
Bounding mixing time using coupling

Definition

Consider an MC (Zt) with state space Ω and transition matrix P.
A Markovian coupling for (Zt) is an MC (Xt ,Yt) on Ω×Ω, with transition
probabilities defined by

Pr[Xt+1 = x ′ | Xt = x ,Yt = y ] = P(x , x ′),

Pr[Yt+1 = y ′ | Xt = x ,Yt = y ] = P(y , y ′).

Equivalently, if P̂ : Ω2 → Ω2 denotes the transition matrix of the coupling,∑
y ′∈Ω

P̂((x , y), (x ′, y ′)) = P(x , x ′),

∑
x ′∈Ω

P̂((x , y), (x ′, y ′)) = P(y , y ′).

Counting Complexity 233 / 260



Example 9

Consider a slightly different Markov chain for the problem of q colorings.

1 Choose a vertex v u.a.r.

2 Choose a color c ∈ Q \ Xt(N(v)) u.a.r.

3 Recolor v with c and leave all the other colored vertices the same.

We will discuss some possible transitions of a coupling (Xt ,Yt) on Ω2.

Counting Complexity 234 / 260
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Example 9

Suppose Q = {0, 1, ..., 6}.

At t-th step, the same vertex v is chosen u.a.r. for both transitions.

Suppose that a vertex v has been chosen for which
Xt(N(v)) = {3, 6} and Yt(N(v)) = {4, 5, 6} hold.

So, the legal colors for v in Xt+1 and Yt+1 are cx ∈ {0, 1, 2, 4, 5} and
cy = {0, 1, 2, 3}, repsectively.
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Example 9

So, the legal colors for v in Xt+1 and Yt+1 are cx ∈ {0, 1, 2, 4, 5} and
cy = {0, 1, 2, 3}, repsectively.

1 First option: Pr(cx , cy ) =
1
5 ·

1
4 = 1

20 .

Pr[Xt+1(v) = 1] =
∑

cy
Pr(1, cy ) =

Pr(1, 0) + Pr(1, 1) + Pr(1, 2) + Pr(1, 3) = 1
5

2 Second option:

Pr(0, 0) = Pr(1, 1) = Pr(2, 2) =
1

5

Pr(4, 3) =
1

5

Pr(5, cy ) =
1

20
for every cy ∈ {0, 1, 2, 3}

Pr[Yt+1(v) = 0] =
∑
cx

Pr(cx , 0) = Pr(0, 0) + Pr(5, 0) =
1

5
+

1

20
=

1

4
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Example 10

Simple random walk on {0, 1, ..., n}

The transition graph of (Zt) is the following.

Add either +1 or -1, each with probability 1/2, to the current state if
possible.

Do nothing if attempt to add either -1 to 0, or +1 to n.
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Example 10

A coupling (Xt ,Yt) for (Zt) starting in (x , y):

X0 = x , Y0 = y .

At the (t+1)-th step, choose bt+1 ∈ {−1, 1} u.a.r.
Attempt to add bt+1 to both Xt and Yt .

Note: We can modify any coupling so that the chains stay together after
the first time they meet.
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Coupling lemma

Let (Xt ,Yt) be any coupling for (Zt) on Ω. Suppose t : [0, 1]→ N is a
function satisfying the condition: for all x , y ∈ Ω and all ε > 0

Pr[Xt(ε) ̸= Yt(ε) | X0 = x ,Y0 = y ] ≤ ε.

Then the mixing time τ(ε) of (Zt) is bounded by t(ε).

Proof.
Let P be the transition matrix of (Zt). Let A ⊆ Ω be arbitrary.

Let x ∈ Ω be fixed, and Y0 be chosen according to the stationary distribution π of

(Zt).

For any ε ∈ (0, 1) and the corresponding t = t(ε), we are going to
prove that

1 P t(y ,A)− P t(x ,A) ≤ ε for any x , y ∈ Ω.
2 π(A)− P t(x ,A) ≤ ε for any x ∈ Ω.

Since A is arbitrary, by the definition of total variation distance
||µ− ν||TV = maxA⊆Ω |µ(A)− ν(A)| we have that

||Pt(x , ·)− π||TV ≤ ε.
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Proof cont. For any ε ∈ (0, 1) and the corresponding t = t(ε),

Pt(x ,A) = Pr[Xt ∈ A]

≥ Pr[Xt = Yt ∧ Yt ∈ A]

= 1− Pr[Xt ̸= Yt ∨ Yt ̸∈ A]

≥ 1− (Pr[Xt ̸= Yt ] + Pr[Yt ̸∈ A])

≥ Pr(Yt ∈ A)− ε

= Pt(y ,A)− ε

= π(A)− ε.

□

Counting Complexity 240 / 260



Bounding the mixing time of the MC

Theorem

The mixing time of the above MC is τmix = O(n log n) for q ≥ 4∆ + 1.

Proof.

We choose arbitrary colorings X0 and Y0 of G .

We couple (Xt ,Yt) by picking the same vertex v and color c u.a.r. at
all times t.

We denote by Dt be the number of vertices on which the colorings Xt

and Yt disagree.
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Proof cont. There are three types of possible moves: good moves, bad
moves, and neutral moves.

1 Good moves (Dt+1 = Dt − 1): v has different colors in Xt and Yt ,
and c does not appear in the neighborhood of v in either Xt or Yt .

Pr[Dt+1 = Dt − 1] ≥ Dt

n
· q − 2∆

q
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Proof cont.
2 Bad moves (Dt+1 = Dt + 1): v has the same color in Xt and Yt , and

c appears among the neighbors of v in exactly one of Xt or Yt .

▶ v is a neighbor of a disagreement vertex u and c is the color of u in
one of the chains.

▶ The disagreement vertices have at most Dt ·∆ neighbors, and for any
such neighbor there are at most 2 bad colors.

Pr[Dt+1 = Dt + 1] ≤ Dt ·∆
n
· 2
q
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Proof cont.

3 Neutral moves (Dt+1 = Dt): In any other move Dt remains invariant.

E[Dt+1 | Dt ] =(Dt − 1) · Pr[Dt+1 = Dt − 1] + (Dt + 1) · Pr[Dt+1 = Dt + 1]

+ Dt · (1− Pr[Dt+1 = Dt + 1]− Pr[Dt+1 = Dt − 1])

=Dt − Pr[Dt+1 = Dt − 1] + Pr[Dt+1 = Dt + 1]

≤Dt −
Dt(q − 2∆)

qn
+

2Dt∆

nq

=Dt

(
1− q − 4∆

qn

)
where 0 < 1− q−4∆

qn < 1, since q > 4∆.
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Proof cont. By taking expectation on both sides and iterating, we have
that

E[Dt | D0] ≤ D0

(
1− q − 4∆

qn

)t

≤ n
(
1− q − 4∆

qn

)t

≤ n exp
(
− q − 4∆

qn
· t
)

since (1− x)n ≤ e−nx

≤ ε when t ≥ q

q − 4∆
n(log n + log ε−1)
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Proof cont.

By Markov’s inequality Pr[X ≥ a] ≤ E[X ]
a , we have that

Pr[Xt ̸= Yt | (X0,Y0)] = Pr[Dt ≥ 1 | D0] ≤ E[Dt | D0]

≤ n exp
(
− q − 4∆

qn
· t
)
≤ ε

for t ≥ q
q−4∆n(log n + log ε−1).

By the Coupling lemma, the following holds for mixing time of the
Markov chain

τ(ε) =
q

q − 4∆
n(log n + log ε−1)

τmix = O( q

q − 4∆
n log n)

for q ≥ 4∆ + 1.

□
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Contraction in Dt

We showed contraction in one step: for some α > 0

E[Dt+1 | Dt ] ≤ Dte
−α ⇒ tmix(ε) ≤

log n + log ε−1

α
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Lemma

Let Zt be an MC on Ω and let d : Ω× Ω→ N be a metric. Suppose that
there is a coupling (Xt ,Yt) such that for all x , y ∈ Ω

E[d(Xt+1,Yt+1) | Xt = x ,Yt = y ] ≤ (1− α)d(x , y) for α < 1.

Then, τ(ε) ≤ α−1 log D
ε , where D is the diameter of Ω under d .

Counting Complexity 248 / 260



The case of q > 2∆

The metric d does not need to be defined on Ω× Ω, but can be
extended.

Using path coupling, we are going to prove the following theorem.

Theorem

Let G have max degree ∆. If q > 2∆, the mixing time of the Metropolis
chain on colorings is

tmix(ε) ≤
⌈( q

q − 2∆

)
n(log n + log ε−1)

⌉
.
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Path coupling (Bubley & Dyer 1997)
We define a connected graph (Ω,E0).

Length function ℓ : E0 → [1,∞).

A path from x0 to xr is ξ = (x0, x1, ..., xr ) such that (xi−1, xi ) ∈ E0.

The length of path ξ is defined as ℓ(ξ) :=
r∑

i=1

ℓ(xi−1, xi ).

We are considering the shortest path metric ρ on Ω

ρ(x , y) := min{ℓ(ξ) | ξ is a path between x , y}.

▶ ρ satisfies triangle inequality since

shortest path(x , y) ≤ shortest path(x , z) + shortest path(z , y).
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Theorem

Let Zt be an MC on Ω and let ρ : Ω×Ω→ N be the shortest path metric.
Suppose that there exists a coupling (Xt ,Yt) defined for all adjacent pair
of states in the graph (Ω,E0) such that for all adjacent Xt ,Yt

E[ρ(Xt+1,Yt+1) | Xt ,Yt ] ≤ (1− α)ρ(Xt ,Yt) for α < 1.

Then this coupling can be extended to a coupling between all pairs of
states that also satisfies the above inequality, so

τmix(ε) ≤
logD + log ε−1

α

where D = maxx ,y ρ(x , y).
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Definition of the MC on extended state space

Let Ω̃ be the set of all colorings of G (both proper and improper
ones).

Metropolis MC:
▶ Select v ∈ V and c ∈ Q u.a.r.
▶ If c is allowed at v , update.

The stationary distribution of this MC defined on Ω̃ is still the
uniform distribution on Ω, i.e. the set of proper colorings.
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Path coupling for colorings

Define (Ω̃,E0) such that (x , y) ∈ E0 iff they differ at one vertex.

Let ℓ(x , y) = 1 for (x , y) ∈ E0.

Note that the diameter of Ω̃ under ρ is n.
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Definition of the coupling

We need to define the coupling only for adjacent states in Ω̃.

Let u be the vertex that has different colors in Xt and Yt .

If v is not in the neighborhood of u, follow the previous idea.

Then, we have the following good and neutral moves.

The probability that a good move is made is ≥ 1
n ·

q−∆
q .
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If v is a neighbor of u, we modify the coupling.

If v is in the neighborhood of u, then
▶ If c ̸∈ {Xt(u),Yt(u)} attempt to update v with c .
▶ Otherwise, attempt to update v with c in Xt , and with the color
{Xt(u),Yt(u)} \ {c} in Yt .

Then, we have the following bad moves.

The probability that a bad move is made is ≤ ∆
n ·

1
q .
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Mixing time

E[ρ(Xt+1,Yt+1)] ≤ ρ(Xt ,Yt)− q−∆
qn + ∆

qn = 1− q−2∆
qn ≤ 1− 1

qn ,
since q > 2∆.

τmix = O(qn log n).
□
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