite graphs.

Proof.

For every $k \in \mathbb{N}$ let \mathbf{A}_k be the totally disconnected graph with 2k nodes, and \mathbf{B}_k be the totally disconnected graph with 2k + 1 nodes. For every k, D wins the game trivially, but one graph has even nodes and the other one odd.

Exercises: ACYCLICITY

Exercises: 2-COLORABILITY

References

- Libkin, Leonid. Elements of finite model theory.
- Kolaitis, Phokion. On the expressive power of Logics on Finite Models.
- Immerman, Neil. Descriptive complexity.
- ► Van Benthem, Johan. Logic in Games.