Counting Complexity

Computation and Reasoning Laboratory

Graduate course Spring semester 2022

Overview

Descriptive complexity

- The class NP
- \bullet The class $\#\mathsf{P}$

Overview

Edge Existence

- Does G = (V, E) have an edge?
- G can be seen as a structure of a first-order (FO) language with only one binary relation symbol, E.
- $G \models \exists x \exists y E(x, y).$

Vertex cover of size k

Does G = (V, E) have a vertex cover of size k?

$$egin{aligned} G \models (\exists W \subseteq V) \Big[|W| \leq k \land (\forall x, y \in V) \big[E(x, y)
ightarrow (x \in W \lor y \in W) \big] \Big] \end{aligned}$$

Vertex cover of size k

Does G = (V, E) have a vertex cover of size k?

$$G \models (\exists W \subseteq V) \Big[|W| \le k \land \\ (\forall x, y \in V) \Big[E(x, y) \to (x \in W \lor y \in W) \Big] \Big]$$

We quantified over sets!

Descriptive complexity

The computational complexity of a problem can be understood as the richness of the language needed to specify the problem.

"Edge Existence" is easier than "Has a Vertex Cover of size k" since the formula $\exists x \exists y E(x, y)$ is **FO** whereas the formula

$$G \models (\exists W \subseteq V) \Big| |W| \le k \land$$
$$(\forall x, y \in V) \big[E(x, y) \to (x \in W \lor y \in W) \big] \Big]$$

is **3SO**.

Finite relational structures

The input to any computational problem can be seen as a finite relational structure.

Let $\tau = \langle P^{a_1}, R^{a_2}, Q^{a_3}, \ldots \rangle$. A structure over τ looks like:

$$\mathcal{A} = \langle \mathcal{A}, \mathcal{P}^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}}, \mathcal{Q}^{\mathcal{A}}, \ldots \rangle.$$

Finite relational structures

The input to any computational problem can be seen as a finite relational structure.

Let $\tau = \langle P^{a_1}, R^{a_2}, Q^{a_3}, \ldots \rangle$. A structure over τ looks like:

$$\mathcal{A} = \langle \mathcal{A}, \mathcal{P}^{\mathcal{A}}, \mathcal{R}^{\mathcal{A}}, \mathcal{Q}^{\mathcal{A}}, \ldots \rangle.$$

 $\mathsf{STRUCT}(\tau) = \{ \mathcal{B} \mid \mathcal{B} \text{ is a finite structure over } \tau \}.$

Strings as relational structures

A string with 5 characters can be seen as a relational structure:

Position	4	3	2	1	0
String	0	1	0	0	1

Vocabulary $\langle S^1, \leq^2 \rangle$ $\mathcal{A} = \langle A, S^{\mathcal{A}}, \leq^{\mathcal{A}} \rangle$, where $A = \{0, 1, 2, 3, 4\}$, $S^{\mathcal{A}} = \{0, 3\}$, $\leq^{\mathcal{A}} = \{(0, 1), (0, 2), \ldots\}$

For example,

$$\mathcal{A} \models \exists u, v \Big[\neg S(u) \land \neg S(v) \land \neg \exists w (v < w < u) \Big].$$

Graphs as relational structures

Vocabulary $\tau = \langle E^2 \rangle$ $\mathcal{G} = \langle V, E \rangle$, where $V = \{0, 1, 2, 3\}, E = \{(0, 1), (1, 0), \ldots\}$ $\mathcal{G} \models (\forall x, y) \Big[\neg E(x, x) \land (E(x, y) \leftrightarrow E(y, x)) \Big]$

Propositional formulas as relational structures

A formula in conjunctive normal form.

$$\phi = (x_1 \lor x_2 \lor \neg x_3 \lor x_5) \land (x_4 \lor \neg x_2)$$

Vocabulary $\langle {\it C}^1, {\it P}^2, {\it N}^2 \rangle$

$$\mathcal{A}_{\phi} = \langle A_{\phi}, C, P, N \rangle, \text{ where}$$

$$A = \{x_1, x_2, x_3, x_4, x_5, c_1, c_2\}, C = \{c_1, c_2\},$$

$$P = \{(c_1, x_1), (c_1, x_2), (c_1, x_5), (c_2, x_4)\}, N = \{(c_1, x_3), (c_2, x_2)\}$$

$$\mathcal{A}_{\phi} \models (\exists S)(\forall c)(\exists v) ig[\mathcal{C}(c)
ightarrow ig(\mathcal{P}(c,v) \land S(v) ig) \lor ig(\mathcal{N}(c,v) \land \neg S(v) ig) ig]$$

Binary Encoding of a Structure

$$G = \langle V, E, R \rangle$$
$$|V| = 4$$
$$E = \{(1, 2), (2, 3)\}$$
$$R = \{(0, 1), (0, 2), (3, 1)\}$$

The binary encoding of G is:

Binary Encoding of a Structure

$$G = \langle V, E, R \rangle$$
$$|V| = 4$$
$$E = \{(1, 2), (2, 3)\}$$
$$R = \{(0, 1), (0, 2), (3, 1)\}$$

The binary encoding of G is:

Binary Encoding of a Structure

$$G = \langle V, E, R \rangle$$
$$|V| = 4$$
$$E = \{(1, 2), (2, 3)\}$$
$$R = \{(0, 1), (0, 2), (3, 1)\}$$

The binary encoding of \mathcal{G} is:

It holds that $|bin(G)| = 2n^2$.

Theorem (Fagin 1973)

BSO captures NP: For any language L, $L \in NP$ iff it is definable by an existential second-order sentence.

In other words, $L \in NP$ if there is a formula $\phi(\vec{T})$ with relation symbols from $\vec{T} \cup \tau$ such that

$$\mathcal{A} \in \mathcal{L} \Leftrightarrow \mathcal{A} \models \exists \overrightarrow{\mathcal{T}} \phi(\overrightarrow{\mathcal{T}}).$$

where ${\cal A}$ is an ordered finite structure over the vocabulary $\tau.$

In other words, $L \in NP$ if there is a formula $\phi(\vec{T})$ with relation symbols from $\vec{T} \cup \tau$ such that

$$\mathcal{A} \in \mathcal{L} \Leftrightarrow \mathcal{A} \models \exists \overrightarrow{\mathcal{T}} \phi(\overrightarrow{\mathcal{T}}).$$

where \mathcal{A} is an ordered finite structure over the vocabulary τ .

Proof idea.

3SO \subseteq NP: For every **3SO** formula ϕ , there is an NPTM *M* that nondeterministically chooses relations $\vec{S} = (S_1, ..., S_k)$ and verifies whether $\mathcal{A} \models \phi(\vec{T}/\vec{S})$ in polynomial time.

In other words, $L \in NP$ if there is a formula $\phi(\vec{T})$ with relation symbols from $\vec{T} \cup \tau$ such that

$$\mathcal{A} \in \mathcal{L} \Leftrightarrow \mathcal{A} \models \exists \overrightarrow{\mathcal{T}} \phi(\overrightarrow{\mathcal{T}}).$$

where ${\cal A}$ is an ordered finite structure over the vocabulary $\tau.$

Proof idea.

BSO \subseteq NP: For every **BSO** formula ϕ , there is an NPTM *M* that nondeterministically chooses relations $\vec{S} = (S_1, ..., S_k)$ and verifies whether $\mathcal{A} \models \phi(\vec{T}/\vec{S})$ in polynomial time.

 $NP \subseteq \exists SO$: The existence of an accepting computation path of an NPTM *M* can be expressed in $\exists SO$.

 $bin(\mathcal{A}) \models \exists \overrightarrow{T} \phi(\overrightarrow{T})$ iff *M* has an accepting path on input \mathcal{A}

where \overrightarrow{T} encodes the accepting computation.