Example (1)

(1) DNF: A DNF formula ϕ can be encoded by the finite ordered structure $\mathcal{A}=\left\langle A=\left\{v_{1}, \ldots, v_{n}, d_{1}, \ldots, d_{m}\right\}, D, P, N\right\rangle$ over $\tau=\left\langle D^{1}, P^{2}, N^{2}\right\rangle$.

$$
\left.\left.\begin{array}{rl}
\phi \in \text { DNF iff } \mathcal{A} \models \exists T \exists d \forall v(D(d) \wedge(& P(d, v)
\end{array} \rightarrow T(v)\right) \wedge, ~(N(d, v) \rightarrow \neg T(v))\right)
$$

Exercise. Check this for $\phi=\left(x_{1} \wedge x_{2} \wedge \neg x_{3} \wedge \neg x_{4}\right) \vee\left(\neg x_{2} \wedge \neg x_{4} \wedge x_{3} \wedge x_{5}\right)$

Example (2)

(2) 3CNF: A boolean formula ϕ in conjunctive normal form with three literals per clause can be encoded by the finite structure $\mathcal{A}=\left\{\left(v_{1}, \ldots, v_{n}\right), C_{0}, C_{1}, C_{2}, C_{3}\right\}$ over $\tau=\left\langle C_{0}^{3}, C_{1}^{3}, C_{2}^{3}, C_{3}^{3}\right\rangle$.

$$
\begin{aligned}
& \phi \in 3 \text { CNF iff } \\
\mathcal{A}= & \exists T \forall x_{1} \forall x_{2} \forall x_{3} \\
& {\left[\left(C_{0}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(T\left(x_{1}\right) \wedge T\left(x_{2}\right) \wedge T\left(x_{3}\right)\right)\right) \wedge\right.} \\
& \left(C_{1}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(\neg T\left(x_{1}\right) \wedge T\left(x_{2}\right) \wedge T\left(x_{3}\right)\right)\right) \wedge \\
& \left(C_{2}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(\neg T\left(x_{1}\right) \wedge \neg T\left(x_{2}\right) \wedge T\left(x_{3}\right)\right)\right) \wedge \\
& \left.\left(C_{3}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(\neg T\left(x_{1}\right) \wedge \neg T\left(x_{2}\right) \wedge \neg T\left(x_{3}\right)\right)\right)\right]
\end{aligned}
$$

Exercise. Check this for
$\phi=\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{2} \vee x_{4} \vee x_{3}\right) \wedge\left(\neg x_{3} \vee \neg x_{4} \vee x_{1}\right) \wedge\left(\neg x_{1} \vee \neg x_{2} \vee \neg x_{4}\right)$

Example (3)

(3) SAT: A boolean formula ϕ in conjunctive normal form can be encoded by the finite structure $\mathcal{A}=\left\langle\left\{v_{1}, \ldots, v_{n}, c_{1}, \ldots, c_{m}\right\}, C, P, N\right\rangle$ over $\tau=\left\langle C^{1}, P^{2}, N^{2}\right\rangle$.

$$
\begin{aligned}
\phi \in \text { SAT iff } \mathcal{A} \models \exists T \forall c \exists v[C(c) \rightarrow & (P(c, v) \wedge T(v)) \vee \\
& (N(c, v) \wedge \neg T(v))]
\end{aligned}
$$

Overview

(1) Descriptive complexity

- The class NP
- The class \#P

The class \#FO

- Let τ be a vocabulary containing a relation symbol \leq. In other words we are considering finite ordered structures.

The class \#FO

- Let τ be a vocabulary containing a relation symbol \leq. In other words we are considering finite ordered structures.
- Let $f: \operatorname{STRUCT}(\tau) \rightarrow \mathbb{N}$ be a function defined on finite structures \mathcal{A} over τ.

The class \#FO

- Let τ be a vocabulary containing a relation symbol \leq. In other words we are considering finite ordered structures.
- Let $f: \operatorname{STRUCT}(\tau) \rightarrow \mathbb{N}$ be a function defined on finite structures \mathcal{A} over τ.
- Let $\vec{T}=\left\{T_{1}, \ldots, T_{r}\right\}$ and $\vec{z}=\left\{z_{1}, \ldots, z_{m}\right\}$ be sequences of relation symbols and first-order variables, respectively.

The class \#FO

- Let τ be a vocabulary containing a relation symbol \leq. In other words we are considering finite ordered structures.
- Let $f: \operatorname{STRUCT}(\tau) \rightarrow \mathbb{N}$ be a function defined on finite structures \mathcal{A} over τ.
- Let $\vec{T}=\left\{T_{1}, \ldots, T_{r}\right\}$ and $\vec{z}=\left\{z_{1}, \ldots, z_{m}\right\}$ be sequences of relation symbols and first-order variables, respectively.

A function $f: \operatorname{STRUCT}(\tau) \rightarrow \mathbb{N}$ belongs to \#FO iff there is a first-order formula ϕ with relation symbols from $\vec{T} \cup \tau$ and free first-order variables from \vec{z} such that

$$
f(\mathcal{A})=|\{\langle\vec{T}, \vec{z}\rangle \mid \mathcal{A} \models \phi(\vec{T}, \vec{z})\}| .
$$

$\# \mathrm{P}=\# \mathrm{FO}$ (Saluja, Sabrahmanyama \& Thakur)

Theorem (Saluja, Sabrahmanyama \& Thakur 1995)
The class \#P coincides with the class \#FO.
Proof. \#FO \subseteq \#P: The NPTM nondeterministically chooses a tuple $\langle\vec{S}, \vec{a}\rangle$ and verifies in polynomial time that $\mathcal{A} \models \phi(\vec{T} / \vec{S}, \vec{z} / \vec{a})$.

\#P = \#FO (Saluja, Sabrahmanyama \& Thakur)

Theorem (Saluja, Sabrahmanyama \& Thakur 1995)

The class \#P coincides with the class \#FO.
Proof. \#FO \subseteq \#P: The NPTM nondeterministically chooses a tuple $\langle\vec{S}, \vec{a}\rangle$ and verifies in polynomial time that $\mathcal{A} \models \phi(\vec{T} / \vec{S}, \vec{z} / \vec{a})$. $\# \mathrm{P} \subseteq$ \#FO:

- For any $f \in \# P$, the decision version $L_{f}=\{\mathcal{A} \mid f(\mathcal{A})>0\}$ is in NP.

\#P = \#FO (Saluja, Sabrahmanyama \& Thakur)

Theorem (Saluja, Sabrahmanyama \& Thakur 1995)

The class \#P coincides with the class \#FO.
Proof. \#FO \subseteq \#P: The NPTM nondeterministically chooses a tuple $\langle\vec{S}, \vec{a}\rangle$ and verifies in polynomial time that $\mathcal{A} \models \phi(\vec{T} / \vec{S}, \vec{z} / \vec{a})$. $\# \mathrm{P} \subseteq$ \#FO:

- For any $f \in \# P$, the decision version $L_{f}=\{\mathcal{A} \mid f(\mathcal{A})>0\}$ is in NP.
- By Fagin's theorem, $\mathcal{A} \in L_{f}$ iff $\mathcal{A}=\exists \vec{T} \phi(\vec{T})$.

$\# P=\# F O$ (Saluja, Sabrahmanyama \& Thakur)

Theorem (Saluja, Sabrahmanyama \& Thakur 1995)

The class \#P coincides with the class \#FO.
Proof. \#FO \subseteq \#P: The NPTM nondeterministically chooses a tuple $\langle\vec{S}, \vec{a}\rangle$ and verifies in polynomial time that $\mathcal{A} \models \phi(\vec{T} / \vec{S}, \vec{z} / \vec{a})$. \# $\mathrm{P} \subseteq$ \#FO:

- For any $f \in \# P$, the decision version $L_{f}=\{\mathcal{A} \mid f(\mathcal{A})>0\}$ is in NP.
- By Fagin's theorem, $\mathcal{A} \in L_{f}$ iff $\mathcal{A}=\exists \vec{T} \phi(\vec{T})$.
- There is a unique different value of \vec{T} s.t. it satisfies $\mathcal{A} \models \exists \vec{T} \phi(\vec{T})$ for every different accepting computation of the corresponding NPTM $M_{\mathcal{A}}$ on input \mathcal{A}.

\#P = \#FO (Saluja, Sabrahmanyama \& Thakur)

Theorem (Saluja, Sabrahmanyama \& Thakur 1995)

The class \#P coincides with the class \#FO.
Proof. \#FO \subseteq \#P: The NPTM nondeterministically chooses a tuple $\langle\vec{S}, \vec{a}\rangle$ and verifies in polynomial time that $\mathcal{A} \models \phi(\vec{T} / \vec{S}, \vec{z} / \vec{a})$. $\# P \subseteq \# F O:$

- For any $f \in \# P$, the decision version $L_{f}=\{\mathcal{A} \mid f(\mathcal{A})>0\}$ is in NP.
- By Fagin's theorem, $\mathcal{A} \in L_{f}$ iff $\mathcal{A}=\exists \vec{T} \phi(\vec{T})$.
- There is a unique different value of \vec{T} s.t. it satisfies $\mathcal{A} \vDash \exists \vec{T} \phi(\vec{T})$ for every different accepting computation of the corresponding NPTM $M_{\mathcal{A}}$ on input \mathcal{A}.
- So, the number of accepting paths of $M_{\mathcal{A}}$ is equal to $|\{\langle\vec{T}\rangle \mid \mathcal{A}=\phi(\vec{T})\}|$.

Classes $\# \Sigma_{i}, \# \Pi_{i}$

- $\boldsymbol{\Sigma}_{\mathbf{0}}, \boldsymbol{\Pi}_{\mathbf{0}}$ formulas are unquantified $\mathbf{F O}$ formulas.
- Σ_{1} is a formula of the form $\exists \vec{x} \psi(\vec{x})$
- Π_{1} is a formula of the form $\forall \vec{x} \psi(\vec{x})$
- $\boldsymbol{\Sigma}_{\mathbf{2}}$ is a formula of the form $\exists \vec{x} \forall \vec{y} \psi(\vec{x}, \vec{y})$
- Π_{2} is a formula of the form $\forall \vec{x} \exists \vec{y} \psi(\vec{x}, \vec{y})$ where ψ is unquantified.

A function $f: \operatorname{STRUCT}(\tau) \rightarrow \mathbb{N}$ belongs to $\# \Sigma_{i}\left(\right.$ resp. $\left.\# \Pi_{i}\right)$ iff there is a $\boldsymbol{\Sigma}_{\boldsymbol{i}}\left(\right.$ resp. $\left.\boldsymbol{\Pi}_{\boldsymbol{i}}\right)$ formula ϕ s.t.

$$
f(\mathcal{A})=|\{\langle\vec{T}, \vec{z}\rangle \mid \mathcal{A} \models \phi(\vec{T}, \vec{z})\}| .
$$

Example (1)

(1) \#DNF: A DNF formula can be encoded by the finite ordered structure $\mathcal{A}=\left\langle A=\left\{v_{1}, \ldots, v_{n}, d_{1}, \ldots, d_{m}\right\}, D, P, N\right\rangle$ over $\tau=\left\langle D^{1}, P^{2}, N^{2}\right\rangle$.

$$
\left.\left.\left.\left.\begin{array}{rl}
\# \operatorname{DNF}(\mathcal{A})=\mid\{\langle T\rangle \mid \mathcal{A} \models \exists d \forall v(D(d) \wedge(& P(d, v)
\end{array}\right) T(v)\right) \wedge, ~(N(d, v) \rightarrow \neg T(v))\right)\right\} \mid
$$

Hence $\#$ DNF $\in \# \Sigma_{2}$.

Example (2)

(2) \#3CNF: A boolean formula in conjunctive normal form with three literals per clause can be encoded by the finite structure $\mathcal{A}=\left\{\left(v_{1}, \ldots, v_{n}\right), C_{0}, C_{1}, C_{2}, C_{3}\right\}$ over $\tau=\left\langle C_{0}^{3}, C_{1}^{3}, C_{2}^{3}, C_{3}^{3}\right\rangle$.

$$
\begin{aligned}
& \# 3 \operatorname{CNF}(\mathcal{A})=\mid\left\{\langle T\rangle \mid \mathcal{A} \models\left(\forall x_{1}\right)\left(\forall x_{2}\right)\left(\forall x_{3}\right)\right. \\
& {\left[\left(C_{0}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(T\left(x_{1}\right) \wedge T\left(x_{2}\right) \wedge T\left(x_{3}\right)\right)\right) \wedge\right.} \\
& \left(C_{1}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(\neg T\left(x_{1}\right) \wedge T\left(x_{2}\right) \wedge T\left(x_{3}\right)\right)\right) \wedge \\
& \left(C_{2}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(\neg T\left(x_{1}\right) \wedge \neg T\left(x_{2}\right) \wedge T\left(x_{3}\right)\right)\right) \wedge \\
& \left.\left.\left(C_{3}\left(x_{1}, x_{2}, x_{3}\right) \rightarrow\left(\neg T\left(x_{1}\right) \wedge \neg T\left(x_{2}\right) \wedge \neg T\left(x_{3}\right)\right)\right)\right]\right\} \mid
\end{aligned}
$$

Hence $\# 3 \mathrm{CNF} \in \# \Pi_{1}$.

Example (3)

(3) \#SAT: A boolean formula in conjunctive normal form can be encoded by the finite structure $\mathcal{A}=\left\langle\left\{v_{1}, \ldots, v_{n}, c_{1}, \ldots, c_{m}\right\}, C, P, N\right\rangle$ over $\tau=\left\langle C^{1}, P^{2}, N^{2}\right\rangle$.

$$
\begin{aligned}
\# \operatorname{SAT}(\mathcal{A})=\mid\{\langle T\rangle|\mathcal{A}|=(\forall c)(\exists v)[C(c) \rightarrow & (P(c, v) \wedge T(v)) \vee \\
& (N(c, v) \wedge \neg T(v))]\} \mid
\end{aligned}
$$

Hence $\# S A T \in \# \Pi_{2}$.

$\# \Pi_{2}$ captures \#P

Proposition
 $\# \mathrm{P}=\# \Pi_{2}$.

Corollary $\# \Pi_{2}=\#$ FO.

Hierarchy in \#FO

Proposition 1

$$
\# \Sigma_{0}=\# \Pi_{0} \stackrel{C}{/}_{\# \Pi_{1}}^{\leqslant_{2}} \mathbb{V}_{2} \subseteq \# \Pi_{2}=\# \mathrm{P}
$$

Hierarchy in \#FO (2)

Proposition 2

$$
\# \Sigma_{0}=\# \Pi_{0} \subset \# \Sigma_{1} \subset \# \Pi_{1} \subset \# \Sigma_{2} \subset \# \Pi_{2}=\# F O .
$$

Proof. We prove here that $\# \Sigma_{1} \subseteq \# \Pi_{1}$.

- Let $f \in \# \Sigma_{1}$ with $f(\mathcal{A})=|\{\langle\vec{T}, \vec{z}\rangle \mid \mathcal{A} \models \exists \vec{x} \psi(\vec{x}, \vec{z}, \vec{T})\}|$.

Hierarchy in \#FO (2)

Proposition 2

$$
\# \Sigma_{0}=\# \Pi_{0} \subset \# \Sigma_{1} \subset \# \Pi_{1} \subset \# \Sigma_{2} \subset \# \Pi_{2}=\# F O .
$$

Proof. We prove here that $\# \Sigma_{1} \subseteq \# \Pi_{1}$.

- Let $f \in \# \Sigma_{1}$ with $f(\mathcal{A})=|\{\langle\vec{T}, \vec{z}\rangle \mid \mathcal{A} \models \exists \vec{x} \psi(\vec{x}, \vec{z}, \vec{T})\}|$.
- Instead of counting the tuples $\langle\vec{T}, \vec{Z}\rangle$, we count the tuples $\left\langle\vec{T},\left(\vec{z}, \overrightarrow{x^{*}}\right)\right\rangle$ where $\overrightarrow{x^{*}}$ is the lexicographically smallest \vec{x} such that $\mathcal{A} \models \psi(\vec{x}, \vec{z}, \vec{T})$.

Hierarchy in \#FO (2)

Proposition 2

$$
\# \Sigma_{0}=\# \Pi_{0} \subset \# \Sigma_{1} \subset \# \Pi_{1} \subset \# \Sigma_{2} \subset \# \Pi_{2}=\# F O .
$$

Proof. We prove here that $\# \Sigma_{1} \subseteq \# \Pi_{1}$.

- Let $f \in \# \Sigma_{1}$ with $f(\mathcal{A})=|\{\langle\vec{T}, \vec{z}\rangle \mid \mathcal{A} \models \exists \vec{x} \psi(\vec{x}, \vec{z}, \vec{T})\}|$.
- Instead of counting the tuples $\langle\vec{T}, \vec{Z}\rangle$, we count the tuples $\left\langle\vec{T},\left(\vec{z}, \overrightarrow{x^{*}}\right)\right\rangle$ where $\overrightarrow{x^{*}}$ is the lexicographically smallest \vec{x} such that $\mathcal{A} \models \psi(\vec{x}, \vec{z}, \vec{T})$.
- Let $\theta\left(\vec{x}, \overrightarrow{x^{*}}\right)$ be the quantifier-free formula which expresses that $\overrightarrow{x^{*}}$ is lexicographically smaller than \vec{x} under \leq.

Hierarchy in \#FO (2)

Proposition 2

$$
\# \Sigma_{0}=\# \Pi_{0} \subset \# \Sigma_{1} \subset \# \Pi_{1} \subset \# \Sigma_{2} \subset \# \Pi_{2}=\# F O .
$$

Proof. We prove here that $\# \Sigma_{1} \subseteq \# \Pi_{1}$.

- Let $f \in \# \Sigma_{1}$ with $f(\mathcal{A})=|\{\langle\vec{T}, \vec{z}\rangle \mid \mathcal{A} \models \exists \vec{x} \psi(\vec{x}, \vec{z}, \vec{T})\}|$.
- Instead of counting the tuples $\langle\vec{T}, \vec{Z}\rangle$, we count the tuples $\left\langle\vec{T},\left(\vec{z}, \overrightarrow{x^{*}}\right)\right\rangle$ where $\overrightarrow{x^{*}}$ is the lexicographically smallest \vec{x} such that $\mathcal{A} \models \psi(\vec{x}, \vec{z}, \vec{T})$.
- Let $\theta\left(\vec{x}, \overrightarrow{x^{*}}\right)$ be the quantifier-free formula which expresses that $\overrightarrow{x^{*}}$ is lexicographically smaller than \vec{x} under \leq.
- Then,

$$
\begin{aligned}
f(\mathcal{A})=\mid\left\{\left\langle\vec{T},\left(\vec{z}, \overrightarrow{x^{*}}\right)\right\rangle \mid \mathcal{A} \models\right. & =\psi\left(\overrightarrow{x^{*}}, \vec{z}, \vec{T}\right) \wedge \\
& \left.(\forall \vec{x})\left(\psi(\vec{x}, \vec{z}, \vec{T}) \rightarrow \theta\left(\vec{x}, \overrightarrow{x^{*}}\right)\right)\right\} \mid
\end{aligned}
$$

Proof cont.

The second part of the proof includes the following:

- $\# 3 D N F \in \# \Sigma_{1} \backslash \# \Sigma_{0}$
- $\# 3 \mathrm{CNF} \in \# \Pi_{1} \backslash \# \Sigma_{1}$
- \#DNF $\in \# \Sigma_{2} \backslash \# \Pi_{1}$
- $\#$ HamiltonCycles $\in \# \Pi_{2} \backslash \# \Sigma_{2}$

Proof cont.
The second part of the proof includes the following:

- $\# 3 \mathrm{DNF} \in \# \Sigma_{1} \backslash \# \Sigma_{0}$
- $\# 3 \mathrm{CNF} \in \# \Pi_{1} \backslash \# \Sigma_{1}$
- $\# \mathrm{DNF} \in \# \Sigma_{2} \backslash \# \Pi_{1}$
- $\#$ HamiltonCycles $\in \# \Pi_{2} \backslash \# \Sigma_{2}$

The above classes are not closed under parsimonious reductions. For example, $\# 3 \mathrm{CNF} \in \# \Pi_{1}$, but $\#$ HamiltonCycles $\notin \# \Pi_{1}$.

- This hierarchy can help us determine classes of approximable counting problems.
- This hierarchy can help us determine classes of approximable counting problems.
- We denote by FPRAS the class of \#P functions that admit an fpras.
- This hierarchy can help us determine classes of approximable counting problems.
- We denote by FPRAS the class of \#P functions that admit an fpras.
- We expect that problems in FPRAS have easy decision version.
- This hierarchy can help us determine classes of approximable counting problems.
- We denote by FPRAS the class of \#P functions that admit an fpras.
- We expect that problems in FPRAS have easy decision version.
- For any function $f \in \# \mathrm{P}$, let $L_{f}=\{x \mid f(x)>0\}$ be the corresponding decision problem.
- This hierarchy can help us determine classes of approximable counting problems.
- We denote by FPRAS the class of \#P functions that admit an fpras.
- We expect that problems in FPRAS have easy decision version.
- For any function $f \in \# \mathrm{P}$, let $L_{f}=\{x \mid f(x)>0\}$ be the corresponding decision problem.
- The class of \#P functions with decision version in P is

$$
\# \mathrm{PE}=\left\{f \mid f \in \# \mathrm{P} \text { and } L_{f} \in \mathrm{P}\right\}
$$

defined by Pagourtzis (2001).

We are interested in a subclass of \#PE, namely TotP.
TotP is the Karp-closure of all self-reducible functions in \#PE.

We are interested in a subclass of \#PE, namely TotP.
TotP is the Karp-closure of all self-reducible functions in \#PE.

Definition (Kiayias, Pagourtzis, Sharma \& Zachos 2001)
A function $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ belongs to TotP if there is an NPTM M s.t.

$$
f(x)=\#(\text { all paths of } M \text { on input } x)-1
$$

Self-reducibility \& easy decision \Rightarrow membership in TotP

Self-reducibility \& easy decision \Rightarrow membership in TotP

Robust subclasses of TotP

In the context of descriptive complexity we would like to define classes that are both
(1) subclasses of TotP and
(2) robust, i.e.

- either they have natural complete problems under parsimonious reductions,
- or they are closed under addition, multiplication and subtraction by one.

The class $\# \Sigma_{0}$

Proposition 1
Every problem in $\# \Sigma_{0}$ is computable in polynomial time.

The class $\# \Sigma_{1}$

Proposition 2

Every problem in $\# \Sigma_{1}$ has an fpras.

Proposition 2

Every problem in $\# \Sigma_{1}$ has an fpras.
(1) Every $\# \Sigma_{1}$ function is reducible to a restricted version of $\# \mathrm{DNF}$ under a reducibility which preserves approximability.
(2) \#DNF has an fpras.

Poly-time product reductions

The reductions used here are the following special case of parsimonious reductions.

Poly-time product reduction

$$
f \leqslant p r g: \exists h_{1}, h_{2} \in \mathrm{FP}, \forall x f(x)=g\left(h_{1}(x)\right) \cdot h_{2}(x)
$$

Proof.
Let $f(\mathcal{A})=\mid\{\langle\vec{T}, \vec{z}\rangle|\mathcal{A} \models \exists \vec{y} \psi(\vec{y}, \vec{z}, \vec{T}\}|$, where

- ψ is in DNF,
- $\vec{y}=\left(y_{1}, \ldots, y_{p}\right), \vec{z}=\left(z_{1}, \ldots, z_{m}\right)$,
- $\vec{T}=\left(T_{1}, \ldots, T_{r}\right)$ and T_{i} has arity $a_{i}, 1 \leq i \leq r$.

Proof.
Let $f(\mathcal{A})=\mid\{\langle\vec{T}, \vec{z}\rangle|\mathcal{A} \models \exists \vec{y} \psi(\vec{y}, \vec{z}, \vec{T}\}|$, where

- ψ is in DNF,
- $\vec{y}=\left(y_{1}, \ldots, y_{p}\right), \vec{z}=\left(z_{1}, \ldots, z_{m}\right)$,
- $\vec{T}=\left(T_{1}, \ldots, T_{r}\right)$ and T_{i} has arity $a_{i}, 1 \leq i \leq r$.

We make the following transformations:
(1) We fix a $\overrightarrow{z_{i}} \in A^{m}$ and we write $\exists \vec{y} \psi\left(\vec{y}, \overrightarrow{z_{i}}, \vec{T}\right\}$ as a disjunct

$$
\bigvee_{j=1}^{|A|^{p}} \psi\left(\overrightarrow{y_{j}}, \overrightarrow{z_{i}}, \vec{T}\right\}
$$

Proof.

Let $f(\mathcal{A})=\mid\{\langle\vec{T}, \vec{z}\rangle|\mathcal{A} \models \exists \vec{y} \psi(\vec{y}, \vec{z}, \vec{T}\}|$, where

- ψ is in DNF,
- $\vec{y}=\left(y_{1}, \ldots, y_{p}\right), \vec{z}=\left(z_{1}, \ldots, z_{m}\right)$,
- $\vec{T}=\left(T_{1}, \ldots, T_{r}\right)$ and T_{i} has arity $a_{i}, 1 \leq i \leq r$.

We make the following transformations:
(1) We fix a $\overrightarrow{z_{i}} \in A^{m}$ and we write $\exists \vec{y} \psi\left(\vec{y}, \overrightarrow{z_{i}}, \vec{T}\right\}$ as a disjunct

$$
\bigvee_{j=1}^{|A|^{p}} \psi\left(\overrightarrow{y_{j}}, \overrightarrow{z_{i}}, \vec{T}\right\}
$$

(2) We replace every subformula that is satisfied by \mathcal{A} by true and every subformula that is not satisfied by \mathcal{A} by false and we obtain $\psi^{\prime}\left(\overrightarrow{z_{i}}, \vec{T}\right)$.

- Note that formula $\psi^{\prime}\left(\overrightarrow{z_{i}}, \vec{T}\right)$ is a propositional formula in DNF with variables of the form $T_{i}(\vec{w}), \vec{w} \in A^{a_{i}}, 1 \leq i \leq r$.

Proof cont.
(3) We introduce ℓ new variables x_{1}, \ldots, x_{ℓ}, where $\ell=\log \left(|A|^{m}\right)$.

- We can encode binary strings by conjunctions of these variables (and their negations), e.g. 0010 is encoded by $\neg x_{1} \wedge \neg x_{2} \wedge x_{3} \wedge \neg x_{4}$.

Proof cont.
(3) We introduce ℓ new variables x_{1}, \ldots, x_{ℓ}, where $\ell=\log \left(|A|^{m}\right)$.

- We can encode binary strings by conjunctions of these variables (and their negations), e.g. 0010 is encoded by $\neg x_{1} \wedge \neg x_{2} \wedge x_{3} \wedge \neg x_{4}$.
- The binary representation s of any integer between 0 and $2^{\ell}-1$ is encoded by a conjunction $x(s)$ of these variables (and their negations) in which x_{i} appears negated iff the i-th bit of s is 0 .

Proof cont.

(3) We introduce ℓ new variables x_{1}, \ldots, x_{ℓ}, where $\ell=\log \left(|A|^{m}\right)$.

- We can encode binary strings by conjunctions of these variables (and their negations), e.g. 0010 is encoded by $\neg x_{1} \wedge \neg x_{2} \wedge x_{3} \wedge \neg x_{4}$.
- The binary representation s of any integer between 0 and $2^{\ell}-1$ is encoded by a conjunction $x(s)$ of these variables (and their negations) in which x_{i} appears negated iff the i-th bit of s is 0 .
(9) Instead of taking the formula

$$
\psi^{\prime}\left(\overrightarrow{z_{0}}, \vec{T}\right) \vee \ldots \vee \psi^{\prime}\left(\vec{z}_{|A|^{m}-1}, \vec{T}\right)
$$

we define the following formula

$$
\theta_{\mathcal{A}}=\left[\psi^{\prime}\left(\overrightarrow{z_{0}}, \vec{T}\right) \wedge x(0)\right] \vee \ldots \vee\left[\psi^{\prime}\left(\vec{z}_{|A|^{m}-1}, \vec{T}\right) \wedge x\left(|A|^{m}-1\right)\right]
$$

Proof cont.

Observe that

- $\theta_{\mathcal{A}}$ is in DNF with variables $T_{i}(\vec{w}), \vec{w} \in A^{a_{i}}, 1 \leq i \leq r$, and x_{1}, \ldots, x_{ℓ}.

Proof cont.

Observe that

- $\theta_{\mathcal{A}}$ is in DNF with variables $T_{i}(\vec{w}), \vec{w} \in A^{a_{i}}, 1 \leq i \leq r$, and x_{1}, \ldots, x_{ℓ}.
- Variables $T_{i}(\vec{w})$ can be replaced by propositional variables $t_{i k}$,

$$
1 \leq k \leq|A|^{a_{i}}
$$

Proof cont.
Observe that

- $\theta_{\mathcal{A}}$ is in DNF with variables $T_{i}(\vec{w}), \vec{w} \in A^{a_{i}}, 1 \leq i \leq r$, and x_{1}, \ldots, x_{ℓ}.
- Variables $T_{i}(\vec{w})$ can be replaced by propositional variables $t_{i k}$, $1 \leq k \leq|A|^{a_{i}}$.
- Let $c(\mathcal{A})$ be the variables of the form $T_{i}(\vec{w})$ that do not appear in $\theta_{\mathcal{A}}$. It holds that:
$f(\mathcal{A})=2^{c(\mathcal{A})} \cdot\left(\right.$ the number of satisfying assignments of $\left.\theta_{\mathcal{A}}\right)$.

The classes $\# \Pi_{1}$ and $\# \Sigma_{2}$

We don't expect that either $\# \Pi_{1}$ or $\# \Sigma_{2}$ is a subclass of FPRAS, since $\# 3 \mathrm{CNF} \in \# \Pi_{1}$.

The class $\# R \Sigma_{2}$

A function $f:\{0,1\} \rightarrow \mathbb{N}$ belongs to $\# R \Sigma_{2}$ if there is a first-order formula ψ with relation symbols from $\vec{T} \cup \tau$ and free first-order variables from \vec{Z} such that

$$
f(\mathcal{A})=|\{\langle\vec{T}, \vec{z}\rangle \mid \mathcal{A}=\exists \vec{x} \forall \vec{y} \phi(\vec{x}, \vec{y}, \vec{T}, \vec{z})\}|
$$

where ψ is quantifier-free and when it is expressed in CNF, each conjunct has at most one occurrence of a relation symbol from \vec{T}.

The class $\# R \Sigma_{2}$

A function $f:\{0,1\} \rightarrow \mathbb{N}$ belongs to $\# R \Sigma_{2}$ if there is a first-order formula ψ with relation symbols from $\vec{T} \cup \tau$ and free first-order variables from \vec{Z} such that

$$
f(\mathcal{A})=|\{\langle\vec{T}, \vec{z}\rangle \mid \mathcal{A}=\exists \vec{x} \forall \vec{y} \phi(\vec{x}, \vec{y}, \vec{T}, \vec{z})\}|
$$

where ψ is quantifier-free and when it is expressed in CNF, each conjunct has at most one occurrence of a relation symbol from \vec{T}.

Proposition 3

Every function in $\# R \Sigma_{2}$ has an fpras.
Proof. \#DNF is complete for $\# \mathrm{R} \Sigma_{2}$ under product reductions. The proof is similar to the previous one.

- The decision version of every function in $\# \Sigma_{0}, \# \Sigma_{1}$ and $\# R \Sigma_{2}$ is in P .
- \#Triangles $\in \# \Sigma_{0}$
- \#NonCliques, \#NonVertexCovers $\in \# \Sigma_{1}$,
- \#NonDominatingSets, \#NonEdgeDominatingSets $\in \# R \Sigma_{2}$.
- Assuming NP $\neq \mathrm{RP}$, the following problem is undecidable: Given a first-order formula $\phi(\vec{Z}, \vec{T})$ over $\tau \cup \vec{T}$, does the counting function defined by $\phi(\vec{z}, \vec{T})$ have an fpras?
- Assuming $\mathrm{P} \neq \mathrm{P}^{\# \mathrm{P}}$, the following problem is undecidable: Given a first-order formula $\phi(\vec{Z}, \vec{T})$ over $\tau \cup \vec{T}$, is the counting function defined by $\phi(\vec{Z}, \vec{T})$ polynomial-time computable?

Quantitative Second-Order Logic

Given a relational vocabulary τ, the set of Quantitative Second-Order formulas (or just QSO formulas) over τ is given by the following grammar.

$$
\alpha:=\phi|s|(\alpha+\alpha)|(\alpha \cdot \alpha)| \Sigma x . \alpha|\Pi x . \alpha| \Sigma X . \alpha \mid \Pi X . \alpha
$$

where ϕ is an SO-formula, $s \in \mathbb{N}, x$ is a first-order variable and X is a second-order variable.
£QSO(FO) is the fragment of QSO where first- and second-order products (Πx. and ΠX.) are not allowed and ϕ is restricted to be in FO.

Semantics of QSO formulas

Let

- \mathfrak{A} be a structure.
- v a first-order assignment for \mathfrak{A}
- V a second-order assignment for \mathfrak{A}

Then the evaluation of a QSO formula α over (\mathfrak{A}, v, V) is defined as a function $[[\alpha]]$ that on input (\mathfrak{A}, v, V) returns a number in \mathbb{N}.

$$
\begin{gathered}
{[[\phi]](\mathcal{A}, v, V)=\left\{\begin{array}{l}
1, \text { if } \mathcal{A}=\phi \\
0, \text { otherwise }
\end{array}\right.} \\
{[[s]](\mathcal{A}, v, V)=s} \\
{\left[\left[\alpha_{1}+\alpha_{2}\right]\right](\mathcal{A}, v, V)=\left[\left[\alpha_{1}\right]\right](\mathcal{A}, v, V)+\left[\left[\alpha_{2}\right]\right](\mathcal{A}, v, V)} \\
{\left[\left[\alpha_{1} \cdot \alpha_{2}\right]\right](\mathcal{A}, v, V)=\left[\left[\alpha_{1}\right]\right](\mathcal{A}, v, V) \cdot\left[\left[\alpha_{2}\right]\right](\mathcal{A}, v, V)} \\
{[[\Sigma x . \alpha]](\mathcal{A}, v, V)=\sum_{a \in \mathcal{A}}[[\alpha]](\mathcal{A}, v[a / x], V)} \\
{[[\Pi x . \alpha]](\mathcal{A}, v, V)=\prod_{a \in \mathcal{A}}[[\alpha]](\mathcal{A}, v[a / x], V)} \\
{[[\Sigma X . \alpha]](\mathcal{A}, v, V)=\sum_{B \subseteq \mathcal{A}^{\text {arity }}(\mathcal{X})}[[\alpha]](\mathcal{A}, v, V[B / X])} \\
{[[ח X . \alpha]](\mathcal{A}, v, V)=\prod_{B \subseteq A^{\text {aritit }(X)}}[[\alpha]](\mathcal{A}, v, V[B / X])}
\end{gathered}
$$

Arenas, Muñoz and Riveros (2017)

Let \mathbf{F} be a fragment of QSO and C a counting complexity class. Then \mathbf{F} captures C over ordered structures if the following conditions hold:
(1) for every $\alpha \in \mathbf{F}$, there exists $f \in \mathrm{C}$ such that $[[\alpha]](\mathcal{A})=f(\mathcal{A})$ for every ordered structure \mathcal{A}.
(2) for every $f \in \mathrm{C}$, there exists $\alpha \in \mathbf{F}$ such that $f(\mathcal{A})=[[\alpha]](\mathcal{A})$ for every ordered structure \mathcal{A}.

Theorem

$\boldsymbol{\Sigma}$ QSO(FO) captures \#P over ordered structures.

Example (1)

(1) Counting triangles in a graph:

$$
\alpha_{1}=\Sigma x \cdot \Sigma y \cdot \sum z \cdot(E(x, y) \wedge E(y, z) \wedge E(z, x) \wedge x<y \wedge y<z) .
$$

Example (2)

(2) Counting cliques in a graph:

$$
\alpha=\Sigma X . \forall x \forall y(X(x) \wedge X(y) \wedge x \neq y) \rightarrow E(x, y)
$$

Example (3)

(3) Computing the permanent of a $n \times n$ matrix A with entries in $\{0,1\}$,

$$
\operatorname{perm}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} A(i, \sigma(i))
$$

$$
\alpha_{3}=\Sigma S . \operatorname{permut}(S) \cdot \Pi x \cdot(\exists y(S(x, y) \wedge M(x, y)))
$$

where permut (S) is a first-order sentence that is true iff S is a permutation.

Exercise. Write formula permut(S).

