Bounding mixing time using coupling

Definition

Consider an MC (Z_t) with state space Ω and transition matrix P. A Markovian coupling for (Z_t) is an MC (X_t, Y_t) on $\Omega \times \Omega$, with transition probabilities defined by

$$Pr[X_{t+1} = x' | X_t = x, Y_t = y] = P(x, x'),$$

$$Pr[Y_{t+1} = y' | X_t = x, Y_t = y] = P(y, y').$$

Equivalently, if $\widehat{P}: \Omega^2 \to \Omega^2$ denotes the transition matrix of the coupling,

$$\sum_{y'\in\Omega}\widehat{P}((x,y),(x',y')) = P(x,x'),$$
$$\sum_{x'\in\Omega}\widehat{P}((x,y),(x',y')) = P(y,y').$$

Consider a slightly different Markov chain for the problem of q colorings.

- Choose a vertex v u.a.r.
- **2** Choose a color $c \in Q \setminus X_t(N(v))$ u.a.r.
- **③** Recolor v with c and leave all the other colored vertices the same.

Consider a slightly different Markov chain for the problem of q colorings.

Choose a vertex v u.a.r.

3 Choose a color
$$c \in Q \setminus X_t(N(v))$$
 u.a.r.

Solution v with c and leave all the other colored vertices the same.

We will discuss some possible transitions of a coupling (X_t, Y_t) on Ω^2 .

- Suppose $Q = \{0, 1, ..., 6\}$.
- At *t*-th step, the same vertex *v* is chosen u.a.r. for both transitions.
- Suppose that a vertex v has been chosen for which $X_t(N(v)) = \{3, 6\}$ and $Y_t(N(v)) = \{4, 5, 6\}$ hold.
- So, the legal colors for v in X_{t+1} and Y_{t+1} are $c_x \in \{0, 1, 2, 4, 5\}$ and $c_y = \{0, 1, 2, 3\}$, repsectively.

• So, the legal colors for v in X_{t+1} and Y_{t+1} are $c_x \in \{0, 1, 2, 4, 5\}$ and $c_y = \{0, 1, 2, 3\}$, repsectively.

• First option: $Pr(c_x, c_y) = \frac{1}{5} \cdot \frac{1}{4} = \frac{1}{20}$.

• So, the legal colors for v in X_{t+1} and Y_{t+1} are $c_x \in \{0, 1, 2, 4, 5\}$ and $c_y = \{0, 1, 2, 3\}$, repsectively.

• First option: $Pr(c_x, c_y) = \frac{1}{5} \cdot \frac{1}{4} = \frac{1}{20}$.

$$\Pr[X_{t+1}(v) = 1] = \sum_{c_y} \Pr(1, c_y) = \Pr(1, 0) + \Pr(1, 1) + \Pr(1, 2) + \Pr(1, 3) = \frac{1}{5}$$

• So, the legal colors for v in X_{t+1} and Y_{t+1} are $c_x \in \{0, 1, 2, 4, 5\}$ and $c_y = \{0, 1, 2, 3\}$, repsectively.

• First option: $\Pr(c_x, c_y) = \frac{1}{5} \cdot \frac{1}{4} = \frac{1}{20}$.

$$\Pr[X_{t+1}(v) = 1] = \sum_{c_y} \Pr(1, c_y) = \\\Pr(1, 0) + \Pr(1, 1) + \Pr(1, 2) + \Pr(1, 3) = \frac{1}{5}$$

② Second option:

$$Pr(0,0) = Pr(1,1) = Pr(2,2) = \frac{1}{5}$$
$$Pr(4,3) = \frac{1}{5}$$
$$Pr(5, c_y) = \frac{1}{20} \text{ for every } c_y \in \{0, 1, 2, 3\}$$

• So, the legal colors for v in X_{t+1} and Y_{t+1} are $c_x \in \{0, 1, 2, 4, 5\}$ and $c_y = \{0, 1, 2, 3\}$, repsectively.

• First option: $\Pr(c_x, c_y) = \frac{1}{5} \cdot \frac{1}{4} = \frac{1}{20}$.

$$\Pr[X_{t+1}(v) = 1] = \sum_{c_y} \Pr(1, c_y) = \\\Pr(1, 0) + \Pr(1, 1) + \Pr(1, 2) + \Pr(1, 3) = \frac{1}{5}$$

Second option:

$$Pr(0,0) = Pr(1,1) = Pr(2,2) = \frac{1}{5}$$

$$Pr(4,3) = \frac{1}{5}$$

$$Pr(5,c_y) = \frac{1}{20} \text{ for every } c_y \in \{0,1,2,3\}$$

$$Pr[Y_{t+1}(v) = 0] = \sum_{c_x} Pr(c_x,0) = Pr(0,0) + Pr(5,0) = \frac{1}{5} + \frac{1}{20} = \frac{1}{4}$$

Simple random walk on $\{0, 1, ..., n\}$

• The transition graph of (Z_t) is the following.

- Add either +1 or -1, each with probability 1/2, to the current state if possible.
- Do nothing if attempt to add either -1 to 0, or +1 to n.

A coupling (X_t, Y_t) for (Z_t) starting in (x, y):

- $X_0 = x$, $Y_0 = y$.
- At the (t+1)-th step, choose $b_{t+1} \in \{-1,1\}$ u.a.r.
- Attempt to add b_{t+1} to both X_t and Y_t .

A coupling (X_t, Y_t) for (Z_t) starting in (x, y):

- $X_0 = x$, $Y_0 = y$.
- At the (t+1)-th step, choose $b_{t+1} \in \{-1,1\}$ u.a.r.
- Attempt to add b_{t+1} to both X_t and Y_t .

Note: We can modify any coupling so that the chains stay together after the first time they meet.

Let (X_t, Y_t) be any coupling for (Z_t) on Ω . Suppose $t : [0, 1] \to \mathbb{N}$ is a function satisfying the condition: for all $x, y \in \Omega$ and all $\varepsilon > 0$

$$\Pr[X_{t(\varepsilon)} \neq Y_{t(\varepsilon)} \mid X_0 = x, Y_0 = y] \le \varepsilon.$$

Then the mixing time $\tau(\varepsilon)$ of (Z_t) is bounded by $t(\varepsilon)$.

Let (X_t, Y_t) be any coupling for (Z_t) on Ω . Suppose $t : [0, 1] \to \mathbb{N}$ is a function satisfying the condition: for all $x, y \in \Omega$ and all $\varepsilon > 0$

$$\Pr[X_{t(\varepsilon)} \neq Y_{t(\varepsilon)} \mid X_0 = x, Y_0 = y] \le \varepsilon.$$

Then the mixing time $\tau(\varepsilon)$ of (Z_t) is bounded by $t(\varepsilon)$.

Proof.

- Let *P* be the transition matrix of (Z_t) . Let $A \subseteq \Omega$ be arbitrary.
- Let x ∈ Ω be fixed, and Y₀ be chosen according to the stationary distribution π of (Z_t).

Let (X_t, Y_t) be any coupling for (Z_t) on Ω . Suppose $t : [0, 1] \to \mathbb{N}$ is a function satisfying the condition: for all $x, y \in \Omega$ and all $\varepsilon > 0$

$$\Pr[X_{t(\varepsilon)} \neq Y_{t(\varepsilon)} \mid X_0 = x, Y_0 = y] \le \varepsilon.$$

Then the mixing time $\tau(\varepsilon)$ of (Z_t) is bounded by $t(\varepsilon)$.

Proof.

- Let *P* be the transition matrix of (Z_t) . Let $A \subseteq \Omega$ be arbitrary.
- Let x ∈ Ω be fixed, and Y₀ be chosen according to the stationary distribution π of (Z_t).
- For any ε ∈ (0,1) and the corresponding t = t(ε), we are going to prove that

$$P^{t}(y,A) - P^{t}(x,A) \leq \varepsilon \text{ for any } x, y \in \Omega.$$

2)
$$\pi(A) - P^t(x, A) \leq \varepsilon$$
 for any $x \in \Omega$.

Let (X_t, Y_t) be any coupling for (Z_t) on Ω . Suppose $t : [0, 1] \to \mathbb{N}$ is a function satisfying the condition: for all $x, y \in \Omega$ and all $\varepsilon > 0$

$$\Pr[X_{t(\varepsilon)} \neq Y_{t(\varepsilon)} \mid X_0 = x, Y_0 = y] \le \varepsilon.$$

Then the mixing time $\tau(\varepsilon)$ of (Z_t) is bounded by $t(\varepsilon)$.

Proof.

- Let *P* be the transition matrix of (Z_t) . Let $A \subseteq \Omega$ be arbitrary.
- Let x ∈ Ω be fixed, and Y₀ be chosen according to the stationary distribution π of (Z_t).
- For any ε ∈ (0,1) and the corresponding t = t(ε), we are going to prove that

$$\begin{array}{ll} \bullet & P^t(y,A) - P^t(x,A) \leq \varepsilon \text{ for any } x, y \in \Omega. \\ \bullet & \pi(A) - P^t(x,A) \leq \varepsilon \text{ for any } x \in \Omega. \end{array}$$

• Since A is arbitrary, by the definition of total variation distance $||\mu - \nu||_{TV} = \max_{A \subseteq \Omega} |\mu(A) - \nu(A)|$ we have that

$$|P^t(x,\cdot)-\pi||_{TV}\leq \varepsilon.$$

Proof cont. For any $\varepsilon \in (0, 1)$ and the corresponding $t = t(\varepsilon)$,

$$P^{t}(x, A) = \Pr[X_{t} \in A]$$

$$\geq \Pr[X_{t} = Y_{t} \land Y_{t} \in A]$$

$$= 1 - \Pr[X_{t} \neq Y_{t} \lor Y_{t} \notin A]$$

$$\geq 1 - (\Pr[X_{t} \neq Y_{t}] + \Pr[Y_{t} \notin A])$$

$$\geq \Pr(Y_{t} \in A) - \varepsilon$$

$$= P^{t}(y, A) - \varepsilon$$

$$= \pi(A) - \varepsilon.$$

Bounding the mixing time of the MC

Theorem

The mixing time of the above MC is $\tau_{mix} = O(n \log n)$ for $q \ge 4\Delta + 1$.

Proof.

- We choose arbitrary colorings X_0 and Y_0 of G.
- We couple (X_t, Y_t) by picking the same vertex v and color c u.a.r. at all times t.
- We denote by D_t be the number of vertices on which the colorings X_t and Y_t disagree.

Proof cont. There are three types of possible moves: good moves, bad moves, and neutral moves.

• Good moves $(D_{t+1} = D_t - 1)$: v has different colors in X_t and Y_t , and c does not appear in the neighborhood of v in either X_t or Y_t .

Bad moves (D_{t+1} = D_t + 1): v has the same color in X_t and Y_t, and c appears among the neighbors of v in exactly one of X_t or Y_t.

Bad moves (D_{t+1} = D_t + 1): v has the same color in X_t and Y_t, and c appears among the neighbors of v in exactly one of X_t or Y_t.

- ▶ v is a neighbor of a disagreement vertex u and c is the color of u in one of the chains.
- ► The disagreement vertices have at most $D_t \cdot \Delta$ neighbors, and for any such neighbor there are at most 2 bad colors.

$$\Pr[D_{t+1} = D_t + 1] \le \frac{D_t \cdot \Delta}{n} \cdot \frac{2}{q}$$

Solution Neutral moves $(D_{t+1} = D_t)$: In any other move D_t remains invariant.

Solution Neutral moves $(D_{t+1} = D_t)$: In any other move D_t remains invariant.

 $\mathbb{E}[D_{t+1} \mid D_t] = (D_t - 1) \cdot \Pr[D_{t+1} = D_t - 1] + (D_t + 1) \cdot \Pr[D_{t+1} = D_t + 1] + D_t \cdot (1 - \Pr[D_{t+1} = D_t + 1] - \Pr[D_{t+1} = D_t - 1])$

Solution Neutral moves $(D_{t+1} = D_t)$: In any other move D_t remains invariant.

$$\mathbb{E}[D_{t+1} \mid D_t] = (D_t - 1) \cdot \Pr[D_{t+1} = D_t - 1] + (D_t + 1) \cdot \Pr[D_{t+1} = D_t + 1] \\ + D_t \cdot (1 - \Pr[D_{t+1} = D_t + 1] - \Pr[D_{t+1} = D_t - 1]) \\ = D_t - \Pr[D_{t+1} = D_t - 1] + \Pr[D_{t+1} = D_t + 1] \\ \leq D_t - \frac{D_t(q - 2\Delta)}{qn} + \frac{2D_t\Delta}{nq} \\ = D_t \left(1 - \frac{q - 4\Delta}{qn}\right)$$

Solution Neutral moves $(D_{t+1} = D_t)$: In any other move D_t remains invariant.

$$\mathbb{E}[D_{t+1} \mid D_t] = (D_t - 1) \cdot \Pr[D_{t+1} = D_t - 1] + (D_t + 1) \cdot \Pr[D_{t+1} = D_t + 1] \\ + D_t \cdot (1 - \Pr[D_{t+1} = D_t + 1] - \Pr[D_{t+1} = D_t - 1]) \\ = D_t - \Pr[D_{t+1} = D_t - 1] + \Pr[D_{t+1} = D_t + 1] \\ \leq D_t - \frac{D_t(q - 2\Delta)}{qn} + \frac{2D_t\Delta}{nq} \\ = D_t \left(1 - \frac{q - 4\Delta}{qn}\right)$$

where $0 < 1 - \frac{q-4\Delta}{qn} < 1$, since $q > 4\Delta$.

Proof cont. By taking expectation on both sides and iterating, we have that

$$\begin{split} \mathbb{E}[D_t \mid D_0] &\leq D_0 \left(1 - \frac{q - 4\Delta}{qn}\right)^t \\ &\leq n \left(1 - \frac{q - 4\Delta}{qn}\right)^t \\ &\leq n \exp\left(-\frac{q - 4\Delta}{qn} \cdot t\right) \quad \text{since } (1 - x)^n \leq e^{-nx} \\ &\leq \varepsilon \qquad \text{when } t \geq \frac{q}{q - 4\Delta} n(\log n + \log \varepsilon^{-1}) \end{split}$$

• By Markov's inequality $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$, we have that

$$\Pr[X_t \neq Y_t \mid (X_0, Y_0)] = \Pr[D_t \ge 1 \mid D_0] \le \mathbb{E}[D_t \mid D_0]$$
$$\le n \exp\left(-\frac{q - 4\Delta}{qn} \cdot t\right) \le \varepsilon$$

for $t \geq \frac{q}{q-4\Delta}n(\log n + \log \varepsilon^{-1})$.

• By Markov's inequality $\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$, we have that

$$\Pr[X_t \neq Y_t \mid (X_0, Y_0)] = \Pr[D_t \ge 1 \mid D_0] \le \mathbb{E}[D_t \mid D_0]$$
$$\le n \exp\left(-\frac{q - 4\Delta}{qn} \cdot t\right) \le \varepsilon$$

for $t \geq \frac{q}{q-4\Delta}n(\log n + \log \varepsilon^{-1})$.

 By the Coupling lemma, the following holds for mixing time of the Markov chain

$$\tau(\varepsilon) = \frac{q}{q - 4\Delta} n(\log n + \log \varepsilon^{-1})$$
$$\tau_{mix} = \mathcal{O}(\frac{q}{q - 4\Delta} n \log n)$$

for $q \ge 4\Delta + 1$.

Contraction in D_t

We showed contraction in one step: for some $\alpha > 0$

$$\mathbb{E}[D_{t+1} \mid D_t] \le D_t e^{-\alpha} \Rightarrow t_{mix}(\varepsilon) \le \frac{\log n + \log \varepsilon^{-1}}{\alpha}$$

Lemma

Let Z_t be an MC on Ω and let $d : \Omega \times \Omega \to \mathbb{N}$ be a metric. Suppose that there is a coupling (X_t, Y_t) such that for all $x, y \in \Omega$

$$\mathbb{E}[d(X_{t+1},Y_{t+1}) \mid X_t = x, Y_t = y] \leq (1-lpha)d(x,y) ext{ for } lpha < 1.$$

Then, $\tau(\varepsilon) \leq \alpha^{-1} \log \frac{D}{\varepsilon}$, where D is the diameter of Ω under d.

The case of $q > 2\Delta$

- The metric *d* does not need to be defined on $\Omega \times \Omega$, but can be extended.
- Using path coupling, we are going to prove the following theorem.

Theorem

Let G have max degree Δ . If $q > 2\Delta$, the mixing time of the Metropolis chain on colorings is

$$t_{mix}(\varepsilon) \leq \Big[\Big(rac{q}{q-2\Delta}\Big) n(\log n + \log \varepsilon^{-1}) \Big].$$

Path coupling (Bubley & Dyer 1997)

- We define a **connected graph** (Ω, E_0) .
- Length function $\ell: E_0 \to [1,\infty)$.
- A path from x_0 to x_r is $\xi = (x_0, x_1, ..., x_r)$ such that $(x_{i-1}, x_i) \in E_0$.
- The length of path ξ is defined as $\ell(\xi) := \sum_{i=1}^{r} \ell(x_{i-1}, x_i).$
- We are considering the **shortest path metric** ρ on Ω

 $\rho(x, y) := \min\{\ell(\xi) \mid \xi \text{ is a path between } x, y\}.$

 $\blacktriangleright\ \rho$ satisfies triangle inequality since

shortest $path(x, y) \leq shortest path(x, z) + shortest path(z, y)$.

Theorem

Let Z_t be an MC on Ω and let $\rho : \Omega \times \Omega \to \mathbb{N}$ be the shortest path metric. Suppose that there exists a coupling (X_t, Y_t) defined for all adjacent pair of states in the graph (Ω, E_0) such that for all adjacent X_t, Y_t

 $\mathbb{E}[\rho(X_{t+1}, Y_{t+1}) \mid X_t, Y_t] \le (1 - \alpha)\rho(X_t, Y_t) \text{ for } \alpha < 1.$

Theorem

Let Z_t be an MC on Ω and let $\rho : \Omega \times \Omega \to \mathbb{N}$ be the shortest path metric. Suppose that there exists a coupling (X_t, Y_t) defined for all adjacent pair of states in the graph (Ω, E_0) such that for all adjacent X_t, Y_t

$$\mathbb{E}[\rho(X_{t+1}, Y_{t+1}) \mid X_t, Y_t] \le (1 - \alpha)\rho(X_t, Y_t) \text{ for } \alpha < 1.$$

Then this coupling can be extended to a coupling between all pairs of states that also satisfies the above inequality, so

$$au_{mix}(\varepsilon) \leq rac{\log D + \log \varepsilon^{-1}}{lpha}$$

where $D = \max_{x,y} \rho(x, y)$.

Definition of the MC on extended state space

- Let Ω be the set of all colorings of G (both proper and improper ones).
- Metropolis MC:
 - Select $v \in V$ and $c \in Q$ u.a.r.
 - If c is allowed at v, update.
- The stationary distribution of this MC defined on Ω is still the uniform distribution on Ω, i.e. the set of proper colorings.

Path coupling for colorings

• Define $(\tilde{\Omega}, E_0)$ such that $(x, y) \in E_0$ iff they differ at one vertex.

• Let
$$\ell(x,y) = 1$$
 for $(x,y) \in E_0$.

• Note that the diameter of $\tilde{\Omega}$ under ρ is *n*.

• We need to define the coupling only for adjacent states in $\tilde{\Omega}.$

- We need to define the coupling only for adjacent states in $\tilde{\Omega}.$
- Let u be the vertex that has different colors in X_t and Y_t .

- \bullet We need to define the coupling only for adjacent states in $\tilde{\Omega}.$
- Let u be the vertex that has different colors in X_t and Y_t .
- If *v* is not in the neighborhood of *u*, follow the previous idea.

- We need to define the coupling only for adjacent states in Ω.
- Let u be the vertex that has different colors in X_t and Y_t .
- If *v* is not in the neighborhood of *u*, follow the previous idea.
- Then, we have the following good and neutral moves.

• The probability that a good move is made is $\geq \frac{1}{n} \cdot \frac{q-\Delta}{q}$.

• If v is a neighbor of u, we modify the coupling.

- If v is a neighbor of u, we modify the coupling.
- If v is in the neighborhood of u, then
 - If $c \notin \{X_t(u), Y_t(u)\}$ attempt to update v with c.
 - Otherwise, attempt to update v with c in X_t , and with the color $\{X_t(u), Y_t(u)\} \setminus \{c\}$ in Y_t .

- If v is a neighbor of u, we modify the coupling.
- If v is in the neighborhood of u, then
 - If $c \notin \{X_t(u), Y_t(u)\}$ attempt to update v with c.
 - Otherwise, attempt to update v with c in X_t , and with the color $\{X_t(u), Y_t(u)\} \setminus \{c\}$ in Y_t .
- Then, we have the following bad moves.

- If v is a neighbor of u, we modify the coupling.
- If v is in the neighborhood of u, then
 - If $c \notin \{X_t(u), Y_t(u)\}$ attempt to update v with c.
 - Otherwise, attempt to update v with c in X_t , and with the color $\{X_t(u), Y_t(u)\} \setminus \{c\}$ in Y_t .
- Then, we have the following bad moves.

• The probability that a bad move is made is $\leq \frac{\Delta}{n} \cdot \frac{1}{a}$.

Mixing time

• $\mathbb{E}[\rho(X_{t+1}, Y_{t+1})] \le \rho(X_t, Y_t) - \frac{q-\Delta}{qn} + \frac{\Delta}{qn} = 1 - \frac{q-2\Delta}{qn} \le 1 - \frac{1}{qn}$, since $q > 2\Delta$.

• $\tau_{mix} = \mathcal{O}(qn \log n).$