Bounding mixing time using coupling

Definition

Consider an MC $\left(Z_{t}\right)$ with state space Ω and transition matrix P. A Markovian coupling for $\left(Z_{t}\right)$ is an $\mathrm{MC}\left(X_{t}, Y_{t}\right)$ on $\Omega \times \Omega$, with transition probabilities defined by

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{t+1}=x^{\prime} \mid X_{t}=x, Y_{t}=y\right]=P\left(x, x^{\prime}\right) \\
& \operatorname{Pr}\left[Y_{t+1}=y^{\prime} \mid X_{t}=x, Y_{t}=y\right]=P\left(y, y^{\prime}\right)
\end{aligned}
$$

Equivalently, if $\widehat{P}: \Omega^{2} \rightarrow \Omega^{2}$ denotes the transition matrix of the coupling,

$$
\begin{aligned}
& \sum_{y^{\prime} \in \Omega} \widehat{P}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=P\left(x, x^{\prime}\right), \\
& \sum_{x^{\prime} \in \Omega} \widehat{P}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=P\left(y, y^{\prime}\right) .
\end{aligned}
$$

Example 9

Consider a slightly different Markov chain for the problem of q colorings.
(1) Choose a vertex v u.a.r.
(2) Choose a color $c \in Q \backslash X_{t}(N(v))$ u.a.r.
(3) Recolor v with c and leave all the other colored vertices the same.

Example 9

Consider a slightly different Markov chain for the problem of q colorings.
(1) Choose a vertex v u.a.r.
(2) Choose a color $c \in Q \backslash X_{t}(N(v))$ u.a.r.
(3) Recolor v with c and leave all the other colored vertices the same.

We will discuss some possible transitions of a coupling $\left(X_{t}, Y_{t}\right)$ on Ω^{2}.

Example 9

- Suppose $Q=\{0,1, \ldots, 6\}$.
- At t-th step, the same vertex v is chosen u.a.r. for both transitions.
- Suppose that a vertex v has been chosen for which $X_{t}(N(v))=\{3,6\}$ and $Y_{t}(N(v))=\{4,5,6\}$ hold.
- So, the legal colors for v in X_{t+1} and Y_{t+1} are $c_{x} \in\{0,1,2,4,5\}$ and $c_{y}=\{0,1,2,3\}$, repsectively.

Example 9

- So, the legal colors for v in X_{t+1} and Y_{t+1} are $c_{X} \in\{0,1,2,4,5\}$ and $c_{y}=\{0,1,2,3\}$, repsectively.
(1) First option: $\operatorname{Pr}\left(c_{x}, c_{y}\right)=\frac{1}{5} \cdot \frac{1}{4}=\frac{1}{20}$.

Example 9

- So, the legal colors for v in X_{t+1} and Y_{t+1} are $c_{x} \in\{0,1,2,4,5\}$ and $c_{y}=\{0,1,2,3\}$, repsectively.
(1) First option: $\operatorname{Pr}\left(c_{x}, c_{y}\right)=\frac{1}{5} \cdot \frac{1}{4}=\frac{1}{20}$.

$$
\begin{gathered}
\operatorname{Pr}\left[X_{t+1}(v)=1\right]=\sum_{c_{y}} \operatorname{Pr}\left(1, c_{y}\right)= \\
\operatorname{Pr}(1,0)+\operatorname{Pr}(1,1)+\operatorname{Pr}(1,2)+\operatorname{Pr}(1,3)=\frac{1}{5}
\end{gathered}
$$

Example 9

- So, the legal colors for v in X_{t+1} and Y_{t+1} are $c_{x} \in\{0,1,2,4,5\}$ and $c_{y}=\{0,1,2,3\}$, repsectively.
(1) First option: $\operatorname{Pr}\left(c_{x}, c_{y}\right)=\frac{1}{5} \cdot \frac{1}{4}=\frac{1}{20}$.

$$
\begin{gathered}
\operatorname{Pr}\left[X_{t+1}(v)=1\right]=\sum_{c_{y}} \operatorname{Pr}\left(1, c_{y}\right)= \\
\operatorname{Pr}(1,0)+\operatorname{Pr}(1,1)+\operatorname{Pr}(1,2)+\operatorname{Pr}(1,3)=\frac{1}{5}
\end{gathered}
$$

(2) Second option:

$$
\begin{aligned}
& \operatorname{Pr}(0,0)=\operatorname{Pr}(1,1)=\operatorname{Pr}(2,2)=\frac{1}{5} \\
& \operatorname{Pr}(4,3)=\frac{1}{5} \\
& \operatorname{Pr}\left(5, c_{y}\right)=\frac{1}{20} \text { for every } c_{y} \in\{0,1,2,3\}
\end{aligned}
$$

Example 9

- So, the legal colors for v in X_{t+1} and Y_{t+1} are $c_{x} \in\{0,1,2,4,5\}$ and $c_{y}=\{0,1,2,3\}$, repsectively.
(1) First option: $\operatorname{Pr}\left(c_{x}, c_{y}\right)=\frac{1}{5} \cdot \frac{1}{4}=\frac{1}{20}$.

$$
\begin{gathered}
\operatorname{Pr}\left[X_{t+1}(v)=1\right]=\sum_{c_{y}} \operatorname{Pr}\left(1, c_{y}\right)= \\
\operatorname{Pr}(1,0)+\operatorname{Pr}(1,1)+\operatorname{Pr}(1,2)+\operatorname{Pr}(1,3)=\frac{1}{5}
\end{gathered}
$$

(2) Second option:

$$
\begin{aligned}
& \operatorname{Pr}(0,0)=\operatorname{Pr}(1,1)=\operatorname{Pr}(2,2)=\frac{1}{5} \\
& \operatorname{Pr}(4,3)=\frac{1}{5} \\
& \operatorname{Pr}\left(5, c_{y}\right)=\frac{1}{20} \text { for every } c_{y} \in\{0,1,2,3\} \\
& \operatorname{Pr}\left[Y_{t+1}(v)=0\right]=\sum_{c_{x}} \operatorname{Pr}\left(c_{x}, 0\right)=\operatorname{Pr}(0,0)+\operatorname{Pr}(5,0)=\frac{1}{5}+\frac{1}{20}=\frac{1}{4}
\end{aligned}
$$

Example 10

Simple random walk on $\{0,1, \ldots, n\}$

- The transition graph of $\left(Z_{t}\right)$ is the following.

- Add either +1 or -1 , each with probability $1 / 2$, to the current state if possible.
- Do nothing if attempt to add either -1 to 0 , or +1 to n.

Example 10

A coupling $\left(X_{t}, Y_{t}\right)$ for $\left(Z_{t}\right)$ starting in (x, y) :

- $X_{0}=x, Y_{0}=y$.
- At the ($\mathrm{t}+1$)-th step, choose $b_{t+1} \in\{-1,1\}$ u.a.r.
- Attempt to add b_{t+1} to both X_{t} and Y_{t}.

Example 10

A coupling $\left(X_{t}, Y_{t}\right)$ for $\left(Z_{t}\right)$ starting in (x, y):

- $X_{0}=x, Y_{0}=y$.
- At the ($\mathrm{t}+1$)-th step, choose $b_{t+1} \in\{-1,1\}$ u.a.r.
- Attempt to add b_{t+1} to both X_{t} and Y_{t}.

Note: We can modify any coupling so that the chains stay together after the first time they meet.

Coupling lemma

Let $\left(X_{t}, Y_{t}\right)$ be any coupling for $\left(Z_{t}\right)$ on Ω. Suppose $t:[0,1] \rightarrow \mathbb{N}$ is a function satisfying the condition: for all $x, y \in \Omega$ and all $\varepsilon>0$

$$
\operatorname{Pr}\left[X_{t(\varepsilon)} \neq Y_{t(\varepsilon)} \mid X_{0}=x, Y_{0}=y\right] \leq \varepsilon
$$

Then the mixing time $\tau(\varepsilon)$ of $\left(Z_{t}\right)$ is bounded by $t(\varepsilon)$.

Coupling lemma

Let $\left(X_{t}, Y_{t}\right)$ be any coupling for $\left(Z_{t}\right)$ on Ω. Suppose $t:[0,1] \rightarrow \mathbb{N}$ is a function satisfying the condition: for all $x, y \in \Omega$ and all $\varepsilon>0$

$$
\operatorname{Pr}\left[X_{t(\varepsilon)} \neq Y_{t(\varepsilon)} \mid X_{0}=x, Y_{0}=y\right] \leq \varepsilon .
$$

Then the mixing time $\tau(\varepsilon)$ of $\left(Z_{t}\right)$ is bounded by $t(\varepsilon)$.

Proof.

- Let P be the transition matrix of $\left(Z_{t}\right)$. Let $A \subseteq \Omega$ be arbitrary.
- Let $x \in \Omega$ be fixed, and Y_{0} be chosen according to the stationary distribution π of $\left(Z_{t}\right)$.

Coupling lemma

Let $\left(X_{t}, Y_{t}\right)$ be any coupling for $\left(Z_{t}\right)$ on Ω. Suppose $t:[0,1] \rightarrow \mathbb{N}$ is a function satisfying the condition: for all $x, y \in \Omega$ and all $\varepsilon>0$

$$
\operatorname{Pr}\left[X_{t(\varepsilon)} \neq Y_{t(\varepsilon)} \mid X_{0}=x, Y_{0}=y\right] \leq \varepsilon .
$$

Then the mixing time $\tau(\varepsilon)$ of $\left(Z_{t}\right)$ is bounded by $t(\varepsilon)$.

Proof.

- Let P be the transition matrix of $\left(Z_{t}\right)$. Let $A \subseteq \Omega$ be arbitrary.
- Let $x \in \Omega$ be fixed, and Y_{0} be chosen according to the stationary distribution π of $\left(Z_{t}\right)$.
- For any $\varepsilon \in(0,1)$ and the corresponding $t=t(\varepsilon)$, we are going to prove that
(1) $P^{t}(y, A)-P^{t}(x, A) \leq \varepsilon$ for any $x, y \in \Omega$.
(2) $\pi(A)-P^{t}(x, A) \leq \varepsilon$ for any $x \in \Omega$.

Coupling lemma

Let $\left(X_{t}, Y_{t}\right)$ be any coupling for $\left(Z_{t}\right)$ on Ω. Suppose $t:[0,1] \rightarrow \mathbb{N}$ is a function satisfying the condition: for all $x, y \in \Omega$ and all $\varepsilon>0$

$$
\operatorname{Pr}\left[X_{t(\varepsilon)} \neq Y_{t(\varepsilon)} \mid X_{0}=x, Y_{0}=y\right] \leq \varepsilon .
$$

Then the mixing time $\tau(\varepsilon)$ of $\left(Z_{t}\right)$ is bounded by $t(\varepsilon)$.

Proof.

- Let P be the transition matrix of $\left(Z_{t}\right)$. Let $A \subseteq \Omega$ be arbitrary.
- Let $x \in \Omega$ be fixed, and Y_{0} be chosen according to the stationary distribution π of $\left(Z_{t}\right)$.
- For any $\varepsilon \in(0,1)$ and the corresponding $t=t(\varepsilon)$, we are going to prove that
(1) $P^{t}(y, A)-P^{t}(x, A) \leq \varepsilon$ for any $x, y \in \Omega$.
(2) $\pi(A)-P^{t}(x, A) \leq \varepsilon$ for any $x \in \Omega$.
- Since A is arbitrary, by the definition of total variation distance $\|\mu-\nu\|_{T V}=\max _{A \subseteq \Omega}|\mu(A)-\nu(A)|$ we have that

$$
\left\|P^{t}(x, \cdot)-\pi\right\|_{T V} \leq \varepsilon
$$

Proof cont. For any $\varepsilon \in(0,1)$ and the corresponding $t=t(\varepsilon)$,

$$
\begin{aligned}
P^{t}(x, A) & =\operatorname{Pr}\left[X_{t} \in A\right] \\
& \geq \operatorname{Pr}\left[X_{t}=Y_{t} \wedge Y_{t} \in A\right] \\
& =1-\operatorname{Pr}\left[X_{t} \neq Y_{t} \vee Y_{t} \notin A\right] \\
& \geq 1-\left(\operatorname{Pr}\left[X_{t} \neq Y_{t}\right]+\operatorname{Pr}\left[Y_{t} \notin A\right]\right) \\
& \geq \operatorname{Pr}\left(Y_{t} \in A\right)-\varepsilon \\
& =P^{t}(y, A)-\varepsilon \\
& =\pi(A)-\varepsilon
\end{aligned}
$$

Bounding the mixing time of the MC

Theorem

The mixing time of the above $M C$ is $\tau_{\text {mix }}=\mathcal{O}(n \log n)$ for $q \geq 4 \Delta+1$.
Proof.

- We choose arbitrary colorings X_{0} and Y_{0} of G.
- We couple $\left(X_{t}, Y_{t}\right)$ by picking the same vertex v and color c u.a.r. at all times t.
- We denote by D_{t} be the number of vertices on which the colorings X_{t} and Y_{t} disagree.

Proof cont. There are three types of possible moves: good moves, bad moves, and neutral moves.
(1) Good moves $\left(D_{t+1}=D_{t}-1\right): v$ has different colors in X_{t} and Y_{t}, and c does not appear in the neighborhood of v in either X_{t} or Y_{t}.

Proof cont.

(2) Bad moves $\left(D_{t+1}=D_{t}+1\right): v$ has the same color in X_{t} and Y_{t}, and c appears among the neighbors of v in exactly one of X_{t} or Y_{t}.

$$
Q=\{\bullet, \bullet, \bullet, 0,0\}
$$

Proof cont.

(2) Bad moves $\left(D_{t+1}=D_{t}+1\right): v$ has the same color in X_{t} and Y_{t}, and c appears among the neighbors of v in exactly one of X_{t} or Y_{t}.

- v is a neighbor of a disagreement vertex u and c is the color of u in one of the chains.
- The disagreement vertices have at most $D_{t} \cdot \Delta$ neighbors, and for any such neighbor there are at most 2 bad colors.

$$
\operatorname{Pr}\left[D_{t+1}=D_{t}+1\right] \leq \frac{D_{t} \cdot \Delta}{n} \cdot \frac{2}{q}
$$

Proof cont.
(3) Neutral moves $\left(D_{t+1}=D_{t}\right)$: In any other move D_{t} remains invariant.

Proof cont.
(3) Neutral moves $\left(D_{t+1}=D_{t}\right)$: In any other move D_{t} remains invariant.

$$
\begin{aligned}
\mathbb{E}\left[D_{t+1} \mid D_{t}\right]= & \left(D_{t}-1\right) \cdot \operatorname{Pr}\left[D_{t+1}=D_{t}-1\right]+\left(D_{t}+1\right) \cdot \operatorname{Pr}\left[D_{t+1}=D_{t}+1\right] \\
& +D_{t} \cdot\left(1-\operatorname{Pr}\left[D_{t+1}=D_{t}+1\right]-\operatorname{Pr}\left[D_{t+1}=D_{t}-1\right]\right)
\end{aligned}
$$

Proof cont.
(3) Neutral moves $\left(D_{t+1}=D_{t}\right)$: In any other move D_{t} remains invariant.

$$
\begin{aligned}
\mathbb{E}\left[D_{t+1} \mid D_{t}\right]= & \left(D_{t}-1\right) \cdot \operatorname{Pr}\left[D_{t+1}=D_{t}-1\right]+\left(D_{t}+1\right) \cdot \operatorname{Pr}\left[D_{t+1}=D_{t}+1\right] \\
& +D_{t} \cdot\left(1-\operatorname{Pr}\left[D_{t+1}=D_{t}+1\right]-\operatorname{Pr}\left[D_{t+1}=D_{t}-1\right]\right) \\
= & D_{t}-\operatorname{Pr}\left[D_{t+1}=D_{t}-1\right]+\operatorname{Pr}\left[D_{t+1}=D_{t}+1\right] \\
\leq & D_{t}-\frac{D_{t}(q-2 \Delta)}{q n}+\frac{2 D_{t} \Delta}{n q} \\
= & D_{t}\left(1-\frac{q-4 \Delta}{q n}\right)
\end{aligned}
$$

Proof cont.
(3) Neutral moves $\left(D_{t+1}=D_{t}\right)$: In any other move D_{t} remains invariant.

$$
\begin{aligned}
\mathbb{E}\left[D_{t+1} \mid D_{t}\right]= & \left(D_{t}-1\right) \cdot \operatorname{Pr}\left[D_{t+1}=D_{t}-1\right]+\left(D_{t}+1\right) \cdot \operatorname{Pr}\left[D_{t+1}=D_{t}+1\right] \\
& +D_{t} \cdot\left(1-\operatorname{Pr}\left[D_{t+1}=D_{t}+1\right]-\operatorname{Pr}\left[D_{t+1}=D_{t}-1\right]\right) \\
= & D_{t}-\operatorname{Pr}\left[D_{t+1}=D_{t}-1\right]+\operatorname{Pr}\left[D_{t+1}=D_{t}+1\right] \\
\leq & D_{t}-\frac{D_{t}(q-2 \Delta)}{q n}+\frac{2 D_{t} \Delta}{n q} \\
= & D_{t}\left(1-\frac{q-4 \Delta}{q n}\right)
\end{aligned}
$$

where $0<1-\frac{q-4 \Delta}{q n}<1$, since $q>4 \Delta$.

Proof cont. By taking expectation on both sides and iterating, we have that

$$
\begin{aligned}
\mathbb{E}\left[D_{t} \mid D_{0}\right] & \leq D_{0}\left(1-\frac{q-4 \Delta}{q n}\right)^{t} \\
& \leq n\left(1-\frac{q-4 \Delta}{q n}\right)^{t} \\
& \leq n \exp \left(-\frac{q-4 \Delta}{q n} \cdot t\right) \quad \text { since }(1-x)^{n} \leq e^{-n x} \\
& \leq \varepsilon \quad \quad \text { when } t \geq \frac{q}{q-4 \Delta} n\left(\log n+\log \varepsilon^{-1}\right)
\end{aligned}
$$

Proof cont.

- By Markov's inequality $\operatorname{Pr}[X \geq a] \leq \frac{\mathbb{E}[X]}{a}$, we have that

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{t} \neq Y_{t} \mid\left(X_{0}, Y_{0}\right)\right]=\operatorname{Pr}\left[D_{t} \geq 1 \mid D_{0}\right] \leq \mathbb{E}\left[D_{t} \mid D_{0}\right] \\
& \leq n \exp \left(-\frac{q-4 \Delta}{q n} \cdot t\right) \leq \varepsilon
\end{aligned}
$$

$$
\text { for } t \geq \frac{q}{q-4 \Delta} n\left(\log n+\log \varepsilon^{-1}\right)
$$

Proof cont.

- By Markov's inequality $\operatorname{Pr}[X \geq a] \leq \frac{\mathbb{E}[X]}{a}$, we have that

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{t} \neq Y_{t} \mid\left(X_{0}, Y_{0}\right)\right]=\operatorname{Pr}\left[D_{t} \geq 1 \mid D_{0}\right] \leq \mathbb{E}\left[D_{t} \mid D_{0}\right] \\
& \leq n \exp \left(-\frac{q-4 \Delta}{q n} \cdot t\right) \leq \varepsilon
\end{aligned}
$$

for $t \geq \frac{q}{q-4 \Delta} n\left(\log n+\log \varepsilon^{-1}\right)$.

- By the Coupling lemma, the following holds for mixing time of the Markov chain

$$
\begin{gathered}
\tau(\varepsilon)=\frac{q}{q-4 \Delta} n\left(\log n+\log \varepsilon^{-1}\right) \\
\tau_{\text {mix }}=\mathcal{O}\left(\frac{q}{q-4 \Delta} n \log n\right)
\end{gathered}
$$

for $q \geq 4 \Delta+1$.

Contraction in D_{t}

We showed contraction in one step: for some $\alpha>0$

$$
\mathbb{E}\left[D_{t+1} \mid D_{t}\right] \leq D_{t} e^{-\alpha} \Rightarrow t_{\text {mix }}(\varepsilon) \leq \frac{\log n+\log \varepsilon^{-1}}{\alpha}
$$

Lemma

Let Z_{t} be an MC on Ω and let $d: \Omega \times \Omega \rightarrow \mathbb{N}$ be a metric. Suppose that there is a coupling $\left(X_{t}, Y_{t}\right)$ such that for all $x, y \in \Omega$

$$
\mathbb{E}\left[d\left(X_{t+1}, Y_{t+1}\right) \mid X_{t}=x, Y_{t}=y\right] \leq(1-\alpha) d(x, y) \text { for } \alpha<1
$$

Then, $\tau(\varepsilon) \leq \alpha^{-1} \log \frac{D}{\varepsilon}$, where D is the diameter of Ω under d.

The case of $q>2 \Delta$

- The metric d does not need to be defined on $\Omega \times \Omega$, but can be extended.
- Using path coupling, we are going to prove the following theorem.

Theorem

Let G have max degree Δ. If $q>2 \Delta$, the mixing time of the Metropolis chain on colorings is

$$
t_{\text {mix }}(\varepsilon) \leq\left\lceil\left(\frac{q}{q-2 \Delta}\right) n\left(\log n+\log \varepsilon^{-1}\right)\right] .
$$

Path coupling (Bubley \& Dyer 1997)

- We define a connected graph $\left(\Omega, E_{0}\right)$.
- Length function $\ell: E_{0} \rightarrow[1, \infty)$.
- A path from x_{0} to x_{r} is $\xi=\left(x_{0}, x_{1}, \ldots, x_{r}\right)$ such that $\left(x_{i-1}, x_{i}\right) \in E_{0}$.
- The length of path ξ is defined as $\ell(\xi):=\sum_{i=1}^{r} \ell\left(x_{i-1}, x_{i}\right)$.
- We are considering the shortest path metric ρ on Ω

$$
\rho(x, y):=\min \{\ell(\xi) \mid \xi \text { is a path between } x, y\} .
$$

- ρ satisfies triangle inequality since
shortest path $(x, y) \leq$ shortest path $(x, z)+\operatorname{shortest~path}(z, y)$.

Theorem

Let Z_{t} be an $M C$ on Ω and let $\rho: \Omega \times \Omega \rightarrow \mathbb{N}$ be the shortest path metric. Suppose that there exists a coupling $\left(X_{t}, Y_{t}\right)$ defined for all adjacent pair of states in the graph $\left(\Omega, E_{0}\right)$ such that for all adjacent X_{t}, Y_{t}

$$
\mathbb{E}\left[\rho\left(X_{t+1}, Y_{t+1}\right) \mid X_{t}, Y_{t}\right] \leq(1-\alpha) \rho\left(X_{t}, Y_{t}\right) \text { for } \alpha<1
$$

Theorem

Let Z_{t} be an $M C$ on Ω and let $\rho: \Omega \times \Omega \rightarrow \mathbb{N}$ be the shortest path metric. Suppose that there exists a coupling $\left(X_{t}, Y_{t}\right)$ defined for all adjacent pair of states in the graph $\left(\Omega, E_{0}\right)$ such that for all adjacent X_{t}, Y_{t}

$$
\mathbb{E}\left[\rho\left(X_{t+1}, Y_{t+1}\right) \mid X_{t}, Y_{t}\right] \leq(1-\alpha) \rho\left(X_{t}, Y_{t}\right) \text { for } \alpha<1
$$

Then this coupling can be extended to a coupling between all pairs of states that also satisfies the above inequality, so

$$
\tau_{\operatorname{mix}}(\varepsilon) \leq \frac{\log D+\log \varepsilon^{-1}}{\alpha}
$$

where $D=\max _{x, y} \rho(x, y)$.

Definition of the MC on extended state space

- Let $\tilde{\Omega}$ be the set of all colorings of G (both proper and improper ones).
- Metropolis MC:
- Select $v \in V$ and $c \in Q$ u.a.r.
- If c is allowed at v, update.
- The stationary distribution of this MC defined on $\tilde{\Omega}$ is still the uniform distribution on Ω, i.e. the set of proper colorings.

Path coupling for colorings

- Define $\left(\tilde{\Omega}, E_{0}\right)$ such that $(x, y) \in E_{0}$ iff they differ at one vertex.
- Let $\ell(x, y)=1$ for $(x, y) \in E_{0}$.
- Note that the diameter of $\tilde{\Omega}$ under ρ is n.

Definition of the coupling

- We need to define the coupling only for adjacent states in $\tilde{\Omega}$.

Definition of the coupling

- We need to define the coupling only for adjacent states in $\tilde{\Omega}$.
- Let u be the vertex that has different colors in X_{t} and Y_{t}.

Definition of the coupling

- We need to define the coupling only for adjacent states in $\tilde{\Omega}$.
- Let u be the vertex that has different colors in X_{t} and Y_{t}.
- If \boldsymbol{v} is not in the neighborhood of \boldsymbol{u}, follow the previous idea.

Definition of the coupling

- We need to define the coupling only for adjacent states in $\tilde{\Omega}$.
- Let u be the vertex that has different colors in X_{t} and Y_{t}.
- If \boldsymbol{v} is not in the neighborhood of \boldsymbol{u}, follow the previous idea.
- Then, we have the following good and neutral moves.

$c=$

good

$$
\begin{aligned}
& C=0 \\
& \text { neutral }
\end{aligned}
$$

- The probability that a good move is made is $\geq \frac{1}{n} \cdot \frac{q-\Delta}{q}$.
- If v is a neighbor of u, we modify the coupling.
- If v is a neighbor of u, we modify the coupling.
- If \boldsymbol{v} is in the neighborhood of \boldsymbol{u}, then
- If $c \notin\left\{X_{t}(u), Y_{t}(u)\right\}$ attempt to update v with c.
- Otherwise, attempt to update v with c in X_{t}, and with the color $\left\{X_{t}(u), Y_{t}(u)\right\} \backslash\{c\}$ in Y_{t}.
- If v is a neighbor of u, we modify the coupling.
- If \boldsymbol{v} is in the neighborhood of \boldsymbol{u}, then
- If $c \notin\left\{X_{t}(u), Y_{t}(u)\right\}$ attempt to update v with c.
- Otherwise, attempt to update v with c in X_{t}, and with the color $\left\{X_{t}(u), Y_{t}(u)\right\} \backslash\{c\}$ in Y_{t}.
- Then, we have the following bad moves.

- If v is a neighbor of u, we modify the coupling.
- If \boldsymbol{v} is in the neighborhood of \boldsymbol{u}, then
- If $c \notin\left\{X_{t}(u), Y_{t}(u)\right\}$ attempt to update v with c.
- Otherwise, attempt to update v with c in X_{t}, and with the color $\left\{X_{t}(u), Y_{t}(u)\right\} \backslash\{c\}$ in Y_{t}.
- Then, we have the following bad moves.

- The probability that a bad move is made is $\leq \frac{\Delta}{n} \cdot \frac{1}{q}$.

Mixing time

- $\mathbb{E}\left[\rho\left(X_{t+1}, Y_{t+1}\right)\right] \leq \rho\left(X_{t}, Y_{t}\right)-\frac{q-\Delta}{q n}+\frac{\Delta}{q n}=1-\frac{q-2 \Delta}{q n} \leq 1-\frac{1}{q n}$, since $q>2 \Delta$.
- $\tau_{\text {mix }}=\mathcal{O}(q n \log n)$.

