Counting Complexity

Computation and Reasoning Laboratory

Graduate course
Spring semester 2022

Overview

(1) Descriptive complexity

- The class NP
- The class \#P

Overview

(1) Descriptive complexity

- The class NP
- The class \#P

Edge Existence

- Does $G=(V, E)$ have an edge?
- G can be seen as a structure of a first-order (FO) language with only one binary relation symbol, E.
- $G \vDash \exists x \exists y E(x, y)$.

Vertex cover of size k

Does $G=(V, E)$ have a vertex cover of size k ?

$$
\begin{aligned}
G \models(\exists W \subseteq V) & {[|W| \leq k \wedge} \\
& (\forall x, y \in V)[E(x, y) \rightarrow(x \in W \vee y \in W)]]
\end{aligned}
$$

Vertex cover of size k

Does $G=(V, E)$ have a vertex cover of size k ?

$$
\begin{aligned}
G \models(\exists W \subseteq V) & {[|W| \leq k \wedge} \\
& (\forall x, y \in V)[E(x, y) \rightarrow(x \in W \vee y \in W)]]
\end{aligned}
$$

We quantified over sets!

Descriptive complexity

The computational complexity of a problem can be understood as the richness of the language needed to specify the problem.
"Edge Existence" is easier than "Has a Vertex Cover of size k" since the formula $\exists x \exists y E(x, y)$ is $\mathbf{F O}$ whereas the formula

$$
\begin{aligned}
G \models(\exists W \subseteq V)[& {[W \mid \leq k \wedge} \\
& (\forall x, y \in V)[E(x, y) \rightarrow(x \in W \vee y \in W)]]
\end{aligned}
$$

is $\exists \mathrm{SO}$.

Finite relational structures

The input to any computational problem can be seen as a finite relational structure.

Let $\tau=\left\langle P^{a_{1}}, R^{a_{2}}, Q^{a_{3}}, \ldots\right\rangle$. A structure over τ looks like:

$$
\mathcal{A}=\left\langle A, P^{\mathcal{A}}, R^{\mathcal{A}}, Q^{\mathcal{A}}, \ldots\right\rangle
$$

Finite relational structures

The input to any computational problem can be seen as a finite relational structure.

Let $\tau=\left\langle P^{a_{1}}, R^{a_{2}}, Q^{a_{3}}, \ldots\right\rangle$. A structure over τ looks like:

$$
\mathcal{A}=\left\langle A, P^{\mathcal{A}}, R^{\mathcal{A}}, Q^{\mathcal{A}}, \ldots\right\rangle
$$

$\operatorname{STRUCT}(\tau)=\{\mathcal{B} \mid \mathcal{B}$ is a finite structure over $\tau\}$.

Strings as relational structures

A string with 5 characters can be seen as a relational structure:

$$
\begin{gathered}
\begin{array}{|c|c|c|c|c|c|}
\hline \text { Position } & 4 & 3 & 2 & 1 & 0 \\
\hline \text { String } & 0 & 1 & 0 & 0 & 1 \\
\hline
\end{array} \text { Vocabulary }\left\langle S^{1}, \leq^{2}\right\rangle \\
\mathcal{A}=\left\langle A, S^{\mathcal{A}}, \leq^{\mathcal{A}}\right\rangle, \text { where } \\
A=\{0,1,2,3,4\}, S^{\mathcal{A}}=\{0,3\}, \leq \leq^{\mathcal{A}}=\{(0,1),(0,2), \ldots\}
\end{gathered}
$$

For example,

$$
\mathcal{A} \models \exists u, v[\neg S(u) \wedge \neg S(v) \wedge \neg \exists w(v<w<u)] .
$$

Graphs as relational structures

Vocabulary $\tau=\left\langle E^{2}\right\rangle$

$$
\begin{gathered}
\mathcal{G}=\langle V, E\rangle, \text { where } \\
V=\{0,1,2,3\}, E=\{(0,1),(1,0), \ldots\} \\
\mathcal{G} \models(\forall x, y)[\neg E(x, x) \wedge(E(x, y) \leftrightarrow E(y, x))]
\end{gathered}
$$

Propositional formulas as relational structures

A formula in conjunctive normal form.

$$
\phi=\left(x_{1} \vee x_{2} \vee \neg x_{3} \vee x_{5}\right) \wedge\left(x_{4} \vee \neg x_{2}\right)
$$

Vocabulary $\left\langle C^{1}, P^{2}, N^{2}\right\rangle$
$\mathcal{A}_{\phi}=\left\langle A_{\phi}, C, P, N\right\rangle$, where
$A=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, c_{1}, c_{2}\right\}, C=\left\{c_{1}, c_{2}\right\}$,
$P=\left\{\left(c_{1}, x_{1}\right),\left(c_{1}, x_{2}\right),\left(c_{1}, x_{5}\right),\left(c_{2}, x_{4}\right)\right\}, N=\left\{\left(c_{1}, x_{3}\right),\left(c_{2}, x_{2}\right)\right\}$

$$
\mathcal{A}_{\phi} \models(\exists S)(\forall c)(\exists v)[C(c) \rightarrow(P(c, v) \wedge S(v)) \vee(N(c, v) \wedge \neg S(v))]
$$

Binary Encoding of a Structure

$$
\begin{aligned}
\mathcal{G}= & \langle V, E, R\rangle \\
& |V|=4 \\
E= & \{(1,2),(2,3)\} \\
R= & \{(0,1),(0,2),(3,1)\}
\end{aligned}
$$

The binary encoding of \mathcal{G} is:

Binary Encoding of a Structure

$$
\begin{aligned}
\mathcal{G}= & \langle V, E, R\rangle \\
& |V|=4 \\
E= & \{(1,2),(2,3)\} \\
R= & \{(0,1),(0,2),(3,1)\}
\end{aligned}
$$

The binary encoding of \mathcal{G} is:
$\operatorname{bin}(G)=\overbrace{00000010000101000110000000000100}^{E}$.

Binary Encoding of a Structure

$$
\begin{aligned}
\mathcal{G} & =\langle V, E, R\rangle \\
& |V|=4 \\
E= & \{(1,2),(2,3)\} \\
R= & \{(0,1),(0,2),(3,1)\}
\end{aligned}
$$

The binary encoding of \mathcal{G} is:

It holds that $|\operatorname{bin}(G)|=2 n^{2}$.

Fagin's theorem

Theorem (Fagin 1973)

$\exists \mathrm{SO}$ captures NP: For any language $L, L \in$ NP iff it is definable by an existential second-order sentence.

Fagin's theorem

In other words, $L \in$ NP if there is a formula $\phi(\vec{T})$ with relation symbols from $\vec{T} \cup \tau$ such that

$$
\mathcal{A} \in L \Leftrightarrow \mathcal{A} \models \exists \vec{T} \phi(\vec{T}) .
$$

where \mathcal{A} is an ordered finite structure over the vocabulary τ.

Fagin's theorem

In other words, $L \in$ NP if there is a formula $\phi(\vec{T})$ with relation symbols from $\vec{T} \cup \tau$ such that

$$
\mathcal{A} \in L \Leftrightarrow \mathcal{A} \models \exists \vec{T} \phi(\vec{T}) .
$$

where \mathcal{A} is an ordered finite structure over the vocabulary τ.
Proof idea.
$\exists \mathrm{SO} \subseteq$ NP: For every \exists SO formula ϕ, there is an NPTM M that nondeterministically chooses relations $\vec{S}=\left(S_{1}, \ldots, S_{k}\right)$ and verifies whether $\mathcal{A} \models \phi(\vec{T} / \vec{S})$ in polynomial time.

Fagin's theorem

In other words, $L \in$ NP if there is a formula $\phi(\vec{T})$ with relation symbols from $\vec{T} \cup \tau$ such that

$$
\mathcal{A} \in L \Leftrightarrow \mathcal{A} \models \exists \vec{T} \phi(\vec{T}) .
$$

where \mathcal{A} is an ordered finite structure over the vocabulary τ.
Proof idea.
$\exists \mathbf{S O} \subseteq$ NP: For every \exists SO formula ϕ, there is an NPTM M that nondeterministically chooses relations $\vec{S}=\left(S_{1}, \ldots, S_{k}\right)$ and verifies whether $\mathcal{A} \models \phi(\vec{T} / \vec{S})$ in polynomial time.

NP $\subseteq \exists$ SO: The existence of an accepting computation path of an NPTM M can be expressed in $\exists \mathbf{S O}$.
$\operatorname{bin}(\mathcal{A}) \models \exists \vec{T} \phi(\vec{T})$ iff M has an accepting path on input \mathcal{A}
where \vec{T} encodes the accepting computation.

