Bounding mixing time using coupling

Definition
Consider an MC (Z;) with state space Q2 and transition matrix P.

A Markovian coupling for (Z;) is an MC (X¢, Y;) on Q x €, with transition
probabilities defined by

PriXes1 =X | Xe = x, Yr = y] = P(x,X'),

PriYeri =y | Xe = x, Ye = y] = P(y,y').

v

Equivalently, if P : Q2 — Q2 denotes the transition matrix of the coupling,

Y P((xy), (X ¥)) = P(x,x),

y'eQ

> Pl(x,y). (X)) = P(y.,y).

x'eQ

Counting Complexity 233 /260



Example 9

Consider a slightly different Markov chain for the problem of g colorings.

@ Choose a vertex v u.a.r.
@ Choose a color c € Q \ X¢(N(v)) u.a.r.

© Recolor v with ¢ and leave all the other colored vertices the same.
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Example 9

Consider a slightly different Markov chain for the problem of g colorings.
@ Choose a vertex v u.a.r.

@ Choose a color c € Q \ X¢(N(v)) u.a.r.

© Recolor v with ¢ and leave all the other colored vertices the same.

We will discuss some possible transitions of a coupling (X;, Y;) on Q2.

Counting Complexity 234 /260



Example 9

@ Suppose Q@ = {0,1,...,6}.
@ At t-th step, the same vertex v is chosen u.a.r. for both transitions.

@ Suppose that a vertex v has been chosen for which
Xe(N(v)) = {3,6} and Y¢(N(v)) = {4,5,6} hold.

@ So, the legal colors for v in X¢y1 and Y1 are ¢ € {0,1,2,4,5} and
¢, = {0,1,2,3}, repsectively.
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Example 9

@ So, the legal colors for v in X¢y1 and Yy are ¢ € {0,1,2,4,5} and
¢, = {0,1,2,3}, repsectively.
@ First option: Pr(ce, ) =11 = %.
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Example 9

@ So, the legal colors for v in X¢y1 and Yy are ¢ € {0,1,2,4,5} and
¢, = {0,1,2,3}, repsectively.
@ First option: Pr(ce, ) =11 = %.

Pr[Xez1(v) =1] = ch Pr(1,¢,) =
Pr(1,0) + Pr(1,1) + Pr(1,2) + Pr(1,3) = %
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Example 9

@ So, the legal colors for v in X¢y1 and Yy are ¢ € {0,1,2,4,5} and
¢, = {0,1,2,3}, repsectively.
@ First option: Pr(ce, ) =11 = %.

Pr{Xiy1(v) =1] = ch Pr(1,¢,) =
Pr(1,0) + Pr(1,1) + Pr(1,2) + Pr(1,3) = %
@ Second option:
Pr(0,0) = Pr(1,1) = Pr(2,2) = %

Pr(4,3) = %

Pr(5,¢,) = % for every ¢, € {0,1,2,3}
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Example 9

@ So, the legal colors for v in X¢y1 and Yy are ¢ € {0,1,2,4,5} and
¢, = {0,1,2,3}, repsectively.
@ First option: Pr(ce, ) =11 = %.

PriXeqa(v) =1 =2 Pr(l,¢) =
Pr(1,0) + Pr(1,1) + Pr(1,2) + Pr(1,3) = ¢
@ Second option:
Pr(0,0) = Pr(1,1) = Pr(2,2) = =

Pr(4,3) = 1

Pr(5,¢,) = % for every ¢, € {0,1,2,3}

11 1
Pr[Yii1(v) =0] = ZPr 6,0) = Pr(0,0) +Pr(5,0) = o + 5o = 3
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Example 10

Simple random walk on {0,1, ..., n}

@ The transition graph of (Zt) is the following.

"PEADE - D
L/
1)a 1k

1{1

@ Add either +1 or -1, each with probability 1/2, to the current state if
possible.

@ Do nothing if attempt to add either -1 to 0, or 41 to n.
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Example 10

A coupling (Xt, Yt) for (Z;) starting in (x,y):
e Xo=x, Yo=y.
o At the (t+1)-th step, choose by1; € {—1,1} u.a.r.
o Attempt to add b:41 to both X; and Y;.

5

" S

5//\\.

L g <
O:...;;\sﬁ—,/,.
04 2 3 4 5 ¢ 3 & 9 bboAovoqq 3k
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Example 10

A coupling (Xt, Yt) for (Z;) starting in (x,y):
e Xo=x, Yo=y.
o At the (t+1)-th step, choose by1; € {—1,1} u.a.r.
o Attempt to add b:41 to both X; and Y;.

S

" S

5/'A/-\.\.

i TR P
D:...;;\.sﬁ—;/‘.
o4 2 3 4 5 ¢ 3 & 3 b o943k

Note: We can modify any coupling so that the chains stay together after
the first time they meet.
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Coupling lemma

Let (Xt, Y:) be any coupling for (Z;) on Q. Suppose t : [0,1] — Nis a
function satisfying the condition: for all x,y € Q and all e > 0

PI’[Xt(E) == Yt(a) | Xo=x,Yo=y]<e.

Then the mixing time 7(¢) of (Z;) is bounded by t(¢).
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Coupling lemma

Let (Xt, Y:) be any coupling for (Z;) on Q. Suppose t : [0,1] — Nis a
function satisfying the condition: for all x,y € Q and all € > 0

Pr[Xt(E) == Yt(a) | Xo=x,Yo=y]<e.

Then the mixing time 7(¢) of (Z;) is bounded by t(¢).

Proof.
@ Let P be the transition matrix of (Z:). Let A C Q be arbitrary.

@ Let x € Q be fixed, and Yy be chosen according to the stationary distribution 7 of
(Ze).-
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Coupling lemma

Let (X¢, Y;) be any coupling for (Z;) on Q. Suppose t : [0,1] — Nis a
function satisfying the condition: for all x,y € Q and all ¢ > 0

Pr[Xt(E) 75 Yt(a) | Xo = X, Yo = y] <e.

Then the mixing time 7(¢) of (Z;) is bounded by t(¢).

Proof.
@ Let P be the transition matrix of (Z:). Let A C Q be arbitrary.
@ Let x € Q be fixed, and Yy be chosen according to the stationary distribution 7 of
(Z:).
@ For any £ € (0,1) and the corresponding t = t(¢), we are going to
prove that
Q Pi(y,A) — Pt(x,A) <e forany x,y € Q.
Q@ 7(A) — Pi(x,A) < e forany x € Q.
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Coupling lemma

Let (X¢, Y;) be any coupling for (Z;) on Q. Suppose t : [0,1] — Nis a
function satisfying the condition: for all x,y € Q and all ¢ > 0

Pr[Xt(S) 75 Yt(a) | Xo = X, Yo = y] <e.

Then the mixing time 7(¢) of (Z;) is bounded by t(¢).

Proof.
@ Let P be the transition matrix of (Z:). Let A C Q be arbitrary.
@ Let x € Q be fixed, and Yy be chosen according to the stationary distribution 7 of
(2).
@ For any £ € (0,1) and the corresponding t = t(¢), we are going to
prove that
Q Pi(y,A) — Pt(x,A) <e forany x,y € Q.
Q@ 7(A) — Pi(x,A) < e forany x € Q.
@ Since A is arbitrary, by the definition of total variation distance
= v v = maxacq [p(A) — v(A)| we have that

I1Pf0x, ) = ml[7v <.
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Proof cont. For any ¢ € (0,1) and the corresponding t = t(¢),

Pt(x,A) = Pr[X; € A]
> Pr[X, = Yo A Y € Al
—1-PrX: £ Y:VY; €A
> 1— (Pr[X¢ # Yi] + Pr[Y: & A])
>Pr(Yr e A)—¢
= P'(y,A) —¢
=7m(A) —e.
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Bounding the mixing time of the MC

Theorem

The mixing time of the above MC is Trmix = O(nlogn) for ¢ > 4A + 1. J

Proof.

@ We choose arbitrary colorings Xp and Yy of G.

@ We couple (X;, Y:) by picking the same vertex v and color ¢ u.a.r. at
all times t.

@ We denote by D; be the number of vertices on which the colorings X;
and Y; disagree.
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Proof cont. There are three types of possible moves: good moves, bad
moves, and neutral moves.

@ Good moves (D1 = Dy — 1): v has different colors in X; and Y4,
and c¢ does not appear in the neighborhood of v in either X; or Y;.

7\-{*; UL
Q;E.,...j.) %
Pr[Dey1 = Dy — 1] > i ¢ d —qu
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Proof cont.

@ Bad moves (D;11 = D; 4+ 1): v has the same color in X; and Y%, and
c appears among the neighbors of v in exactly one of X; or Y;.

Xtay \)’u L

Rl

C-jee e80!
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Proof cont.
@ Bad moves (D;11 = D; 4+ 1): v has the same color in X; and Y%, and

c appears among the neighbors of v in exactly one of X; or Y;.

Xy \)u L

Rl

Q:io,o,o.oﬂ 1

> v is a neighbor of a disagreement vertex u and c is the color of u in

one of the chains.
» The disagreement vertices have at most D; - A neighbors, and for any

such neighbor there are at most 2 bad colors.

Di-A 2
n q

Pr[Dt+1 = Dt + 1] S

243 / 260
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Proof cont.

© Neutral moves (D¢+1 = D;): In any other move D; remains invariant.
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Proof cont.

© Neutral moves (D¢+1 = D;): In any other move D; remains invariant.

E[Dt+1 | Dt] :(Dt — 1) : PI’[DH_]_ — Dt - ].] + (Dt + 1) . PF[DH_l = Dt + 1]
+ Dt . (1 — PI’[DH_l = Dt + 1] — PI’[DH_l = Dt — 1])
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Proof cont.

© Neutral moves (D¢+1 = D;): In any other move D; remains invariant.

E[Des1 | De] =(D; — 1) - Pr[Deyy = Dy — 1] + (D¢ + 1) - Pr[Desq = Dy + 1]
+ Dy - (1 = Pr[Dys1 = Dt + 1] — Pr[Dey1 = Dy — 1))
=D; — Pr[Dey1 = Dy — 1] + Pr[Dyyq = Dy + 1]
_ Di(g—28)  2DA

<Dy
gn ng
—an
0l 2)
qn
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Proof cont.

© Neutral moves (D¢+1 = D;): In any other move D; remains invariant.

E[Des1 | De] =(D; — 1) - Pr[Deyy = Dy — 1] + (D¢ + 1) - Pr[Desq = Dy + 1]
+ Dy - (1 = Pr[Dys1 = Dt + 1] — Pr[Dey1 = Dy — 1))
=D; — Pr[Dey1 = Dy — 1] + Pr[Dyyq = Dy + 1]
_ Di(g—28)  2DA

<Dy
gn ng
—an
0l 2)
qn

_4A .
where 0 < 1 — qT < 1, since q > 4A.
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Proof cont. By taking expectation on both sides and iterating, we have
that

—4ANE
E[D: | Do < Do(1- 12
qn
— t
< n<1 . q 4A>
qn
—an
< nexp(— il ‘1) since (1 —x)" < e ™
qn
<e when t > . _q4A n(log n + loge™)
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Proof cont.
@ By Markov's inequality Pr[X > a] < & ] , we have that

Pr[X: # Yt | (Xo, Yo)] = Pr[D: > 1| Do] < E[D; | Do]
qg—4A

gnexp(— an

-t)gs

for t >

aan(logn + log e~ h.
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Proof cont.

@ By Markov's inequality Pr[X > a] < “X e have that

Pr[X: # Yt | (Xo, Yo)] = Pr[D: > 1| Do] < E[D; | Do]
qg—4A
qn

§nexp(— -t)§€

for t > —xn(logn + log e~ ).

@ By the Coupling lemma, the following holds for mixing time of the
Markov chain

q -1
= I |
7(¢) q_4An(ogn+ oge )

Tmix = O(

9 nlogn)
qg—4A
for g > 4A + 1.
O
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Contraction in D;
We showed contraction in one step: for some a > 0

1

o logn + loge™
E[Dr+1 | De] < Die™ = tmix(e) < =m0
Is
Dy -
X
. ™
( ¢
~ \/
D\'_A-L
—
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Lemma
Let Z; be an MC on Q and let d : 2 x Q — N be a metric. Suppose that
there is a coupling (X:, Yt) such that for all x,y € Q

Eld(Xe+1, Yetr1) | Xe =x, Ye = y] < (1 — a)d(x,y) for a < 1.

Then, 7(¢) < a!log g, where D is the diameter of Q2 under d.
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The case of g > 2A

@ The metric d does not need to be defined on Q x Q, but can be
extended.

@ Using path coupling, we are going to prove the following theorem.

Theorem

Let G have max degree A. If g > 2/, the mixing time of the Metropolis
chain on colorings is

tmix(€) < [(q _qZA)n(Iog n+ log z—:_l)—‘.
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Path coupling (Bubley & Dyer 1997)
e We define a connected graph (Q, E).

e Length function ¢ : Ey — [1,00).

e A path from xp to x, is & = (xo, x1, ..., Xr) such that (xj_1, x;) € Eo.

@ The length of path ¢ is defined as ¢(¢) := Zf(x,-_l,x,-).
i=1

@ We are considering the shortest path metric p on Q

p(x,y) .= min{{(&) | £ is a path between x,y}.

> p satisfies triangle inequality since

shortest path(x, y) < shortest path(x, z) + shortest path(z, y).
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Theorem

Let Z; be an MC on QQ and let p : Q x € — N be the shortest path metric.
Suppose that there exists a coupling (Xt, Yi) defined for all adjacent pair
of states in the graph (2, Ey) such that for all adjacent X;, Y:

]E[p(Xt+1, Yt+1) | Xt, Yt] < (1 — Oé)p(Xt, Yt) for a < 1.
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Theorem

Let Z; be an MC on QQ and let p : Q x € — N be the shortest path metric.
Suppose that there exists a coupling (Xt, Yi) defined for all adjacent pair
of states in the graph (2, Eg) such that for all adjacent X;, Y:

]E[,O(Xt+1, Yt+1) | Xt, Yt] < (1 — Oé)p(Xt, Yt) for a < 1.

Then this coupling can be extended to a coupling between all pairs of
States that also satisfies the above inequality, so

log D + log e™1

o

7—mix('f':) =

where D = maxy, p(x,y).

Counting Complexity 251 /260



Definition of the MC on extended state space

o Let  be the set of all colorings of G (both proper and improper
ones).

@ Metropolis MC:

» Select ve Vand c€ Q u.a.r.
» If c is allowed at v, update.

@ The stationary distribution of this MC defined on {2 is still the
uniform distribution on €, i.e. the set of proper colorings.
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Path coupling for colorings

o Define (€, Ey) such that (x, y) € Ey iff they differ at one vertex.
o Let {(x,y) =1 for (x,y) € Eo.

o Note that the diameter of Q under p is n.
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Definition of the coupling

o We need to define the coupling only for adjacent states in 2.
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Definition of the coupling

o We need to define the coupling only for adjacent states in 2.

@ Let u be the vertex that has different colors in X; and Y;.
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Definition of the coupling

o We need to define the coupling only for adjacent states in 2.
@ Let u be the vertex that has different colors in X; and Y;.

o If v is not in the neighborhood of u, follow the previous idea.
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Definition of the coupling

o We need to define the coupling only for adjacent states in 2.
@ Let u be the vertex that has different colors in X; and Y;.
o If v is not in the neighborhood of u, follow the previous idea.

@ Then, we have the following good and neutral moves.

-y %*%%

Cai2 C=
g00d meutral
.- . . 1 A
@ The probability that a good move is made is > - - qT.
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@ If v is a neighbor of u, we modify the coupling.
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@ If v is a neighbor of u, we modify the coupling.
o If v is in the neighborhood of u, then

> If ¢ & {X:i(u), Ye(u)} attempt to update v with c.
» Otherwise, attempt to update v with ¢ in X;, and with the color

{Xe(u), Ye(u)} \ {c} in Ve
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@ If v is a neighbor of u, we modify the coupling.
o If v is in the neighborhood of u, then

> If ¢ & {X:i(u), Ye(u)} attempt to update v with c.
» Otherwise, attempt to update v with ¢ in X;, and with the color

{Xe(u), Ye(u)} \ {c} in Ve

@ Then, we have the following bad moves.

. Py Thay

—~ 505 ab
.

o
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@ If v is a neighbor of u, we modify the coupling.
o If v is in the neighborhood of u, then

> If ¢ & {X:i(u), Ye(u)} attempt to update v with c.
» Otherwise, attempt to update v with ¢ in X;, and with the color

{Xe(u), Ye(u)} \ {c} in Ve

@ Then, we have the foIIowing bad moves.

X.t” ’{+1
@ The probability that a bad move is made is < % . %.
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Mixing time

o E[p(Xes1, Yer1)] < p(Xe, Vi) - L2+ & =1-928 <1 L
since g > 2A.

@ Tmix = O(gnlogn).
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