
Example (1)

1 DNF: A DNF formula ϕ can be encoded by the finite ordered
structure A = ⟨A = {v1, ..., vn, d1, ..., dm},D,P,N⟩ over
τ = ⟨D1,P2,N2⟩.

ϕ ∈ DNF iff A |= ∃T∃d ∀v
(
D(d)∧

(
P(d , v) → T (v)

)
∧(

N(d , v) → ¬T (v)
))

Exercise. Check this for ϕ = (x1 ∧ x2 ∧ ¬x3 ∧ ¬x4) ∨ (¬x2 ∧ ¬x4 ∧ x3 ∧ x5)
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Example (2)

2 3CNF: A boolean formula ϕ in conjunctive normal form with three
literals per clause can be encoded by the finite structure
A = {(v1, ..., vn),C0,C1,C2,C3} over τ = ⟨C 3

0 ,C
3
1 ,C

3
2 ,C

3
3 ⟩.

ϕ ∈ 3CNF iff

A |=∃T∀x1∀x2∀x3[(
C0(x1, x2, x3) → (T (x1) ∧ T (x2) ∧ T (x3))

)
∧(

C1(x1, x2, x3) → (¬T (x1) ∧ T (x2) ∧ T (x3))
)
∧(

C2(x1, x2, x3) → (¬T (x1) ∧ ¬T (x2) ∧ T (x3))
)
∧(

C3(x1, x2, x3) → (¬T (x1) ∧ ¬T (x2) ∧ ¬T (x3))
)]

Exercise. Check this for
ϕ = (x1 ∨ x2 ∨ x3)∧ (¬x2 ∨ x4 ∨ x3)∧ (¬x3 ∨¬x4 ∨ x1)∧ (¬x1 ∨¬x2 ∨¬x4)

Counting Complexity 18 / 52



Example (3)

3 SAT: A boolean formula ϕ in conjunctive normal form can be
encoded by the finite structure A = ⟨{v1, ..., vn, c1, ..., cm},C ,P,N⟩
over τ = ⟨C 1,P2,N2⟩.

ϕ ∈ SAT iff A |= ∃T∀c∃v
[
C (c) →

(
P(c , v) ∧ T (v)

)
∨(

N(c , v) ∧ ¬T (v)
)]
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Overview

1 Descriptive complexity
The class NP
The class #P
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The class #FO

Let τ be a vocabulary containing a relation symbol ≤. In other words
we are considering finite ordered structures.

Let f : STRUCT(τ) → N be a function defined on finite structures A
over τ .

Let
−→
T = {T1, ...,Tr} and −→z = {z1, ..., zm} be sequences of relation

symbols and first-order variables, respectively.

A function f : STRUCT(τ) → N belongs to #FO iff there is a first-order

formula ϕ with relation symbols from
−→
T ∪ τ and free first-order variables

from −→z such that

f (A) = |{⟨
−→
T ,−→z ⟩ | A |= ϕ(

−→
T ,−→z )}|.
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#P = #FO (Saluja, Sabrahmanyama & Thakur)

Theorem (Saluja, Sabrahmanyama & Thakur 1995)

The class #P coincides with the class #FO.

Proof. #FO ⊆ #P: The NPTM nondeterministically chooses a tuple

⟨
−→
S ,−→a ⟩ and verifies in polynomial time that A |= ϕ(

−→
T /

−→
S ,−→z /−→a ).

#P ⊆ #FO:

For any f ∈ #P, the decision version Lf = {A | f (A) > 0} is in NP.

By Fagin’s theorem, A ∈ Lf iff A |= ∃
−→
T ϕ(

−→
T ).

There is a unique different value of
−→
T s.t. it satisfies A |= ∃

−→
T ϕ(

−→
T )

for every different accepting computation of the corresponding NPTM
MA on input A.

So, the number of accepting paths of MA is equal to

|{⟨
−→
T ⟩ | A |= ϕ(

−→
T )}|.

□
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Classes #Σi ,#Πi

Σ0Σ0Σ0, Π0Π0Π0 formulas are unquantified FO formulas.

Σ1Σ1Σ1 is a formula of the form ∃−→x ψ(−→x )

Π1Π1Π1 is a formula of the form ∀−→x ψ(−→x )

Σ2Σ2Σ2 is a formula of the form ∃−→x ∀−→y ψ(−→x ,−→y )

Π2Π2Π2 is a formula of the form ∀−→x ∃−→y ψ(−→x ,−→y )

where ψ is unquantified.

A function f : STRUCT(τ) → N belongs to #Σi (resp. #Πi ) iff there is a
ΣiΣiΣi (resp. ΠiΠiΠi ) formula ϕ s.t.

f (A) = |{⟨
−→
T ,−→z ⟩ | A |= ϕ(

−→
T ,−→z )}|.
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Example (1)

1 #DNF: A DNF formula can be encoded by the finite ordered
structure A = ⟨A = {v1, ..., vn, d1, ..., dm},D,P,N⟩ over
τ = ⟨D1,P2,N2⟩.

#DNF(A) = |{⟨T ⟩ | A |= ∃d ∀v
(
D(d)∧

(
P(d , v) → T (v)

)
∧(

N(d , v) → ¬T (v)
))

}|

Hence #DNF ∈ #Σ2.
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Example (2)

2 #3CNF: A boolean formula in conjunctive normal form with three
literals per clause can be encoded by the finite structure
A = {(v1, ..., vn),C0,C1,C2,C3} over τ = ⟨C 3

0 ,C
3
1 ,C

3
2 ,C

3
3 ⟩.

#3CNF(A) = |{⟨T ⟩ | A |= (∀x1)(∀x2)(∀x3)[(
C0(x1, x2, x3) → (T (x1) ∧ T (x2) ∧ T (x3))

)
∧(

C1(x1, x2, x3) → (¬T (x1) ∧ T (x2) ∧ T (x3))
)
∧(

C2(x1, x2, x3) → (¬T (x1) ∧ ¬T (x2) ∧ T (x3))
)
∧(

C3(x1, x2, x3) → (¬T (x1) ∧ ¬T (x2) ∧ ¬T (x3))
)]
}|

Hence #3CNF ∈ #Π1.
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Example (3)

3 #SAT: A boolean formula in conjunctive normal form can be
encoded by the finite structure A = ⟨{v1, ..., vn, c1, ..., cm},C ,P,N⟩
over τ = ⟨C 1,P2,N2⟩.

#SAT(A) = |{⟨T ⟩ | A |= (∀c)(∃v)
[
C (c) →

(
P(c , v) ∧ T (v)

)
∨(

N(c , v) ∧ ¬T (v)
)]
}|

Hence #SAT ∈ #Π2.

Counting Complexity 26 / 52



#Π2 captures #P

Proposition

#P = #Π2.

Corollary

#Π2 = #FO.
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Hierarchy in #FO

Proposition 1
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Hierarchy in #FO (2)

Proposition 2

#Σ0 = #Π0 ⊂ #Σ1 ⊂ #Π1 ⊂ #Σ2 ⊂ #Π2 = #FO.

Proof. We prove here that #Σ1 ⊆ #Π1.

Let f ∈ #Σ1 with f (A) = |{⟨
−→
T ,−→z ⟩ | A |= ∃−→x ψ(−→x ,−→z ,

−→
T )}|.

Instead of counting the tuples ⟨
−→
T ,−→z ⟩, we count the tuples

⟨
−→
T , (−→z ,

−→
x∗)⟩ where

−→
x∗ is the lexicographically smallest −→x such that

A |= ψ(−→x ,−→z ,
−→
T ).

Let θ(−→x ,
−→
x∗) be the quantifier-free formula which expresses that

−→
x∗ is

lexicographically smaller than −→x under ≤.

Then,

f (A) = |{⟨
−→
T , (−→z ,

−→
x∗)⟩ | A |=ψ(

−→
x∗,−→z ,

−→
T )∧

(∀−→x )
(
ψ(−→x ,−→z ,

−→
T ) → θ(−→x ,

−→
x∗)

)
}|
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Proof cont.
The second part of the proof includes the following:

#3DNF ∈ #Σ1 \#Σ0

#3CNF ∈ #Π1 \#Σ1

#DNF ∈ #Σ2 \#Π1

#HamiltonCycles ∈ #Π2 \#Σ2

□

The above classes are not closed under parsimonious reductions.
For example, #3CNF ∈ #Π1, but #HamiltonCycles ̸∈ #Π1.
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This hierarchy can help us determine classes of approximable counting
problems.

We denote by FPRAS the class of #P functions that admit an fpras.

We expect that problems in FPRAS have easy decision version.

For any function f ∈ #P, let Lf = {x | f (x) > 0} be the
corresponding decision problem.

The class of #P functions with decision version in P is

#PE = {f | f ∈ #P and Lf ∈ P}

defined by Pagourtzis (2001).
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We are interested in a subclass of #PE, namely TotP.

TotP is the Karp-closure of all self-reducible functions in #PE.

Definition (Kiayias, Pagourtzis, Sharma & Zachos 2001)

A function f : {0, 1}∗ → N belongs to TotP if there is an NPTM M s.t.

f (x) = #(all paths of M on input x)− 1.
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Self-reducibility & easy decision ⇒ membership in TotP

stop

stop

stop stop
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Self-reducibility & easy decision ⇒ membership in TotP

(x1 ∧ x3) ∨ (¬x2 ∧ x3)(x1 ∧ x3) ∨ (¬x2 ∧ x3)(x1 ∧ x3) ∨ (¬x2 ∧ x3)

(¬x2 ∧ x3)(¬x2 ∧ x3)(¬x2 ∧ x3)

x3x3x3

stopstopstop

x3 = true

x2 = false

x1 = false

x3 ∨ (¬x2 ∧ x3)x3 ∨ (¬x2 ∧ x3)x3 ∨ (¬x2 ∧ x3)

x3 ∨ x3x3 ∨ x3x3 ∨ x3

stopstopstop

x3 = true

x2 = false

x3x3x3

stopstopstop

x3 = true

x2 = true

x1 = true

stopstopstop
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Robust subclasses of TotP

In the context of descriptive complexity we would like to define classes
that are both

1 subclasses of TotP and
2 robust, i.e.

▶ either they have natural complete problems under parsimonious
reductions,

▶ or they are closed under addition, multiplication and subtraction by one.
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The class #Σ0

Proposition 1

Every problem in #Σ0 is computable in polynomial time.
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The class #Σ1

Proposition 2

Every problem in #Σ1 has an fpras.

1 Every #Σ1 function is reducible to a restricted version of #DNF
under a reducibility which preserves approximability.

2 #DNF has an fpras.
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Poly-time product reductions

The reductions used here are the following special case of parsimonious
reductions.

Poly-time product reduction

f ⩽pr g : ∃h1, h2 ∈ FP, ∀x f (x) = g(h1(x)) · h2(x)
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Proof.
Let f (A) = |{⟨

−→
T ,−→z ⟩ | A |= ∃−→y ψ(−→y ,−→z ,

−→
T }|, where

ψ is in DNF,
−→y = (y1, . . . , yp),

−→z = (z1, . . . , zm),
−→
T = (T1, . . . ,Tr ) and Ti has arity ai , 1 ≤ i ≤ r .

We make the following transformations:

1 We fix a −→zi ∈ Am and we write ∃−→y ψ(−→y ,−→zi ,
−→
T } as a disjunct

|A|p∨
j=1

ψ(−→yj ,−→zi ,
−→
T }.

2 We replace every subformula that is satisfied by A by true and every
subformula that is not satisfied by A by false and we obtain

ψ′(−→zi ,
−→
T ).

▶ Note that formula ψ′(−→zi ,
−→
T ) is a propositional formula in DNF with

variables of the form Ti (
−→w ), −→w ∈ Aai , 1 ≤ i ≤ r .
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Proof cont.
3 We introduce ℓ new variables x1, ..., xℓ, where ℓ = log(|A|m).

▶ We can encode binary strings by conjunctions of these variables (and
their negations), e.g. 0010 is encoded by ¬x1 ∧ ¬x2 ∧ x3 ∧ ¬x4.

▶ The binary representation s of any integer between 0 and 2ℓ − 1 is
encoded by a conjunction x(s) of these variables (and their negations)
in which xi appears negated iff the i-th bit of s is 0.

4 Instead of taking the formula

ψ′(−→z0 ,
−→
T ) ∨ . . . ∨ ψ′(−→z |A|m−1,

−→
T )

we define the following formula

θA = [ψ′(−→z0 ,
−→
T ) ∧ x(0)] ∨ . . . ∨ [ψ′(−→z |A|m−1,

−→
T ) ∧ x(|A|m − 1)].
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Proof cont.
Observe that

θA is in DNF with variables Ti (
−→w ), −→w ∈ Aai , 1 ≤ i ≤ r , and x1, ..., xℓ.

Variables Ti (
−→w ) can be replaced by propositional variables tik ,

1 ≤ k ≤ |A|ai .
Let c(A) be the variables of the form Ti (

−→w ) that do not appear in
θA. It holds that:

f (A) = 2c(A) · (the number of satisfying assignments of θA).

□
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The classes #Π1 and #Σ2

We don’t expect that either #Π1 or #Σ2 is a subclass of FPRAS, since
#3CNF ∈ #Π1.
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The class #RΣ2

A function f : {0, 1} → N belongs to #RΣ2 if there is a first-order formula

ψ with relation symbols from
−→
T ∪ τ and free first-order variables from −→z

such that

f (A) = |{⟨
−→
T ,−→z ⟩ | A |= ∃−→x ∀−→y ϕ(−→x ,−→y ,

−→
T ,−→z )}|

where ψ is quantifier-free and when it is expressed in CNF, each conjunct

has at most one occurrence of a relation symbol from
−→
T .

Proposition 3

Every function in #RΣ2 has an fpras.

Proof. #DNF is complete for #RΣ2 under product reductions. The proof
is similar to the previous one. □
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The decision version of every function in #Σ0, #Σ1 and #RΣ2

is in P.

#Triangles ∈ #Σ0

#NonCliques, #NonVertexCovers ∈ #Σ1,

#NonDominatingSets, #NonEdgeDominatingSets ∈ #RΣ2.
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Assuming NP ̸= RP, the following problem is undecidable: Given a

first-order formula ϕ(−→z ,
−→
T ) over τ ∪

−→
T , does the counting function

defined by ϕ(−→z ,
−→
T ) have an fpras?

Assuming P ̸= P#P, the following problem is undecidable: Given a

first-order formula ϕ(−→z ,
−→
T ) over τ ∪

−→
T , is the counting function

defined by ϕ(−→z ,
−→
T ) polynomial-time computable?
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Quantitative Second-Order Logic

Given a relational vocabulary τ , the set of Quantitative Second-Order
formulas (or just QSO formulas) over τ is given by the following grammar.

α := ϕ | s | (α+ α) | (α · α) | Σx .α | Πx .α | ΣX .α | ΠX .α

where ϕ is an SO-formula, s ∈ N, x is a first-order variable and X is a
second-order variable.

ΣΣΣQSO(FO)QSO(FO)QSO(FO) is the fragment of QSO where first- and second-order
products (Πx . and ΠX .) are not allowed and ϕ is restricted to be in FO.
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Semantics of QSO formulas

Let

A be a structure.

v a first-order assignment for A

V a second-order assignment for A

Then the evaluation of a QSO formula α over (A, v ,V ) is defined as a
function [[α]] that on input (A, v ,V ) returns a number in N.
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[[ϕ]](A, v ,V ) =

{
1, if A |= ϕ

0, otherwise

[[s]](A, v ,V ) = s

[[α1 + α2]](A, v ,V ) = [[α1]](A, v ,V ) + [[α2]](A, v ,V )

[[α1 · α2]](A, v ,V ) = [[α1]](A, v ,V ) · [[α2]](A, v ,V )

[[Σx .α]](A, v ,V ) =
∑
a∈A

[[α]](A, v [a/x ],V )

[[Πx .α]](A, v ,V ) =
∏
a∈A

[[α]](A, v [a/x ],V )

[[ΣX .α]](A, v ,V ) =
∑

B⊆Aarity(X )

[[α]](A, v ,V [B/X ])

[[ΠX .α]](A, v ,V ) =
∏

B⊆Aarity(X )

[[α]](A, v ,V [B/X ])
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Arenas, Muñoz and Riveros (2017)

Let F be a fragment of QSO and C a counting complexity class. Then F
captures C over ordered structures if the following conditions hold:

1 for every α ∈ F, there exists f ∈ C such that [[α]](A) = f (A) for
every ordered structure A.

2 for every f ∈ C, there exists α ∈ F such that f (A) = [[α]](A) for
every ordered structure A.

Theorem

ΣΣΣQSO(FO)QSO(FO)QSO(FO) captures #P over ordered structures.
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Example (1)

1 Counting triangles in a graph:

α1 = Σx .Σy .Σz .
(
E (x , y) ∧ E (y , z) ∧ E (z , x) ∧ x < y ∧ y < z

)
.
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Example (2)

2 Counting cliques in a graph:

α = ΣX .∀x∀y
(
X (x) ∧ X (y) ∧ x ̸= y) → E (x , y).
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Example (3)

3 Computing the permanent of a n × n matrix A with entries in {0, 1},

perm(A) =
∑
σ∈Sn

n∏
i=1

A(i , σ(i))

α3 = ΣS .permut(S) · Πx .
(
∃y(S(x , y) ∧M(x , y))

)
where permut(S) is a first-order sentence that is true iff S is a
permutation.

Exercise. Write formula permut(S).
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