

Sampling and approximation algorithms for Gibbs point processes

Tobias Friedrich,Andreas Göbel,Max Katzmann, Martin Krejca, Marcus Pappik

Hard-sphere Model

distribution of particles with hard constraints in (Euclidean) space

Hard-sphere Model

distribution of particles with hard constraints in (Euclidean) space

$\mathrm{V} \subset \mathbb{R}^{d}$ bounded, measurable

Hard-sphere Model

distribution of particles with hard constraints in (Euclidean) space

$\mathrm{V} \subset \mathbb{R}^{d}$ bounded, measurable
particle centers:
distributed according to Poisson point process of intensity $\lambda \in \mathbb{R}_{>0}$ (fugacity) on \mathbb{V}

Hard-sphere Model

distribution of particles with hard constraints in (Euclidean) space

$\mathrm{V} \subset \mathbb{R}^{d}$ bounded, measurable
particle centers:
distributed according to Poisson point process of intensity $\lambda \in \mathbb{R}_{\geq 0}$ (fugacity) on \mathbb{V}
constraint:
particles have radius $r \in \mathbb{R}_{\geq 0}$ and no two particle centers have distance less than $2 r$

Hard-sphere Model

distribution of particles with hard constraints in (Euclidean) space

$\mathrm{V} \subset \mathbb{R}^{d}$ bounded, measurable
particle centers:
distributed according to Poisson point process of intensity $\lambda \in \mathbb{R}_{\geq 0}$ (fugacity) on \mathbb{V}
constraint:
particles have radius $r \in \mathbb{R}_{>0}$ and no two particle centers have distance less than $2 r$

Gibbs measure:

$$
\frac{d P_{\mathrm{V}}^{(\lambda, r)}}{d Q_{\lambda}}\left(x_{1}, \ldots, x_{k}\right)=\frac{D_{r}\left(x_{1}, \ldots, x_{k}\right) \mathrm{e}^{\lambda v(\mathrm{~V})}}{\Xi_{\mathrm{V}}(\lambda, \phi)}
$$

Partition function: $\quad \Xi_{\mathrm{V}}(\lambda, r)=1+\sum_{k \in \mathbb{N}_{\geq 1}} \frac{\lambda^{k}}{k!} \int_{\mathrm{V}^{k}} D_{r}\left(x_{1}, \ldots, x_{k}\right) v^{k}(d \mathbf{x})$

Computational problems

Results:

- Metropolis et al. 1953
- non-rigorous results (Wilfred et al. 1998/2000, Mora et al. 2018)
- Guo et al. 2018: Defect sampler for $\lambda<\frac{1}{\sqrt{2} v\left(B_{2 r}\right)}$

Computational problems

Results:

- Metropolis et al. 1953
- non-rigorous results (Wilfred et al. 1998/2000, Mora et al. 2018)
- Guo et al. 2018: Defect sampler for $\lambda<\frac{1}{\sqrt{2} v\left(B_{2 r}\right)}$

Rigorous run-time guarantees: runtime polynomial in $v(\mathbb{V})$

Can we sample from the Gibbs distribution

Can we compute the partition function

Results:

- Metropolis et al. 1953
- non-rigorous results (Wilfred et al. 1998/2000, Moka et al. 2018)
- Guo et al. 2018: pefect sampler for $\lambda<\frac{1}{\sqrt{2} v\left(B_{2 r}\right)}$

Rigorous run-time guarantees: run-time polynomial in $v(\mathbb{V})$
Can we sample from the Gibbs distribution
Can we compute the partition function
For which parameter range

Phase Transitions:

- Meyer in the 40's: no phase transition for $\lambda<\frac{1}{\operatorname{ev}\left(B_{2 r}\right)}$
- Cluster expansion convergence

Phase Transitions:

- Meyer in the 40's: no phase transition for $\lambda<\frac{1}{\operatorname{ev}\left(B_{2 r}\right)}$
- Cluster expansion convergence

Recent breakthroughs by transiating $c s$ methods used on discrete spin systems.

- Helmuth et al. 2020: no phase transition for $\lambda<\frac{2}{v\left(B_{2 r}\right)}$
- Decay of correlations
- Michelen et al. 2020: no phase transition for $\lambda<\frac{e}{v\left(B_{2 r}\right)}$
- Analiticity of the pressure
- Michelen et al. 2021: no phase transition for $\lambda<\frac{e}{\left(1-8^{-d-1}\right) v\left(B_{2 r}\right)}$
- Potential weighted constant

Discrete world: Hard-core Model

undirected graph $G=(V, E)$ and parameter $\lambda \in \mathbb{R}_{\geq 0}$

Discrete world: Hard-core Model

undirected graph $G=(V, E)$ and parameter $\lambda \in \mathbb{R}_{\geq 0}$ independent set $I \in \mathcal{I}(G)$ has weight $\lambda^{|I|}$

Discrete world: Hard-core Model

undirected graph $G=(V, E)$ and parameter $\lambda \in \mathbb{R}_{\geq 0}$ independent set $I \in \mathcal{I}(G)$ has weight $\lambda^{\prime \prime \prime}$
partition function: $Z(G, \lambda)=\sum_{l \in \mathcal{I}(G)} \lambda^{|l|}$
Gibbs distribution: $\mu_{G, \lambda}(I)=\frac{\lambda^{\lambda I \prime}}{z(G, \lambda)}$ for $I \in \mathcal{I}(G)$

Discrete world: Hard-core Model

undirected graph $G=(V, E)$ and parameter $\lambda \in \mathbb{R}_{\geq 0}$ independent set $I \in \mathcal{I}(G)$ has weight $\lambda^{I /}$
partition function: $Z(G, \lambda)=\sum_{l \in \mathcal{I}(G)} \lambda^{l / I}$
Gibbs distribution: $\mu_{G, \lambda}(I)=\frac{\lambda^{\prime \prime}}{z(G, \lambda)}$ for $I \in \mathcal{I}(G)$
phase transition on infinite Δ-regular tree: $\lambda_{C}(\Delta)=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta}$

Discrete world: Hard-core Model

undirected graph $G=(V, E)$ and parameter $\lambda \in \mathbb{R}_{\geq 0}$
independent set $I \in \mathcal{I}(G)$ has weight $\lambda^{I / I}$
partition function: $Z(G, \lambda)=\sum_{l \in \mathcal{I}(G)} \lambda^{\| / I}$
Gibbs distribution: $\mu_{G, \lambda}(I)=\frac{\lambda^{\prime \|}}{z(G, \lambda)}$ for $I \in \mathcal{I}(G)$
phase transition on infinite Δ-regular tree: $\lambda_{c}(\Delta)=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta}$
approximation of $Z(G, \lambda)$ on graphs of maximum degree Δ for $\lambda<\lambda_{c}(\Delta)$
(Weitz 2006,Barvinok 2016, Anari et al. 2020 \rightarrow *Anari et al. 2021)

Discrete world: Hard-core Model

undirected graph $G=(V, E)$ and parameter $\lambda \in \mathbb{R}_{\geq 0}$
independent set $I \in \mathcal{I}(G)$ has weight $\lambda^{I / I}$
partition function: $Z(G, \lambda)=\sum_{l \in \mathcal{I}(G)} \lambda^{\| / I}$
Gibbs distribution: $\mu_{G, \lambda}(I)=\frac{\lambda^{\prime \prime}}{z(G, \lambda)}$ for $I \in \mathcal{I}(G)$
phase transition on infinite Δ-regular tree: $\lambda_{c}(\Delta)=\frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta}$
approximation of $Z(G, \lambda)$ on graphs of maximum degree Δ for $\lambda<\lambda_{c}(\Delta)$
(Weitz 2006, Barvinok 2016, Anari et al. 2020 $\rightarrow{ }^{*}$ Anari et al. 2021)
NP-hard to approximate if $\lambda>\lambda_{c}(\Delta)$
(Sly 2010, Galanis et al. 2011)

Algorithmic Idea

take hard-sphere instance (\mathbb{V}, λ)

Algorithmic Idea

take hard-sphere instance (V, λ)

hard-core instance (G_{ρ}, λ_{ρ})

Algorithmic Idea

take hard-sphere instance (\mathbb{V}, λ)

hard-core instance (G_{ρ}, λ_{ρ}) bound $\left|\Xi_{\mathrm{V}}(\lambda, r)-Z\left(G_{\rho}, \lambda_{\rho}\right)\right|$

Algorithmic Idea

take hard-sphere instance (\mathbb{V}, λ)

Algorithmic Idea

take hard-sphere instance (V, λ)

hard-core instance (G_{ρ}, λ_{ρ})

$$
\text { bound }\left|\Xi_{\mathrm{V}}(\lambda, r)-Z\left(G_{\rho}, \lambda_{\rho}\right)\right|
$$

(approx.) sample from $\mu_{G_{\rho}, \lambda_{\rho}}$

approx. $Z\left(G_{\rho}, \lambda_{\rho}\right)$
Result is also approximation for $\Xi_{\mathrm{V}}(\lambda, r)$!

1st result: Discretization

resolution $\rho \in \mathbb{R}_{\geq 1}$

1st result: Discretization

resolution $\rho \in \mathbb{R}_{\geq 1}$

resolution $\rho \in \mathbb{R}_{\geq 1}$
V_{ρ} : contains vertex v_{x} for each grid point x

resolution $\rho \in \mathbb{R}_{\geq 1}$
V_{ρ} : contains vertex v_{x} for each grid point x
E_{ρ} : edge between v_{x}, v_{y} iff $x \neq y$ and $\mathrm{d}(x, y)<2 r$

resolution $\rho \in \mathbb{R}_{\geq 1}$
V_{ρ} : contains vertex v_{x} for each grid point x
E_{ρ} : edge between v_{x}, v_{y} iff $x \neq y$ and $d(x, y)<2 r$

$$
G_{\rho}=\left(V_{\rho}, E_{\rho}\right)
$$

resolution $\rho \in \mathbb{R}_{\geq 1}$
V_{ρ} : contains vertex v_{x} for each grid point x
E_{ρ} : edge between v_{x}, v_{y} iff $x \neq y$ and $\mathrm{d}(x, y)<2 r$

$$
G_{\rho}=\left(V_{\rho}, E_{\rho}\right) \quad \lambda_{\rho}=\frac{\lambda}{\rho^{d}}
$$

resolution $\rho \in \mathbb{R}_{\geq 1}$
V_{ρ} : contains vertex v_{x} for each grid point x
E_{ρ} : edge between v_{x}, v_{y} iff $x \neq y$ and $\mathrm{d}(x, y)<2 r$

$$
G_{\rho}=\left(V_{\rho}, E_{\rho}\right) \quad \lambda_{\rho}=\frac{\lambda}{\rho^{d}}
$$

resolution $\rho \in \mathbb{R}_{\geq 1}$
V_{ρ} : contains vertex v_{x} for each grid point x
E_{ρ} : edge between v_{x}, v_{y} iff $x \neq y$ and $\mathrm{d}(x, y)<2 r$

$$
G_{\rho}=\left(V_{\rho}, E_{\rho}\right) \quad \lambda_{\rho}=\frac{\lambda}{\rho^{d}}
$$

resolution $\rho \in \mathbb{R}_{\geq 1}$
V_{ρ} : contains vertex v_{x} for each grid point x
E_{ρ} : edge between v_{x}, v_{y} iff $x \neq y$ and $\mathrm{d}(x, y)<2 r$

$$
G_{\rho}=\left(V_{\rho}, E_{\rho}\right) \quad \lambda_{\rho}=\frac{\lambda}{\rho^{d}}
$$

resolution $\rho \in \mathbb{R}_{\geq 1}$
V_{ρ} : contains vertex v_{x} for each grid point x
E_{ρ} : edge between v_{x}, v_{y} iff $x \neq y$ and $\mathrm{d}(x, y)<2 r$

$$
G_{\rho}=\left(V_{\rho}, E_{\rho}\right) \quad \lambda_{\rho}=\frac{\lambda}{\rho^{d}}
$$

resolution $\rho \in \mathbb{R}_{\geq 1}$
V_{ρ} : contains vertex v_{x} for each grid point x
E_{ρ} : edge between v_{x}, v_{y} iff $x \neq y$ and $\mathrm{d}(x, y)<2 r$

$$
G_{\rho}=\left(V_{\rho}, E_{\rho}\right) \quad \lambda_{\rho}=\frac{\lambda}{\rho^{d}}
$$

resolution $\rho \in \mathbb{R}_{\geq 1}$
V_{ρ} : contains vertex v_{x} for each grid point x
E_{ρ} : edge between v_{x}, v_{y} iff $x \neq y$ and $\mathrm{d}(x, y)<2 r$

$$
G_{\rho}=\left(V_{\rho}, E_{\rho}\right) \quad \lambda_{\rho}=\frac{\lambda}{\rho^{d}}
$$

resolution $\rho \in \mathbb{R}_{\geq 1}$
V_{ρ} : contains vertex v_{x} for each grid point x
E_{ρ} : edge between v_{x}, v_{y} iff $x \neq y$ and $\mathrm{d}(x, y)<2 r$

$$
G_{\rho}=\left(V_{\rho}, E_{\rho}\right) \quad \lambda_{\rho}=\frac{\lambda}{\rho^{d}}
$$

Intuition: $\lim _{\rho \rightarrow \infty} Z\left(G_{\rho}, \lambda_{\rho}\right)=\Xi_{\mathrm{V}}(\lambda, r)$

resolution $\rho \in \mathbb{R}_{\geq 1}$
V_{ρ} : contains vertex v_{x} for each grid point x
E_{ρ} : edge between v_{x}, v_{y} iff $x \neq y$ and $\mathrm{d}(x, y)<2 r$

$$
G_{\rho}=\left(V_{\rho}, E_{\rho}\right) \quad \lambda_{\rho}=\frac{\lambda}{\rho^{d}}
$$

Intuition: $\lim _{\rho \rightarrow \infty} Z\left(G_{\rho}, \lambda_{\rho}\right)=\Xi_{\mathrm{V}}(\lambda, r)$

Observation: discretization 'moves' particle centers by at most $\Theta\left(\frac{1}{\rho}\right)$

Observation: discretization 'moves' particle centers by at most $\Theta\left(\frac{1}{\rho}\right)$

invalid to valid
valid to invalid

Observation: discretization 'moves' particle centers by at most $\Theta\left(\frac{1}{\rho}\right)$

invalid to valid

$$
2 r-\Theta\left(\frac{1}{\rho}\right) \leq \mathrm{d}(x, y)<2 r
$$

valid to invalid

Observation: discretization 'moves' particle centers by at most $\Theta\left(\frac{1}{\rho}\right)$

invalid to valid

$$
2 r-\Theta\left(\frac{1}{\rho}\right) \leq \mathrm{d}(x, y)<2 r
$$

valid to invalid

$$
2 r \leq \mathrm{d}(x, y)<2 r+\Theta\left(\frac{1}{\rho}\right)
$$

Observation: discretization 'moves' particle centers by at most $\Theta\left(\frac{1}{\rho}\right)$

invalid to valid

$2 r-\Theta\left(\frac{1}{\rho}\right) \leq \mathrm{d}(x, y)<2 r$
valid to invalid
 $2 r \leq \mathrm{d}(x, y)<2 r+\Theta\left(\frac{1}{\rho}\right)$

1st Result: Bounding the volume of erratic configs

Observation: discretization 'moves' particle centers by at most $\Theta\left(\frac{1}{\rho}\right)$

invalid to valid

valid to invalid

1st Result: Bounding the volume of erratic configs

Observation: discretization 'moves' particle centers by at most $\Theta\left(\frac{1}{\rho}\right)$

1st Result: Bounding the volume of erratic configs

Observation: discretization 'moves' particle centers by at most $\Theta\left(\frac{1}{\rho}\right)$

Theorem: $\left|\Xi_{\mathbb{V}}(\lambda, r)-Z\left(G_{\rho}, \lambda_{\rho}\right)\right| \leq \frac{\exp (\operatorname{vol}(\mathrm{V}) \ln (\operatorname{vol}(\mathrm{V})))}{\rho} \cdot \Xi_{\mathrm{V}}(\lambda, r)$

1st Result: Determining the maximum degree

Theorem: $\left|\Xi_{\mathrm{V}}(\lambda, r)-Z\left(G_{\rho}, \lambda_{\rho}\right)\right| \leq \frac{\exp (\operatorname{vol}(\mathrm{V}) \ln (\mathrm{vol}(\mathrm{V})))}{\rho} \cdot \Xi_{\mathrm{V}}(\lambda, r)$

1st Result: Determining the maximum degree

Theorem: $\left|\Xi_{\mathrm{V}}(\lambda, r)-Z\left(G_{\rho}, \lambda_{\rho}\right)\right| \leq \frac{\exp (\operatorname{vol}(\mathrm{V}) \ln (\operatorname{vol}(\mathrm{V})))}{\rho} \cdot \Xi_{\mathrm{V}}(\lambda, r)$
maximum degree of G_{ρ} is $\Delta_{\rho} \approx v\left(B_{2 r}\right)$

1st Result: Determining the maximum degree

Theorem: $\left|\Xi_{\mathrm{V}}(\lambda, r)-Z\left(G_{\rho}, \lambda_{\rho}\right)\right| \leq \frac{\exp (\operatorname{vol}(\mathrm{V}) \ln (\operatorname{vol}(\mathrm{V})))}{\rho} \cdot \Xi_{\mathrm{V}}(\lambda, r)$
maximum degree of G_{ρ} is $\Delta_{\rho} \approx v\left(B_{2 r}\right)$
we want:

$$
\frac{\lambda}{\rho^{d}}=\lambda_{\rho}<\lambda_{\mathrm{C}}\left(\Delta_{\rho}\right)=\frac{\left(\Delta_{\rho}-1\right)^{\Delta_{\rho}-1}}{\left(\Delta_{\rho}-2\right)^{\Delta_{\rho}}} \quad\left(\approx \frac{\mathrm{e}}{\Delta_{\rho}}\right)
$$

1st Result: Determining the maximum degree

Theorem: $\left|\Xi_{\mathrm{V}}(\lambda, r)-Z\left(G_{\rho}, \lambda_{\rho}\right)\right| \leq \frac{\exp (\operatorname{vol}(\mathrm{V}) \ln (\operatorname{vol}(\mathrm{V})))}{\rho} \cdot \Xi_{\mathrm{V}}(\lambda, r)$
maximum degree of G_{ρ} is $\Delta_{\rho} \approx v\left(B_{2 r}\right)$
we want:

$$
\frac{\lambda}{\rho^{d}}=\lambda_{\rho}<\lambda_{c}\left(\Delta_{\rho}\right)=\frac{\left(\Delta_{\rho}-1\right)^{\Delta_{\rho}-1}}{\left(\Delta_{\rho}-2\right)^{\Delta_{\rho}}} \quad\left(\approx \frac{\mathrm{e}}{\Delta_{\rho}}\right)
$$

sufficient condition:

$$
\lambda<\frac{e}{v\left(B_{2 r}\right)}
$$

1st Result: Determining the maximum degree

Theorem: $\left|\Xi_{\mathbb{V}}(\lambda, r)-Z\left(G_{\rho}, \lambda_{\rho}\right)\right| \leq \frac{\exp (\operatorname{vol}(\mathrm{V}) \ln (\operatorname{vol}(\mathrm{V})))}{\rho} \cdot \Xi_{\mathrm{V}}(\lambda, r)$
maximum degree of G_{ρ} is $\Delta_{\rho} \approx v\left(B_{2 r}\right)$
we want:

$$
\frac{\lambda}{\rho^{d}}=\lambda_{\rho}<\lambda_{C}\left(\Delta_{\rho}\right)=\frac{\left(\Delta_{\rho}-1\right)^{\Delta_{\rho}-1}}{\left(\Delta_{\rho}-2\right)^{\Delta_{\rho}}} \quad\left(\approx \frac{\mathrm{e}}{\Delta_{\rho}}\right)
$$

sufficient condition:

$$
\lambda<\frac{e}{v\left(B_{2 r}\right)}
$$

Problem: existing algorithms would run in time poly (|V|)

Theorem: $\left|\Xi_{\mathbb{V}}(\lambda, r)-Z\left(G_{\rho}, \lambda_{\rho}\right)\right| \leq \frac{\exp (\operatorname{vol}(\mathrm{V}) \ln (\operatorname{vol}(\mathrm{V})))}{\rho} \cdot \Xi_{\mathbb{V}}(\lambda, r)$
maximum degree of G_{ρ} is $\Delta_{\rho} \approx v\left(B_{2 r}\right)$
we want:

$$
\frac{\lambda}{\rho^{d}}=\lambda_{\rho}<\lambda_{c}\left(\Delta_{\rho}\right)=\frac{\left(\Delta_{\rho}-1\right)^{\Delta_{\rho}-1}}{\left(\Delta_{\rho}-2\right)^{\Delta_{\rho}}} \quad\left(\approx \frac{\mathrm{e}}{\Delta_{\rho}}\right)
$$

sufficient condition:

$$
\lambda<\frac{e}{v\left(B_{2 r}\right)}
$$

Problem: existing algorithms would run in time poly $\left(\left|V_{\rho}\right|\right)$
we have $\left|V_{\rho}\right| \approx \rho^{d} \operatorname{vol}(\mathbb{V})$ we would need $\rho \in \Theta(\exp (\operatorname{vol}(\mathbb{V}) \ln (\operatorname{vol}(\mathbb{V}))))$
Existing algorithms would not run in time poly (vol(V))!

1st Result: Sampling from the Hard-core Model

Glauber Dynamics

Glauber Dynamics

start with some (deterministic) independent set

Glauber Dynamics

start with some (deterministic) independent set repeat: choose vertex uniformly at random update vertex with appropriate probability

Glauber Dynamics

start with some (deterministic) independent set repeat: choose vertex uniformly at random update vertex with appropriate probability

Glauber Dynamics

start with some (deterministic) independent set repeat: choose vertex uniformly at random update vertex with appropriate probability

Glauber Dynamics

start with some (deterministic) independent set repeat: choose vertex uniformly at random update vertex with appropriate probability

Glauber Dynamics

start with some (deterministic) independent set repeat: choose vertex uniformly at random update vertex with appropriate probability

Glauber Dynamics

start with some (deterministic) independent set repeat: choose vertex uniformly at random update vertex with appropriate probability until convergence to $\mu_{G, \lambda}$

Glauber Dynamics

start with some (deterministic) independent set repeat: choose vertex uniformly at random update vertex with appropriate probability until convergence to $\mu_{G, \lambda}$

Clique Dynamics

1st Result: Sampling from the Hard-core Model

Glauber Dynamics

start with some (deterministic) independent set repeat: choose vertex uniformly at random update vertex with appropriate probability until convergence to $\mu_{G, \lambda}$

Clique Dynamics idea: use clique cover to update multiple vertices

1st Result: Sampling from the Hard-core Model

Glauber Dynamics

start with some (deterministic) independent set repeat: choose vertex uniformly at random update vertex with appropriate probability until convergence to $\mu_{G, \lambda}$

Clique Dynamics

start with some (deterministic) independent set repeat: choose clique uniformly at random
update clique with appropriate probability
until convergence to $\mu_{G, \lambda}$

1st Result: Sampling from the Hard-core Model

Glauber Dynamics

start with some (deterministic) independent set repeat: choose vertex uniformly at random update vertex with appropriate probability until convergence to $\mu_{G, \lambda}$

Clique Dynamics
 start with some (deterministic) independent set repeat: choose clique uniformly at random
update clique with appropriate probability
until convergence to $\mu_{G, \lambda}$
Runtime only depends on the size of the clique cover!

1st Result: Cliques in our Discretization

1st Result: Cliques in our Discretization

natural clique cover of size $\Theta(\mathrm{vol}(\mathrm{V}))$

1st Result: Clique Dynamics

Are clique dynamics rapidly converging for $\lambda<\lambda_{c}(\Delta)$?

1st Result: Clique Dynamics

Are clique dynamics rapidly converging for $\lambda<\lambda_{c}(\Delta)$?
Basic: transition of Markov chain is represented by linear operator

- spectrum of this operator is related to speed of convergence

1st Result: Clique Dynamics

Are clique dynamics rapidly converging for $\lambda<\lambda_{c}(\Delta)$?
Basic: - transition of Markov chain is represented by linear operator

- spectrum of this operator is related to speed of convergence

Recent technique: spectral independence method

- map Glauber dynamics to random walk on a simplicial complex
- investigate spectrum via local walks and influence between vertices (Anari et al. 2020, Chen et al. 2020, Feng et al. 2020)

1st Result: Clique Dynamics

Are clique dynamics rapidly converging for $\lambda<\lambda_{c}(\Delta)$?
Basic: - transition of Markov chain is represented by linear operator

- spectrum of this operator is related to speed of convergence

Recent technique: spectral independence method

- map Glauber dynamics to random walk on a simplicial complex
- investigate spectrum via local walks and influence between vertices (Anari et al. 2020, Chen et al. 2020, Feng et al. 2020)

Our contribution:

- construct simplicial complex representation of 'clique dynamics'
- relate spectrum to influence between cliques (and vertices)

1st Result: Clique Dynamics

Are clique dynamics rapidly converging for $\lambda<\lambda_{\mathbf{c}}(\Delta)$?
Basic: transition of Markov chain is represented by linear operator

- spectrum of this operator is related to speed of convergence

Recent technique: spectral independence method

- map Glauber dynamics to random walk on a simplicial complex
- investigate spectrum via local walks and influence between vertices (Anari et al. 2020, Chen et al. 2020, Feng et al. 2020)

Our contribution:

- construct simplicial complex representation of 'clique dynamics'
- relate spectrum to influence between cliques (and vertices)

Theorem: Clique dynamics for a clique cover of size m converge in time poly (m) for $\lambda<\lambda_{c}(\Delta)$.

2nd Result: Properties of the partition function

2nd Result: Properties of the partition function

$$
\Xi_{\mathrm{V}_{1}}(\lambda, r) \leq \Xi_{\mathbb{V}_{2}}(\lambda, r)
$$

2nd Result: Properties of the partition function

$$
\Xi_{\mathrm{V}_{1}}(\lambda, r) \leq \Xi_{\mathbb{V}_{2}}(\lambda, r)
$$

$$
\Xi_{\mathbb{V}_{1}}(\lambda, r) \leq \Xi_{\mathbb{V}_{2}}(\lambda, r)
$$

$$
\Xi_{\mathbb{V}}\left(\lambda, r_{2}\right) \leq \Xi_{\mathbb{V}}\left(\lambda, r_{1}\right)
$$

2nd Result: Properties of the partition function

$$
\Xi_{\mathbb{V}_{1}}(\lambda, r) \leq \Xi_{\mathbb{V}_{2}}(\lambda, r)
$$

$$
\Xi_{\mathrm{V}}\left(\lambda, r_{2}\right) \leq \Xi_{\mathrm{V}}\left(\lambda, r_{1}\right)
$$

$$
\lambda_{1} \leq \lambda_{2}
$$

2nd Result: Properties of the partition function

$$
\Xi_{\mathbb{V}_{1}}(\lambda, r) \leq \Xi_{\mathbb{V}_{2}}(\lambda, r)
$$

$$
\Xi_{\mathbb{V}}\left(\lambda, r_{2}\right) \leq \Xi_{\mathbb{V}}\left(\lambda, r_{1}\right)
$$

$$
\lambda_{1} \leq \lambda_{2}
$$

$$
\Xi_{\mathbb{V}}\left(\lambda_{1}, r\right) \leq \Xi_{\mathbb{V}}\left(\lambda_{2}, r\right)
$$

2nd Result: Bounding the Error

invalid to valid
valid to invalid

increase $r \mapsto r_{+}$ decrease $r \mapsto r_{-}$

2nd Result: Bounding the Error

invalid to valid - increase $r \mapsto r_{+}$ valid to invalid \longleftarrow decrease $r \mapsto r_{-}$

$$
\text { Total Error } \leq \Xi_{\mathrm{V}}\left(\lambda, r_{-}\right)-\Xi_{\mathrm{V}}\left(\lambda, r_{+}\right)
$$

2nd Result: Bounding the Error

invalid to valid
\rightarrow increase $r \mapsto r_{+}$ valid to invalid \longleftarrow decrease $r \mapsto r_{-}$

$$
\text { Total Error } \leq \Xi_{\mathrm{V}}\left(\lambda, r_{-}\right)-\Xi_{\mathrm{V}}\left(\lambda, r_{+}\right)
$$

Lemma:

$$
\Xi_{\mathrm{V}}\left(\lambda, \frac{1}{\alpha} r\right)=\Xi_{\alpha \mathrm{V}}\left(\frac{1}{\alpha^{\top}} \lambda, r\right)
$$

2nd Result: Bounding the Error

invalid to valid

increase $r \mapsto r_{+}$ valid to invalid \longleftarrow decrease $r \mapsto r_{-}$

$$
\text { Total Error } \leq \Xi_{\mathrm{V}}\left(\lambda, r_{-}\right)-\Xi_{\mathrm{V}}\left(\lambda, r_{+}\right)
$$

Lemma:

$\Xi_{\mathrm{V}}\left(\lambda, \frac{1}{\alpha} r\right)=\Xi_{\alpha \mathrm{V}}\left(\frac{1}{\alpha^{d}} \lambda, r\right)$

Total Error $\leq \Xi_{\mathrm{V}_{+}}\left(\lambda_{+}, r\right)-\Xi_{\mathrm{V}_{-}}\left(\lambda_{-}, r\right)$

$$
\leq \Xi_{\mathbb{V}_{+}-\mathrm{V}_{-}}\left(\lambda_{+}, r\right)
$$

2nd Result: Bounding the Error

invalid to valid

- increase $r \mapsto r_{+}$
valid to invalid \longleftarrow decrease $r \mapsto r_{-}$

$$
\text { Total Error } \leq \Xi_{\mathrm{V}}\left(\lambda, r_{-}\right)-\Xi_{\mathrm{V}}\left(\lambda, r_{+}\right)
$$

Lemma:

$$
\Xi_{\mathrm{V}}\left(\lambda, \frac{1}{\alpha} r\right)=\Xi_{\alpha \mathrm{V}}\left(\frac{1}{\alpha^{d}} \lambda, r\right)
$$

Total Error $\leq \Xi_{\mathrm{V}_{+}}\left(\lambda_{+}, r\right)-\Xi_{\mathrm{V}_{-}}\left(\lambda_{-}, r\right)$

$$
\leq \Xi_{V_{+}-V_{-}}\left(\lambda_{+}, r\right)
$$

Theorem: $\left|\Xi_{\mathrm{v}}(\lambda, r)-Z\left(G_{\rho}, \lambda_{\rho}\right)\right| \leq \frac{\Theta\left(v(\mathrm{~V})^{2}\right)}{\rho} \cdot \Xi_{\mathrm{V}}(\lambda, r)$

2nd Result: Out of the box algorithms

Theorem: $\left|\Xi_{\mathrm{V}}(\lambda, r)-Z\left(G_{\rho}, \lambda_{\rho}\right)\right| \leq \frac{\Theta\left(v(\mathrm{~V})^{2}\right)}{\rho} \cdot \Xi_{\mathrm{V}}(\lambda, r)$
G_{ρ} now only needs quadratic number of points in $v(\mathbb{V})$

Theorem: $\left|\Xi_{\mathrm{V}}(\lambda, r)-Z\left(G_{\rho}, \lambda_{\rho}\right)\right| \leq \frac{\Theta\left(v(\mathrm{~V})^{2}\right)}{\rho} \cdot \Xi_{\mathrm{V}}(\lambda, r)$
G_{ρ} now only needs quadratic number of points in $v(\mathbb{V})$

- MCMC approximation algorithms: randomised approximation in $\operatorname{poly}(v(\mathbb{V}))$
- Correlation decay/Cluster expansion algorithms: deterministic approximation in quasi-poly($v(\mathbb{V})$)

Theorem: $\left|\Xi_{\mathrm{V}}(\lambda, r)-Z\left(G_{\rho}, \lambda_{\rho}\right)\right| \leq \frac{\Theta\left(v(\mathrm{~V})^{2}\right)}{\rho} \cdot \Xi_{\mathrm{V}}(\lambda, r)$
G_{ρ} now only needs quadratic number of points in $v(\mathbb{V})$

- MCMC approximation algorithms: randomised approximation in $\operatorname{poly}(v(\mathbb{V}))$
- Correlation decay/Cluster expansion algorithms: deterministic approximation in quasi-poly($\vee(\mathbb{V})$)

Approximate sampling:

1. Use an approximate sampler to obtain an independent set of G_{ρ}
2. Recover the points in \mathbb{V} that correspond to the vertices of the independent set
3. Randomly perturb the positions of these points

$$
\left[\begin{array}{ccc}
0 & r_{1}+r_{2} & r_{1}+r_{3} \\
r_{1}+r_{2} & 0 & 0 \\
r_{1}+r_{3} & 0 & 2 r_{3}
\end{array}\right]
$$

type 1 Interaction Matrix

$$
\left[\begin{array}{ccc}
0 & r_{1}+r_{2} & r_{1}+r_{3} \\
r_{1}+r_{2} & 0 & 0 \\
r_{1}+r_{3} & 0 & 2 r_{3}
\end{array}\right]
$$

Approximation + Sampling Algorithms for :

$$
\lambda_{\max }<\frac{e}{\|B\|_{1}}
$$

Where B is the volume exclusion matrix, with entries $v\left(B_{r_{i j}}\right)$

2nd Result: Random point allocations

The previous arguments work for any δ - ε-allocation $\Phi: V \rightarrow X$

2nd Result: Random point allocations

The previous arguments work for any δ - ε-allocation $\Phi: V \rightarrow X$

$$
(1-\delta) \frac{v(\mathbb{V})}{|X|} \leq v\left(\Phi^{-1}(x)\right) \leq(1+\delta) \frac{v(\mathbb{V})}{|X|}
$$

2nd Result: Random point allocations

The previous arguments work for any δ - ε-allocation $\Phi: V \rightarrow X$

$$
(1-\delta) \frac{v(\mathbb{V})}{|X|} \leq v\left(\Phi^{-1}(x)\right) \leq(1+\delta) \frac{v(\mathbb{V})}{|X|}
$$

Taking a set of $n \in \Theta\left(v(\mathbb{V})^{2}\right)$ points X uniformly at random gives a δ - ε-allocation w.h.p.

2nd Result: Random point allocations

The previous arguments work for any δ - ε-allocation $\Phi: V \rightarrow X$

$$
(1-\delta) \frac{v(\mathbb{V})}{|X|} \leq v\left(\Phi^{-1}(x)\right) \leq(1+\delta) \frac{v(\mathbb{V})}{|X|}
$$

Taking a set of $n \in \Theta\left(v(\mathbb{V})^{2}\right)$ points X uniformly at random gives a δ - ε-allocation w.h.p.

Theorem:

The hard-core model with fugacity $\lambda v(\mathbb{V}) / n$ of (V, r)-geometric random graphs
concentrates around $\Xi_{\mathrm{V}}(\lambda, r)$

Gibbs point processes

Spatial process, where the particles interact via repulsive forces On any complete, separable measure space \mathbb{X}.

$$
\phi(x, y) \geq 0
$$

$$
H\left(x_{1} \ldots, x_{k}\right)=\sum_{\{i, j\} \in\binom{\left(\frac{k}{2}\right)}{2}} \phi\left(x_{i}, x_{j}\right)
$$

Gibbs point processes

Spatial process, where the particles interact via repulsive forces
On any complete, separable measure space \mathbb{X}.

$$
\phi(x, y) \geq 0
$$

$$
H\left(x_{1} \ldots, x_{k}\right)=\sum_{\{i, j\} \in\binom{[k]}{2}} \phi\left(x_{i}, x_{j}\right)
$$

Gibbs measure: $\quad \frac{d P_{\mathrm{V}}^{(\lambda, \phi)}}{d Q_{\lambda}}\left(x_{1}, \ldots, x_{k}\right)=\frac{1_{\forall i \in[k]: x_{i} \in \mathbb{V}} \cdot \mathrm{e}^{-H\left(x_{1}, \ldots, x_{k}\right)} \mathrm{e}^{\lambda \gamma(\mathrm{V})}}{\Xi_{\mathrm{V}}(\lambda, \phi)}$
Partition function: $\Xi_{\mathrm{V}}(\lambda, \phi)=1+\sum_{k \in \mathbb{N}_{\geq 1}} \frac{\lambda^{k}}{k!} \int_{\mathrm{V}^{k}} \mathrm{e}^{-H\left(x_{1}, \ldots, x_{k}\right)} v^{k}(d \mathbf{x})$

Gibbs point processes

Spatial process, where the particles interact via repulsive forces
On any complete, separable measure space \mathbb{X}.

$$
\phi(x, y) \geq 0
$$

$$
H\left(x_{1} \ldots, x_{k}\right)=\sum_{\{i, j\} \in\binom{[k]}{2}} \phi\left(x_{i}, x_{j}\right)
$$

Gibbs measure: $\frac{d P_{\mathrm{V}}^{(\lambda, \phi)}}{d Q_{\lambda}}\left(x_{1}, \ldots, x_{k}\right)=\frac{1_{\forall i \in[k]: x_{i} \in \mathbb{V}} \cdot \mathrm{e}^{-H\left(x_{1}, \ldots, x_{k}\right)} \mathrm{e}^{\lambda \gamma(\mathbb{V})}}{\Xi_{\mathbb{V}}(\lambda, \phi)}$
Partition function: $\Xi_{\mathrm{V}}(\lambda, \phi)=1+\sum_{k \in \mathbb{N}_{\geq 1}} \frac{\lambda^{k}}{k!} \int_{\mathrm{V}^{k}} \mathrm{e}^{-H\left(x_{1}, \ldots, x_{k}\right)} v^{k}(d \mathbf{x})$

Hard-sphere model:

$$
\phi(x, y)= \begin{cases}\infty, & \text { if } \operatorname{dist}(x, y)<r \\ 0, & \text { otherwise }\end{cases}
$$

Temperedness constant:
 $$
C_{\phi}=\operatorname{ess}^{\sup _{x}} \int_{\mathrm{X}}\left|1-\mathrm{e}^{-\phi(x, y)}\right| v(d y)
$$

measures the strength of interactions between points

Temperedness constant:
 $$
C_{\phi}=\operatorname{ess}^{s u p_{x}} \int_{\mathrm{X}}\left|1-\mathrm{e}^{-\phi(x, y)}\right| v(d y)
$$

measures the strength of interactions between points

- Michelen et al. 2020: no phase transition for $\lambda<\frac{e}{C_{\phi}}$
- Analiticity of the pressure
- Michelen et al. 2021: no phase transition for $\lambda<\frac{e}{\Delta_{\phi}}$
- Potential weighted constant $\Delta_{\phi} \leq C_{\phi}$

Temperedness constant: $\quad C_{\phi}=\operatorname{ess}_{\sup }^{x} \int_{\mathrm{X}}\left|1-\mathrm{e}^{-\phi(x, y)}\right| \vee(d y)$
measures the strength of interactions between points

- Michelen et al. 2020: no phase transition for $\lambda<\frac{e}{C_{\phi}}$
- Analiticity of the pressure
- Michelen et al. 2021: no phase transition for $\lambda<\frac{e}{\Delta_{\phi}}$
- Potential weighted constant $\Delta_{\phi} \leq C_{\phi}$

Question: Can we get efficient approximation and sampling algorithms?

The model $\zeta_{V, \phi}^{(n)}$

- n vertices and bounded measurable region $\mathbb{V} \subseteq \mathbb{X}$
- for each $i \in[n]$ draw a point $x_{i} \sim$ unif $_{\mathrm{V}}$ independently
- For all $i, j \in[n]$, with $i \neq j$, connect i and j with an edge with probability $p_{\phi}=1-\mathrm{e}^{-\phi\left(x_{i}, x_{j}\right)}$ independently

The model $\zeta_{V, \phi}^{(n)}$

- n vertices and bounded measurable region $\mathbb{V} \subseteq \mathbb{X}$
- for each $i \in[n]$ draw a point $x_{i} \sim$ unif $_{\mathrm{V}}$ independently
- For all $i, j \in[n]$, with $i \neq j$, connect i and j with an edge with probability $p_{\phi}=1-\mathrm{e}^{-\phi\left(x_{i}, x_{j}\right)}$ independently

Encompasses:

- Erdős-Rényi random graphs
- Geometric random graphs
- Hyperbolic random graphs

Result 3: Hard-core model on $\zeta_{V, \phi}^{(n)}$

Can we show that the hard-core model on $G \sim \zeta_{V, \phi}^{(n)}$ with fugacity $\lambda v(\mathbb{V}) / n$ concentrates around $\Xi_{\mathrm{V}}(\lambda, \phi)$, its expected value?

Can we show that the hard-core model on $G \sim \zeta_{V, \phi}^{(n)}$ with fugacity $\lambda v(\mathbb{V}) / n$ concentrates around $\Xi_{\mathrm{V}}(\lambda, \phi)$, its expected value?

1st attempt: Use method of bounded differences

Can we show that the hard-core model on $G \sim \zeta_{V, \phi}^{(n)}$ with fugacity $\lambda v(\mathbb{V}) / n$ concentrates around $\Xi_{\mathrm{V}}(\lambda, \phi)$, its expected value?

1st attempt: Use method of bounded differences
Does not work: counterexample

Can we show that the hard-core model on $G \sim \zeta_{V, \phi}^{(n)}$ with fugacity $\lambda v(\mathbb{V}) / n$ concentrates around $\Xi_{\mathrm{V}}(\lambda, \phi)$, its expected value?

1st attempt: Use method of bounded differences
Does not work: counterexample
2nd attempt: Prove a new concentration result, with weaker assumptinos giving weaker concentration

Can we show that the hard-core model on $G \sim \zeta_{V, \phi}^{(n)}$ with fugacity $\lambda v(\mathbb{V}) / n$ concentrates around $\Xi_{\mathrm{V}}(\lambda, \phi)$, its expected value?

1st attempt: Use method of bounded differences
Does not work: counterexample
2nd attempt: Prove a new concentration result, with weaker assumptinos giving weaker concentration

Already known: Effron-Stein bound

Can we show that the hard-core model on $G \sim \zeta_{V, \phi}^{(n)}$ with fugacity $\lambda v(\mathbb{V}) / n$ concentrates around $\Xi_{\mathrm{V}}(\lambda, \phi)$, its expected value?

1st attempt: Use method of bounded differences
Does not work: counterexample
2nd attempt: Prove a new concentration result, with weaker assumptinos giving weaker concentration

Theorem: For $n \in \Theta\left(v(\mathbb{V})^{2}\right)$,

$$
\operatorname{Pr}\left[\left\lvert\, Z\left(G, \left.\frac{\lambda v(\mathbb{V})}{n}-\Xi_{\mathrm{v}}(\lambda, \phi) \right\rvert\, \geq \varepsilon_{\mathrm{v}}(\lambda, \phi)\right] \leq \delta\right.\right.
$$

Can we show that the hard-core model on $G \sim \zeta_{V, \phi}^{(n)}$ with fugacity $\lambda v(\mathbb{V}) / n$ concentrates around $\Xi_{\mathrm{V}}(\lambda, \phi)$, its expected value?

1st attempt: Use method of bounded differences
Does not work: counterexample
2nd attempt: Prove a new concentration result, with weaker assumptinos giving weaker concentration

Theorem: For $n \in \Theta\left(v(\mathbb{V})^{2}\right)$,

$$
\operatorname{Pr}\left[\left\lvert\, Z\left(G, \left.\frac{\lambda v(\mathbb{V})}{n}-\Xi_{\mathrm{v}}(\lambda, \phi) \right\rvert\, \geq \varepsilon \Xi_{\mathrm{v}}(\lambda, \phi)\right] \leq \delta\right.\right.
$$

Randomized approximation for the partition function when $\lambda<\frac{e}{C_{\phi}}$

1. Sample the graph G from $\zeta_{V, \phi^{\prime}}^{(n)}$, with $n \in \Theta(v(\mathbb{V}))$
2. For each $v \in V(G)$, keep its position $x_{V} \in \mathbb{V}$
3. Sample an independent set / from $Z(G, \lambda v(\mathbb{V}) / n)$
4. Return the point set X, that corresponds to the vertices of I.
5. Sample the graph G from $\zeta_{V, \phi^{\prime}}^{(n)}$, with $n \in \Theta(v(\mathbb{V}))$
6. For each $v \in V(G)$, keep its position $x_{V} \in \mathbb{V}$
7. Sample an independent set I from $Z(G, \lambda v(\mathbb{V}) / n)$
8. Return the point set X, that corresponds to the vertices of I.

To prove that the two densities have small total variation density, we compare each one of them to a Poisson point process of intensity λ utilizing a theorem of Rényi-Mönch

Independent work and open problems

- Michelen and Perkins 2022 give algorithms for $\lambda<\frac{e}{\Delta_{\phi}}$
- Requires finite range potentials i.e. $\phi=0$ above some range r

Independent work and open problems

- Michelen and Perkins 2022 give algorithms for $\lambda<\frac{e}{\Delta_{\phi}}$
- Requires finite range potentials i.e. $\phi=0$ above some range r
- Can we get deterministic approximation of Ξ in $\operatorname{poly}(v(\mathbb{V}))$?
- Can we get approximation for $\lambda<\frac{e}{\Delta_{\phi}}$ without finite range assumption?
- What about other potentials (e.g. Lennard-Jones)?
- Is there a way to show hardness or approximation for some parameter range?

