Example (1)

@ DNEF: A DNF formula ¢ can be encoded by the finite ordered
structure A = (A= {vy,..., Vs, d1,....,dm}, D, P, N) over
T = (D', P2, N?).
¢ € DNF iff A = 3T3dVv (D(d)/\(P(d, v) = T(v))A

(N(d,v) = =T(v)))

Exercise. Check this for ¢ = (x1 Ax2 A =x3 A =xa) V (—x2 A —=xa A x3 A X5)
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Example (2)

@ 3CNEF': A boolean formula ¢ in conjunctive normal form with three
literals per clause can be encoded by the finite structure
A= {(v1, ..., vin), Co, C1, G3, G3} over 7 = (C§, C3, C3, C3).

¢ € 3CNF iff

A EITVXVxVx3
[(Co(Xl,X2,X3) = (T(a) A T(x) A T(X3)))
(C1 x1,x2,x3) = (2T (x1) A T(x2) A T(X3)))/\
(C2 x1,x2,x3) = (2 T(x1) AT (x2) A T(x3 ))/\
(C3 x1,%2,x3) = (0T (x1) A=T(x) A=T( X3)))]

Exercise. Check this for
d=((x1VxaVx3)A(=x2VxaVx3)A(=x3V-xaVxi)A(—x1VoxeV—oxg)
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Example (3)

© SAT: A boolean formula ¢ in conjunctive normal form can be
encoded by the finite structure A = ({v1, ..., Vn, C1, ..., Cm}, C, P, N)
over 7 = (CY, P2 N?2).

¢ € SAT iff A= 3TVc3v[C(c) = (P(c,v) A T(v))V
(N(c, v) A —|T(v))]
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Overview

@ Descriptive complexity

@ The class #P
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The class #FO

@ Let 7 be a vocabulary containing a relation symbol <. In other words
we are considering finite ordered structures.
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The class #FO

@ Let 7 be a vocabulary containing a relation symbol <. In other words
we are considering finite ordered structures.

o Let f: STRUCT(7) — N be a function defined on finite structures .4
over T.

o Let ? ={T1,...,T,} and Z= {z1,...,Zm} be sequences of relation
symbols and first-order variables, respectively.

A function f : STRUCT(7) — N belongs to #FO iff there is a first-order
formula ¢ with relation symbols from ? U 7 and free first-order variables
from Z such that

FA) = (T, 2) | A= o(T, 2)}.
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#P = #FO (Saluja, Sabrahmanyama & Thakur)

Theorem (Saluja, Sabrahmanyama & Thakur 1995)
The class #P coincides with the class #FO. J

Proof. #FQO C #P: The NPTM nondeterministically chooses a tuple
($,73) and verifies in polynomial time that A = &(T /S, 2/ 7).
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#P = #FO (Saluja, Sabrahmanyama & Thakur)

Theorem (Saluja, Sabrahmanyama & Thakur 1995)
The class #P coincides with the class #FO. J

Proof. #FQO C #P: The NPTM nondeterministically chooses a tuple
($,73) and verifies in polynomial time that A = &(T /S, 2/ 7).
#P C #FO:
e For any f € #P, the decision version L = {A | f(A) > 0} is in NP.
e By Fagin's theorem, A € L¢ iff A = El?qb(?)

@ There is a unique different value of T st. it satisfies A = H?gf)(?)

for every different accepting computation of the corresponding NPTM
M4 on input A.

@ So, the number of accepting paths of M4 is equal to

(T [ AE (T
]
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Classes #2;, #I1;

@ X, Mo formulas are unquantified FO formulas.
e ¥ is a formula of the form IX (X))

e My is a formula of the form VX (X))

e ¥ is a formula of the form IXVY (X, )
e My is a formula of the form VX3V ¢(X,Y)

where v is unquantified.

A function f : STRUCT(7) — N belongs to #3%; (resp. #[1;) iff there is a
Y, (resp. ;) formula ¢ s.t.

FA) = (T, 2) | A= o(T, 2)}.
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Example (1)

@ #DNEF: A DNF formula can be encoded by the finite ordered
structure A = (A= {vy,..., vy, d1,....,dm}, D, P, N) over
T = (D', P2, N?).
ADNF(A) = |{(T) | A= EIdVv(D(d)/\(P(d, v) = T(v))A
(N(d,v) = =T(v) )}

Hence #DNF € #%,.
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Example (2)

@ #3CNF': A boolean formula in conjunctive normal form with three
literals per clause can be encoded by the finite structure
A= {(Vl, ceey Vn), Co, Cl, C2, C3} over 7 = <Cg, C13, C23, C§’>

#3CNF(A) = [{(T) | A = (vx1)(Vx2)(Vx3)
[(Co(x1,x2,x3) = (T(x1) A T(x2) A T(x3)))A
(C]_(Xl,XQ,X?,) = (=T(a) A T(x) A T(X3)))/\
(CQ(Xl,XQ,Xg) = (=TCa) AT (x) A T(X3)))/\
(C3(X1,X2,X3) = (=T0a) AT (x) A —|T(X3)))] }H

Hence #3CNF € #I1;.
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Example (3)

© #SAT: A boolean formula in conjunctive normal form can be
encoded by the finite structure A = ({v1, ..., Vn, €1, ..., €m}, C, P, N)
over T = (CL, P2 N2).

#SAT(A) = [{(T) | A = (Ye)(3F)[C(c) = (P(c,v) A T(v))V
(N(c,v) A=T(v))]}]

Hence #SAT € #I5.
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#I[1, captures #P

Proposition

#P = #1,.

Corollary
#0M, = #FO.
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Hierarchy in #FO

Proposition 1

#1T,
<
#Zo=#1, #Z,C #11,= #P.

#Elc}

RS

Counting Complexity 28 /52



Hierarchy in #FO (2)
Proposition 2
#Xo = #MNo C #x1 C #I1 C #Xo C #> = #FO. J

Proof. We prove here that #% 1 C #I1;.
o Let f € #%; with F(A) = |[(T,2) | A 3R (X, Z, T)}]
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Proof. We prove here that #% 1 C #I1;.
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Hierarchy in #FO (2)
Proposition 2
#Xo = #lMo C #%1 C #MN1 C #X, C #M, = #FO. }
Proof. We prove here that #% 1 C #I1;.
o Let f € #%; with F(A) = |[(T,2) | A 3R (X, Z, T)}]

@ Instead of countlng the tuples ( ? 7 , we count the tuples
? (7 x*)) where x* is the lexicographically smallest X such that
AR, 2, T).

o Let 9(7,?) be the quantifier-free formula which expresses that X is
lexicographically smaller than X under <.
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Hierarchy in #FO (2)
Proposition 2
#2o = #Mo C #X1 C #IM1 C #Xo C #a = #FO. J

Proof. We prove here that #% 1 C #I1;.
o Let f € #%; with F(A) = |{(T,2) | A IR (X, Z, T)}I.

@ Instead of countlng the tuples ( ? 7 , we count the tuples
? (7 x*)) where x* is the lexicographically smallest X such that
A#M???)
=

o Let 9(7,;2) be the quantifier-free formula which expresses that x™ is
lexicographically smaller than X under <.

@ Then,

FA) = (T, (Z,5) | Ao, 2, T
(VR (WX, 7, T) = 6%, )}
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Proof cont.
The second part of the proof includes the following:

o #3DNF € #%; \ #X,

o #3CNF € #My \ #3;

o #DNF € #3, \ #M;

o #HAMILTONCYCLES € #[p \ #X>
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Proof cont.
The second part of the proof includes the following:

o #3DNF € #%; \ #X,

o #3CNF € #My \ #3;

o #DNF € #3, \ #M;

o #HAMILTONCYCLES € #[p \ #X>

The above classes are not closed under parsimonious reductions.
For example, #3CNF € #I1;, but #HAMILTONCYCLES ¢ #I1;.
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@ This hierarchy can help us determine classes of approximable counting
problems.
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@ We expect that problems in FPRAS have easy decision version.
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corresponding decision problem.
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@ This hierarchy can help us determine classes of approximable counting
problems.

@ We denote by FPRAS the class of #P functions that admit an fpras.

@ We expect that problems in FPRAS have easy decision version.

For any function f € #P, let Ly = {x | f(x) > 0} be the
corresponding decision problem.

The class of #P functions with decision version in P is
#PE = {f | f € #P and Lf € P}

defined by Pagourtzis (2001).
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We are interested in a subclass of #PE, namely TotP.

TotP is the Karp-closure of all self-reducible functions in #PE. )
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We are interested in a subclass of #PE, namely TotP.

TotP is the Karp-closure of all self-reducible functions in #PE.

N

Definition (Kiayias, Pagourtzis, Sharma & Zachos 2001)
A function f : {0,1}* — N belongs to TotP if there is an NPTM M s.t.

f(x) = #(all paths of M on input x) — 1.
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Self-reducibility & easy decision = membership in TotP
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Self-reducibility & easy decision = membership in TotP

(X1 A X3) \% (-IX2 A X3)
— R
x; = false xp=true -
— N e
(%2 A x3) x3 V(% Axs) " stop
| 7/ \
xy = false xy = false x, = true
[ 7 N
X3 x3 VX3 X3
| 1 |
X3 = true X3 = true X3 = true
| | |
stop stop stop
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Robust subclasses of TotP

In the context of descriptive complexity we would like to define classes
that are both
@ subclasses of TotP and

@ robust, i.e.

» either they have natural complete problems under parsimonious
reductions,
» or they are closed under addition, multiplication and subtraction by one.

Counting Complexity 35/52



The class #2

Proposition 1
Every problem in #%¥ is computable in polynomial time. J
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The class #2

Proposition 2
Every problem in #%; has an fpras. J
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The class #2

Proposition 2
Every problem in #%; has an fpras. J

© Every #%; function is reducible to a restricted version of #DNF
under a reducibility which preserves approximability.

@ #DNF has an fpras.
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Poly-time product reductions

The reductions used here are the following special case of parsimonious
reductions.

Poly-time product reduction

f <prg: Fh1, ha € FP,¥x f(x) = g(h1(x)) - ha(x) }
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Proof.

Let F(A) = [{(T.2) | AE TV $(7. 2. T}, where
@ 1 is in DNF,
° 7:(y1,...,yp), 7:(21,...,2,,,),
° ?:(Tl,...,T,) and T; has arity a;, 1 < i <r.
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Proof.

Let F(A) = [{(T.Z) | A= 3V (V. Z, T}, where
@ 1 is in DNF,
° 7:(y1,...,yp), 7:(21,...,2,"),
° ?:(Tl,...,T,) and T; has arity a;, 1 < i <r.

We make the following transformations:
Q@ We fix a Z/ € A™ and we write 3 (Y, ?,?} as a disjunct

|A[P
\/ (3,2, T}
j=1
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Proof.

Let F(A) = [{(T.Z) | A= 3V (V. Z, T}, where
@ 1 is in DNF,
° 7:(y1,...,yp), 7:(21,...,2,"),
° ?:(Tl,...,T,) and T; has arity a;, 1 < i <r.

We make the following transformations:
Q@ We fix a Z/ € A™ and we write 3 (Y, ?,?} as a disjunct

|A[P

\ 032 T
j=1

@ We replace every subformula that is satisfied by A by true and every
subformula that is not satisfied by A by false and we obtain

(2. 7).
» Note that formula ¢’(Z>,?) is a propositional formula in DNF with
variables of the form T,(W)) WEAI 1<i<r.
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Proof cont.
© We introduce ¢ new variables xi, ..., x, where ¢ = log(|A|™).

» We can encode binary strings by conjunctions of these variables (and
their negations), e.g. 0010 is encoded by —x; A —=xa A X3 A —x3.
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© We introduce ¢ new variables xi, ..., x, where ¢ = log(|A|™).

» We can encode binary strings by conjunctions of these variables (and
their negations), e.g. 0010 is encoded by —x; A —=xa A X3 A —x3.

» The binary representation s of any integer between 0 and 2¢ — 1 is
encoded by a conjunction x(s) of these variables (and their negations)
in which x; appears negated iff the i-th bit of s is 0.
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Proof cont.

© We introduce ¢ new variables xi, ..., x, where ¢ = log(|A|™).

» We can encode binary strings by conjunctions of these variables (and
their negations), e.g. 0010 is encoded by —x; A —=xa A X3 A —x3.

» The binary representation s of any integer between 0 and 2¢ — 1 is
encoded by a conjunction x(s) of these variables (and their negations)
in which x; appears negated iff the i-th bit of s is 0.

@ Instead of taking the formula
_)
V(@ TV V(s T)

we define the following formula

04 =[0/(Z, T)AXO)] V...V [ (Z s, T) Ax(JA™ = 1)].
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Proof cont.
Observe that

o 04 is in DNF with variables T;(W), W € A% 1<i<r, and xq, ..., x;.
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@ Variables T,-(W) can be replaced by propositional variables t;,
1<k <|A.
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Proof cont.
Observe that

o 04 is in DNF with variables T;(W), W € A% 1<i<r, and xq, ..., x;.

@ Variables T,-(W) can be replaced by propositional variables t;,
1<k <|A.

o Let c(A) be the variables of the form T;(W) that do not appear in
0 4. It holds that:

f(A) = 2°C . (the number of satisfying assignments of 6.4).
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The classes #[1; and #2,

We don't expect that either #[1; or #X5 is a subclass of FPRAS, since
#3CNEF € #I1;. J
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The class #RX,

A function f : {0,1} — N belongs to #RX; if there is a first-order formula
1 with relation symbols from ? U T and free first-order variables from Z
such that

F(A) = (T, 2) |AEIXVY ¢(X, 7. T, D)}

where 9 is quantifier-free and when it is expressed in CNF, each conjunct
has at most one occurrence of a relation symbol from T .
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The class #RX,

A function f : {0,1} — N belongs to #RX; if there is a first-order formula

1 with relation symbols from ? U T and free first-order variables from Z
such that

F(A) = (T, 2) |AEIXVY ¢(X, 7. T, D)}

where 9 is quantifier-free and when it is expressed in CNF, each conjunct
has at most one occurrence of a relation symbol from T .

Proposition 3
Every function in #R¥ 5 has an fpras.

v

Proof. #DNF is complete for #RX5 under product reductions. The proof
is similar to the previous one. O
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@ The decision version of every function in #%g, #X1 and #RX,
isin P.
@ #TRIANGLES € #2
o #NONCLIQUES, #NONVERTEXCOVERS € #X1,
@ #NONDOMINATINGSETS, #NONEDGEDOMINATINGSETS € #RX,.
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@ Assuming NP # RP, the following problem is undecidable: Given a
first-order formula ¢(Z, T) over 7U T, does the counting function
defined by (Z)(?,?) have an fpras?

o Assuming P # P#P the following problem is undecidable: Given a
first-order formula ¢(7, ) over 7 U T, is the counting function
defined by ¢(Z, T) polynomial-time computable?
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Quantitative Second-Order Logic

Given a relational vocabulary 7, the set of Quantitative Second-Order
formulas (or just QSO formulas) over 7 is given by the following grammar.

a=¢ | s | (a+a) | (a-a) | Zxa | Nxa | XX.a | NX.«a

where ¢ is an SO-formula, s € N, x is a first-order variable and X is a
second-order variable.

YQSO(FO) is the fragment of QSO where first- and second-order
products (Mx. and MX.) are not allowed and ¢ is restricted to be in FO.
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Semantics of QSO formulas

Let
o 2l be a structure.
@ v a first-order assignment for A

@ V a second-order assignment for 2l

Then the evaluation of a QSO formula « over (2, v, V) is defined as a
function [[«]] that on input (2, v, V) returns a number in N.
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)L ifA Eo¢
[l A, v V) = {0, otherwise
[[s]I(A v, V) =s
[loa + a2]](A, v, V) = [[aa]](A, v, V) + [[a2]](A, v, V)

[lon - a2]](A, v, V) = [[aa]l(A, v, V) - [[a2]l(A, v, V)
[(Ex.all(A, v, V) = > [[a]l(A, v[a/x], V)

acA

[(Mx.all(A, v, V) = ] lTadI(A, v[a/x], V)

acA

[(EXall(A v, V)= > [ldl(A v, V[B/X])

BgAarity(X)

[MX.all(Av. V)= ] [ell(A v, VIB/X])

BgAarity(X)
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Arenas, Mufioz and Riveros (2017)

Let F be a fragment of QSO and C a counting complexity class. Then F
captures C over ordered structures if the following conditions hold:

© for every a € F, there exists f € C such that [[a]](A) = f(A) for
every ordered structure A.

@ for every f € C, there exists a € F such that f(A) = [[a]](A) for
every ordered structure A.

Theorem
YQSO(FO) captures #P over ordered structures. J
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Example (1)

@ Counting triangles in a graph:

o1 =Ix.Xy. Yz (E(x,y) NE(y,z) NE(z,x) Ax <y Ay < z).
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Example (2)

@ Counting cliques in a graph:

a=TXVxVy (X(x) A X(y) Ax #y) = E(x,y).
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Example (3)
© Computing the permanent of a n x n matrix A with entries in {0, 1},

perm(A) = Z HA(i7U(i))

o€S, i=1

a3z = XS.permut(S) - MNx. (EIy(S(X,y) A M(x, y)))

where permut(S) is a first-order sentence that is true iff S is a
permutation.

Exercise. Write formula permut(S).
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