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Definition of the language

I A vocabulary τ = 〈Ra1
1 , ...,R

ak
k , c1, ..., cs〉 is a tuple of

relational symbols and constant symbols.
I A structure with vocabulary τ* is a tuple
A = 〈A,RA

1 , ...,R
A
k , c

A
1 , ..., c

A
s 〉, where A is the universe, a

nonempty set.

*It is also called a τ -structure.



Example 1

The vocabulary of graphs is τg = 〈E 2, s, t〉.

A specific "graph structure" is the structure
G = 〈{1, 2, 3},EG = {(1, 2), (2, 3), (3, 2)}, 1G , 3G〉

*We will write E (1, 2) or even 1E2.



Example 2

The vocabulary of strings is τS = 〈62,S1
a , S

1
b 〉

A specific "string structure" is the structure S = 〈{1, 2, 3, 4, 5},
6S=
{(1, 1), (1, 2), (1, 3), ..., (1, 5), (2, 2), (2, 3), .., (2, 5), ..., (5, 5)},
SS
a = {1, 4},

SS
b = {2, 3, 5}〉

1 2 3 4 5
a b b a b

*We will write 1 6 3, Sa(1), Sb(5) etc.



First order language

For any vocabulary τ , define the first order language L(τ) to be
the set of formulas built up from:
I the relation and constant symbols of τ ,
I the logical relation symbol =,
I the boolean connectives ¬,∧,∨,→,
I variables {x , y , z , ...} and
I quantifiers ∀,∃.



I The formula ∀x∃y
(
x 6 y ∧ Sa(y)

)
is a first order formula in

the language of strings: For every position, there is a following
position that has an a.

I The formula ∃x∀y(¬E (x , y) ∧ ¬E (y , x)) is a first order
formula in the language of graphs. There is a vertex such that
it is not connected to any other vertex by neither an incoming
nor an outgoing edge.

I What about the following formulas?
1. ∃x∃y(¬(x = y) ∧ Sa(x) ∧ Sa(y))

2. ∀x(E (x , x) ∨ ∀y(¬(x = y)→ E (x , y))



Exercise: Write the following properties using first order formulas
in the vocabulary τS = 〈62, S1

a ,S
1
b 〉 of strings:

1. first6(x): x is the first of all elements in the universe

2. last6(x): x is the last of all elements in the universe

3. succ6(x , y): y is the successor of x



Truth in a structure

For a structure A and a formula φ, we write A |= φ iff "φ is true in
A" or "A satisfies φ".

Example 1: Can we say that G |= ∃x∀y(¬E (x , y) ∧ ¬E (y , x))?

No! So we write G 6|= ∃x∀y(¬E (x , y) ∧ ¬E (y , x)).
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A step forward...

I A formula can define a language!

I For example, the formula ∀x
[
last6(x)→ Sa(x)

]
defines the

language of strings that end with an a, which is a regular
language.

Definition 1
Let L be a logic and C a class of τ -structures. A property P is
L-definable on C if there is a sentence ψ such that for every
structure A ∈ C

A |= ψ iff A has property P.



Motivation

I What is the expressive power of first order logic?
I Can we define all regular languages in first order logic?
I If not, which logic has the expressive power to define all

regular languages?



I Ehrenfeucht-Fraïssé games help us to prove that the property
EVEN is not first-order definable.

I The regular language that contains the strings in Σ = {a}
with even length is not first-order definable.

Theorem 2 (Büchi)
A language is definable in Monadic Second Order Logic (MSO)

iff
it is regular



I Monadic Second Order Logic is an extension of First Order
Logic.

I Second order: We also have second-order variables ranging
over sets and relations on the universe and quantification over
such variables.

I Monadic: The second-order variables have arity one. In other
words, the second order variables correspond to sets.



The property EVEN is definable in MSO on strings

A structure S corresponds to a string with even length if it satisfies
the following formula φEVEN :

Example:
S2 = 〈{1, 2, 3, 4, 5, 6},6, Sa = {1, 2},Sb = {3, 4, 5, 6}〉, which
corresponds to aabbbb, satisfies φEVEN .

X = {1, 3, 5} is the set described.



Investigating the expressive power of First Order Logic

I Goal: Prove that a property of finite structures is not
definable in FO.

I Tool: Ehrenfeucht-Fraïssé games.
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Rules of the Game

I The game is played by two players called S(or spoiler) and
D(or duplicator).

I The game is played on two structures A and B over the same
vocabulary τ .

I The game is played for a predetermined positive integer k
number of rounds.
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Rules of the Game

I In each round i, S picks an element of one of the two
structures. Then D picks an element of the other structure.

I Each round produces a pair (ai , bi ) where ai ∈ A, bi ∈ B
I D wins the run if the mapping

ai 7→ bi , 1 ≤ i ≤ k and cA
j 7→ cB

j , 1 ≤ j ≤ s

is a partial isomorphism form A to B.
I Otherwise S wins the run.
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Rules of the Game

I D has a k-round winning strategy on A and B if he can play in
a way that guarantees a winning position after k rounds no
matter how S plays.

I Then we write A ≡k B.



Examples

A B

I D has a winning strategy for the 2-move game.
I S has a winning strategy for the 3-move game.
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Examples

I Why does S have a winning strategy for the 3-move game?

I We can find a sentence that is true for B and false for A

∃x∃y∃z((x 6= y)∧(x 6= z)∧(y 6= z)∧¬E (x , y)∧¬E (x , z)∧¬E (y , z))

I Or a sentence that is true for A and false for B

∀x∀y∃z((x 6= y ∧ (E (x , y) ∨ E (y , z)))

I What do these sentences have in common?
They have quantifier rank 3.
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The Ehrenfeucht-Fraïssé Theorem

Theorem 3
The following are equivalent:
1. A and B agree on all first-order formulas of quantifier rank k
2. A ≡k B (the duplicator has a k-round winning strategy)

How can we use this theorem to prove that a property is not
definable in FO?
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Method

I Suppose we have property P.
I For k ∈ N, find two structures Ak and Bk such that:

1. A ≡k B
2. Ak has property P and Bk does not have property P

I Then Ak and Bk agree on all first-order formulas with
quantifier rank k , but they don’t agree on P.

I So P cannot be defined by a first order formula with quantifier
rank k .

I Do this for every k .



Examples

The EVEN CARDINALITY query is not FO definable on the class
of all finite graphs.

Proof.
For every k ∈ N let Ak be the totally disconnected graph with 2k
nodes, and Bk be the totally disconnected graph with 2k + 1 nodes.
For every k, D wins the game trivially, but one graph has even
nodes and the other one odd.
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Exercises: ACYCLICITY
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Exercises: 2-COLORABILITY
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