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Edge Existence

Does G = (V ,E ) have an edge?

G can be seen as a structure of a first-order (FO) language with only
one binary relation symbol, E .

G |= ∃x∃yE (x , y).
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Vertex cover of size k

Does G = (V ,E ) have a vertex cover of size k?

G |= (∃W ⊆ V )
[
|W | ≤ k ∧

(∀x , y ∈ V )
[
E (x , y) → (x ∈ W ∨ y ∈ W )

]]

We quantified over sets!
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Descriptive complexity

The computational complexity of a problem can be understood as the
richness of the language needed to specify the problem.

“Edge Existence” is easier than “Has a Vertex Cover of size k” since the
formula ∃x∃yE (x , y) is FO whereas the formula

G |= (∃W ⊆ V )
[
|W | ≤ k ∧

(∀x , y ∈ V )
[
E (x , y) → (x ∈ W ∨ y ∈ W )

]]
is ∃∃∃SO.
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Finite relational structures

The input to any computational problem can be seen as a finite relational
structure.

Let τ = ⟨Pa1 ,Ra2 ,Qa3 , . . .⟩. A structure over τ looks like:

A = ⟨A,PA,RA,QA, . . .⟩.

STRUCT(τ) = {B | B is a finite structure over τ}.
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Strings as relational structures

A string with 5 characters can be seen as a relational structure:

Position 4 3 2 1 0

String 0 1 0 0 1

Vocabulary ⟨S1,≤2⟩

A = ⟨A, SA,≤A⟩, where

A = {0, 1, 2, 3, 4}, SA = {0, 3}, ≤A= {(0, 1), (0, 2), . . .}

For example,

A |= ∃u, v
[
¬S(u) ∧ ¬S(v) ∧ ¬∃w(v < w < u)

]
.
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Graphs as relational structures

0 1

23

Vocabulary τ = ⟨E 2⟩

G = ⟨V ,E ⟩, where

V = {0, 1, 2, 3},E = {(0, 1), (1, 0), . . .}

G |= (∀x , y)
[
¬E (x , x) ∧

(
E (x , y) ↔ E (y , x)

)]
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Propositional formulas as relational structures

A formula in conjunctive normal form.

ϕ = (x1 ∨ x2 ∨ ¬x3 ∨ x5) ∧ (x4 ∨ ¬x2)

Vocabulary ⟨C 1,P2,N2⟩

Aϕ = ⟨Aϕ,C ,P,N⟩, where

A = {x1, x2, x3, x4, x5, c1, c2}, C = {c1, c2},

P = {(c1, x1), (c1, x2), (c1, x5), (c2, x4)}, N = {(c1, x3), (c2, x2)}

Aϕ |= (∃S)(∀c)(∃v)
[
C (c) →

(
P(c , v) ∧ S(v)

)
∨
(
N(c , v) ∧ ¬S(v)

)]
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Binary Encoding of a Structure

0 1

2 3 G = ⟨V ,E ,R⟩
|V | = 4

E = {(1, 2), (2, 3)}
R = {(0, 1), (0, 2), (3, 1)}

The binary encoding of G is:

bin(G ) =

E︷ ︸︸ ︷
0000001000010100

R︷ ︸︸ ︷
0110000000000100.

It holds that |bin(G )| = 2n2.
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Fagin’s theorem

Theorem (Fagin 1973)

∃∃∃SO captures NP: For any language L, L ∈ NP iff it is definable by an
existential second-order sentence.
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Fagin’s theorem

In other words, L ∈ NP if there is a formula ϕ(
−→
T ) with relation symbols

from
−→
T ∪ τ such that

A ∈ L ⇔ A |= ∃
−→
T ϕ(

−→
T ).

where A is an ordered finite structure over the vocabulary τ .

Proof idea.
∃∃∃SO ⊆ NP: For every ∃∃∃SO formula ϕ, there is an NPTM M that

nondeterministically chooses relations
−→
S = (S1, ...,Sk) and verifies

whether A |= ϕ(
−→
T /

−→
S ) in polynomial time.

NP ⊆ ∃∃∃SO: The existence of an accepting computation path of an NPTM
M can be expressed in ∃∃∃SO.

bin(A) |= ∃
−→
T ϕ(

−→
T ) iff M has an accepting path on input A

where
−→
T encodes the accepting computation. □
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