Ehrenfeucht-Fraïssé Games

Automata and Computational Models

National Technical University of Athens

Outline

Motivation

Ehrenfeucht-Fraïssé Games

Exercises

Definition of the language

- A vocabulary $\tau=\left\langle R_{1}^{a_{1}}, \ldots, R_{k}^{a_{k}}, c_{1}, \ldots, c_{s}\right\rangle$ is a tuple of relational symbols and constant symbols.
- A structure with vocabulary τ^{*} is a tuple $\mathcal{A}=\left\langle A, R_{1}^{\mathcal{A}}, \ldots, R_{k}^{\mathcal{A}}, c_{1}^{\mathcal{A}}, \ldots, c_{s}^{\mathcal{A}}\right\rangle$, where A is the universe, a nonempty set.
*It is also called a τ-structure.

Example 1

The vocabulary of graphs is $\tau_{g}=\left\langle E^{2}, s, t\right\rangle$.
A specific "graph structure" is the structure
$\mathcal{G}=\left\langle\{1,2,3\}, E^{\mathcal{G}}=\{(1,2),(2,3),(3,2)\}, 1^{\mathcal{G}}, 3^{\mathcal{G}}\right\rangle$

*We will write $E(1,2)$ or even $1 E 2$.

Example 2

The vocabulary of strings is $\tau_{S}=\left\langle\leqslant^{2}, S_{a}^{1}, S_{b}^{1}\right\rangle$
A specific "string structure" is the structure $\mathcal{S}=\langle\{1,2,3,4,5\}$, $\leqslant^{\mathcal{S}}=$ $\{(1,1),(1,2),(1,3), \ldots,(1,5),(2,2),(2,3), . .,(2,5), \ldots,(5,5)\}$, $S_{a}^{\mathcal{S}}=\{1,4\}$, $\left.S_{b}^{\mathcal{S}}=\{2,3,5\}\right\rangle$

$$
\begin{aligned}
& 12345 \\
& \text { a b bab }
\end{aligned}
$$

*We will write $1 \leqslant 3, S_{a}(1), S_{b}(5)$ etc.

First order language

For any vocabulary τ, define the first order language $\mathcal{L}(\tau)$ to be the set of formulas built up from:

- the relation and constant symbols of τ,
- the logical relation symbol $=$,
- the boolean connectives $\neg, \wedge, \vee, \rightarrow$,
- variables $\{x, y, z, \ldots\}$ and
- quantifiers \forall, \exists.
- The formula $\forall x \exists y\left(x \leqslant y \wedge S_{a}(y)\right)$ is a first order formula in the language of strings: For every position, there is a following position that has an a.
- The formula $\exists x \forall y(\neg E(x, y) \wedge \neg E(y, x))$ is a first order formula in the language of graphs. There is a vertex such that it is not connected to any other vertex by neither an incoming nor an outgoing edge.
- What about the following formulas?

1. $\exists x \exists y\left(\neg(x=y) \wedge S_{a}(x) \wedge S_{a}(y)\right)$
2. $\forall x(E(x, x) \vee \forall y(\neg(x=y) \rightarrow E(x, y))$

Exercise: Write the following properties using first order formulas in the vocabulary $\tau_{S}=\left\langle\leqslant^{2}, S_{a}^{1}, S_{b}^{1}\right\rangle$ of strings:

1. first $\leqslant(x): x$ is the first of all elements in the universe
2. last $\leqslant(x): x$ is the last of all elements in the universe
3. $\operatorname{succ}_{\leqslant}(x, y): y$ is the successor of x

Truth in a structure

For a structure \mathcal{A} and a formula ϕ, we write $\mathcal{A} \models \phi$ iff " ϕ is true in \mathcal{A} " or " \mathcal{A} satisfies ϕ ".

Example 1: Can we say that $\mathcal{G} \models \exists x \forall y(\neg E(x, y) \wedge \neg E(y, x))$?

Truth in a structure

For a structure \mathcal{A} and a formula ϕ, we write $\mathcal{A} \models \phi$ iff " ϕ is true in \mathcal{A} " or " \mathcal{A} satisfies ϕ ".

Example 1: Can we say that $\mathcal{G} \models \exists x \forall y(\neg E(x, y) \wedge \neg E(y, x))$?

No! So we write $\mathcal{G} \not \vDash \exists x \forall y(\neg E(x, y) \wedge \neg E(y, x))$.
\mathcal{S} is the structure that corresponds to string abbab .

Example 2: Can we say that $\mathcal{S} \models \forall x \exists y\left(x \leqslant y \wedge S_{a}(y)\right)$?
\mathcal{S} is the structure that corresponds to string abbab .

Example 2: Can we say that $\mathcal{S} \models \forall x \exists y\left(x \leqslant y \wedge S_{a}(y)\right)$?

Example 3: Can we say that $\mathcal{S} \models \forall x \exists y\left(x \leqslant y \wedge S_{b}(y)\right)$?
\mathcal{S} is the structure that corresponds to string abbab .

Example 2: Can we say that $\mathcal{S} \models \forall x \exists y\left(x \leqslant y \wedge S_{a}(y)\right)$?

Example 3: Can we say that $\mathcal{S} \models \forall x \exists y\left(x \leqslant y \wedge S_{b}(y)\right)$?

Example 4: Can we say that

$$
\mathcal{S} \models \exists x \exists y\left(\neg(x=y) \wedge S_{a}(x) \wedge S_{a}(y)\right) ?
$$

A step forward...

- A formula can define a language!
- For example, the formula $\forall x\left[\operatorname{last} t_{\leqslant}(x) \rightarrow S_{a}(x)\right]$ defines the language of strings that end with an a, which is a regular language.

Definition 1

Let \mathcal{L} be a logic and C a class of τ-structures. A property P is
\mathcal{L}-definable on C if there is a sentence ψ such that for every structure $\mathcal{A} \in C$
$\mathcal{A} \models \psi$ iff \mathcal{A} has property P.

Motivation

- What is the expressive power of first order logic?
- Can we define all regular languages in first order logic?
- If not, which logic has the expressive power to define all regular languages?
- Ehrenfeucht-Fraïssé games help us to prove that the property EVEN is not first-order definable.
- The regular language that contains the strings in $\Sigma=\{a\}$ with even length is not first-order definable.

Theorem 2 (Büchi)
A language is definable in Monadic Second Order Logic (MSO) iff it is regular

- Monadic Second Order Logic is an extension of First Order Logic.
- Second order: We also have second-order variables ranging over sets and relations on the universe and quantification over such variables.
- Monadic: The second-order variables have arity one. In other words, the second order variables correspond to sets.

The property EVEN is definable in MSO on strings
A structure \mathcal{S} corresponds to a string with even length if it satisfies the following formula $\phi_{E V E N}$:

$$
\exists X\left(\begin{array}{l}
\left.\forall x \operatorname{first}_{\leqslant}(x) \rightarrow X(x)\right) \\
\wedge \forall x\left(\operatorname{last}_{\leqslant}(x) \rightarrow \neg X(x)\right) \\
\wedge \forall x \forall y \operatorname{succ}_{\leqslant}(x, y) \rightarrow(X(x) \leftrightarrow \neg X(y))
\end{array}\right)
$$

Example:
$\mathcal{S}_{2}=\left\langle\{1,2,3,4,5,6\}, \leqslant, S_{a}=\{1,2\}, S_{b}=\{3,4,5,6\}\right\rangle$, which corresponds to aabbbb, satisfies $\phi_{\text {EVEN }}$.
$X=\{1,3,5\}$ is the set described.

Investigating the expressive power of First Order Logic

- Goal: Prove that a property of finite structures is not definable in FO.

Investigating the expressive power of First Order Logic

- Goal: Prove that a property of finite structures is not definable in FO.
- Tool: Ehrenfeucht-Fraïssé games.

Rules of the Game

- The game is played by two players called S(or spoiler) and D (or duplicator).

Rules of the Game

- The game is played by two players called S (or spoiler) and D (or duplicator).
- The game is played on two structures \mathbf{A} and \mathbf{B} over the same vocabulary τ.

Rules of the Game

- The game is played by two players called S (or spoiler) and D(or duplicator).
- The game is played on two structures \mathbf{A} and \mathbf{B} over the same vocabulary τ.
- The game is played for a predetermined positive integer k number of rounds.

Rules of the Game

- In each round i, S picks an element of one of the two structures. Then D picks an element of the other structure.

Rules of the Game

- In each round i, S picks an element of one of the two structures. Then D picks an element of the other structure.
- Each round produces a pair $\left(a_{i}, b_{i}\right)$ where $a_{i} \in \mathbf{A}, b_{i} \in \mathbf{B}$

Rules of the Game

- In each round i, S picks an element of one of the two structures. Then D picks an element of the other structure.
- Each round produces a pair $\left(a_{i}, b_{i}\right)$ where $a_{i} \in \mathbf{A}, b_{i} \in \mathbf{B}$
- D wins the run if the mapping

$$
a_{i} \mapsto b_{i}, 1 \leq i \leq k \quad \text { and } \quad c_{j}^{A} \mapsto c_{j}^{B}, 1 \leq j \leq s
$$

is a partial isomorphism form A to B.

- Otherwise S wins the run.

Rules of the Game

- D has a k-round winning strategy on A and B if he can play in a way that guarantees a winning position after k rounds no matter how S plays.
- Then we write $\mathbf{A} \equiv{ }_{k} \mathbf{B}$.

Examples

Examples

- D has a winning strategy for the 2-move game.

Examples

A
B

- D has a winning strategy for the 2-move game.
- S has a winning strategy for the 3 -move game.

Examples

- Why does S have a winning strategy for the 3-move game?

Examples

- Why does S have a winning strategy for the 3-move game?
- We can find a sentence that is true for \mathbf{B} and false for \mathbf{A}

$$
\exists x \exists y \exists z((x \neq y) \wedge(x \neq z) \wedge(y \neq z) \wedge \neg E(x, y) \wedge \neg E(x, z) \wedge \neg E(y, z))
$$

Examples

- Why does S have a winning strategy for the 3-move game?
- We can find a sentence that is true for B and false for \mathbf{A}

$$
\exists x \exists y \exists z((x \neq y) \wedge(x \neq z) \wedge(y \neq z) \wedge \neg E(x, y) \wedge \neg E(x, z) \wedge \neg E(y, z))
$$

- Or a sentence that is true for \mathbf{A} and false for B

$$
\forall x \forall y \exists z((x \neq y \wedge(E(x, y) \vee E(y, z)))
$$

Examples

- Why does S have a winning strategy for the 3-move game?
- We can find a sentence that is true for \mathbf{B} and false for \mathbf{A}

$$
\exists x \exists y \exists z((x \neq y) \wedge(x \neq z) \wedge(y \neq z) \wedge \neg E(x, y) \wedge \neg E(x, z) \wedge \neg E(y, z))
$$

- Or a sentence that is true for \mathbf{A} and false for \mathbf{B}

$$
\forall x \forall y \exists z((x \neq y \wedge(E(x, y) \vee E(y, z)))
$$

- What do these sentences have in common? They have quantifier rank 3.

The Ehrenfeucht-Fraïssé Theorem

Theorem 3
The following are equivalent:

1. \boldsymbol{A} and \boldsymbol{B} agree on all first-order formulas of quantifier rank k
2. $\boldsymbol{A} \equiv{ }_{k} \boldsymbol{B}$ (the duplicator has a k-round winning strategy)

The Ehrenfeucht-Fraïssé Theorem

Theorem 3
The following are equivalent:

1. \boldsymbol{A} and \boldsymbol{B} agree on all first-order formulas of quantifier rank k
2. $\boldsymbol{A} \equiv{ }_{k} \boldsymbol{B}$ (the duplicator has a k-round winning strategy)

How can we use this theorem to prove that a property is not definable in FO?

Method

- Suppose we have property P .
- For $k \in \mathbb{N}$, find two structures \mathbf{A}_{k} and \mathbf{B}_{k} such that:

1. $\mathbf{A} \equiv_{k} \mathbf{B}$
2. \mathbf{A}_{k} has property P and \mathbf{B}_{k} does not have property P

- Then \mathbf{A}_{k} and \mathbf{B}_{k} agree on all first-order formulas with quantifier rank k, but they don't agree on P .
- So P cannot be defined by a first order formula with quantifier rank k.
- Do this for every k.

Examples

The EVEN CARDINALITY query is not FO definable on the class of all finite graphs.

Examples

The EVEN CARDINALITY query is not FO definable on the class of all finite graphs.

Proof.
For every $k \in \mathbb{N}$ let \mathbf{A}_{k} be the totally disconnected graph with $2 k$ nodes, and \mathbf{B}_{k} be the totally disconnected graph with $2 k+1$ nodes.
For every k, D wins the game trivially, but one graph has even nodes and the other one odd.

Exercises: ACYCLICITY

Exercises: 2-COLORABILITY

References

- Libkin, Leonid. Elements of finite model theory.
- Kolaitis, Phokion. On the expressive power of Logics on Finite Models.
- Immerman, Neil. Descriptive complexity.
- Van Benthem, Johan. Logic in Games.

