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Sampling and approximation of Gibbs point processes

Hard-sphere Model

distribution of particles with hard constraints in (Euclidean) space
V ⊂ Rd bounded, measurable

distributed according to Poisson point pro-
cess of intensity λ ∈ R≥0 (fugacity) on V

particle centers:

constraint:
particles have radius r ∈ R≥0 and no two
particle centers have distance less than 2r

Gibbs measure:

Partition function:

dP(λ,r)V

dQλ
(x1, . . . ,xk) =

Dr(x1, . . . ,xk)eλν(V)
ΞV(λ,φ)

1

ΞV(λ, r) = 1+
∑
k∈N≥1

λk

k!

∫
Vk
Dr(x1, . . . ,xk)νk(dx)
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Computational problems

Metropolis et al. 1953

non-rigorous results (Wilfred et al. 1998/2000, Moka et al. 2018)

Guo et al. 2018: pefect sampler for λ < 1√
2ν(B2r)

Can we sample from the Gibbs distribution

Can we compute the partition function

approximately sample

approximate

Results:

Rigorous run-time guarantees: run-time polynomial in ν(V)

For which parameter range
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Sampling and approximation of Gibbs point processes

Phase transitions

Phase Transitions:

Helmuth et al. 2020: no phase transition for λ < 2
ν(B2r)

Decay of correlations

Michelen et al. 2020: no phase transition for λ < e
ν(B2r)

Analiticity of the pressure

Michelen et al. 2021: no phase transition for λ < e
(1−8−d−1)ν(B2r)

Potential weighted constant

3

Meyer in the 40’s: no phase transition for λ < 1
eν(B2r)

Cluster expansion convergence

Recent breakthroughs by translating CS methods used on discrete spin systems.
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Discrete world: Hard-core Model

undirected graph G = (V,E) and parameter λ ∈ R≥0

independent set I ∈ I
(
G
)
has weight λ|I|

partition function: Z
(
G,λ

)
=
∑

I∈I(G) λ
|I|

Gibbs distribution: µG,λ(I) = λ|I|

Z(G,λ) for I ∈ I
(
G
)

phase transition on infinite ∆-regular tree: λc (∆) = (∆−1)∆−1

(∆−2)∆
≈ e

∆

approximation of Z
(
G,λ

)
on graphs of maximum degree ∆ for λ < λc (∆)

NP-hard to approximate if λ > λc (∆)

(Weitz 2006,Barvinok 2016, Anari et al. 2020→∗Anari et al. 2021)

(Sly 2010, Galanis et al. 2011)

λ3
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Sampling and approximation of Gibbs point processes

Algorithmic Idea

take hard-sphere instance (V,λ)

hard-core instance (Gρ,λρ)

(approx.) sample from µGρ,λρ

approx. Z
(
Gρ,λρ

)
Result is also approximation for ΞV(λ, r)!

bound
∣∣ΞV(λ, r)− Z (Gρ,λρ)∣∣
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1st Result: Bounding the volume of erratic configs

Observation: discretization ’moves’ particle centers by at most Θ
(
1
ρ

)

invalid to valid

valid to invalid

2r −Θ
(
1
ρ

)
≤ d (x,y) < 2r

2r ≤ d (x,y) < 2r +Θ
(
1
ρ
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2r

Θ
(
1
ρ

)
y

x

x xy y
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1st Result: Determining the maximum degree

maximum degree of Gρ is ∆ρ ≈ ν(B2r)

we want: λ
ρd
= λρ < λc

(
∆ρ
)
= (∆ρ−1)∆ρ−1

(∆ρ−2)∆ρ

sufficient condition: λ < e
ν(B2r)

(
≈ e

∆ρ

)

Problem: existing algorithms would run in time poly
(
|Vρ|

)
we have |Vρ| ≈ ρdvol (V) we would need ρ ∈ Θ

(
exp

(
vol (V) ln

(
vol (V)

)))
Existing algorithms would not run in time poly

(
vol (V)

)
!

8
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Sampling and approximation of Gibbs point processes

1st Result: Sampling from the Hard-core Model

Glauber Dynamics

Clique Dynamics

choose vertex uniformly at random
update vertex with appropriate probability

start with some (deterministic) independent set
repeat:

until convergence to µG,λ

idea: use clique cover to update multiple vertices

choose clique uniformly at random
update clique with appropriate probability

start with some (deterministic) independent set
repeat:

until convergence to µG,λ

Runtime only depends on the size of the clique cover!
9
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Sampling and approximation of Gibbs point processes

1st Result: Cliques in our Discretization

< 2r√
d

V

V′

∀x,y ∈ V′ it holds that d (x,y) < 2r

∀ρ ∈ R≥1 and vx,vy ∈ Vρ s.t. x,y ∈ V′:(
vx,vy

)
∈ Eρ

These vertices form a clique in Gρ
for all ρ!

natural clique cover of size Θ
(
vol (V)

)
10
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1st Result: Clique Dynamics

Are clique dynamics rapidly converging for λ < λc (∆)?
Basic: transition of Markov chain is represented by linear operator

spectrum of this operator is related to speed of convergence

Recent technique: spectral independence method

map Glauber dynamics to random walk on a simplicial complex

investigate spectrum via local walks and influence between vertices

Our contribution:

construct simplicial complex representation of ’clique dynamics’

relate spectrum to influence between cliques (and vertices)
Clique dynamics for a clique cover of size m converge in
time poly (m) for λ < λc (∆).

Theorem:

(Anari et al. 2020, Chen et al. 2020, Feng et al. 2020)
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invalid to valid
valid to invalid

x xy y

increase r 7→ r+
decrease r 7→ r−

V−

V+

Total Error ≤ ΞV+(λ+, r)− ΞV−(λ−, r)
≤ ΞV+−V−(λ+, r)
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2nd Result: Out of the box algorithms

14

Theorem:
∣∣ΞV(λ, r)− Z (Gρ,λρ)∣∣ ≤ Θ(ν(V)2)

ρ · ΞV(λ, r)

Gρ now only needs quadratic number of points in ν(V)
MCMC approximation algorithms: randomised
approximation in poly(ν(V))

Correlation decay/Cluster expansion algorithms:
deterministic approximation in quasi-poly(ν(V))

Approximate sampling:
1. Use an approximate sampler to obtain an independent set of

Gρ

2. Recover the points in V that correspond to the vertices of the
independent set

3. Randomly perturb the positions of these points
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2nd Result: Multiple types of particles

15

Interaction Matrix
type 1 type 2 type 3

Approximation + Sampling Algorithms for :

Where B is the volume exclusion ma-
trix, with entries ν(Brij)

 0 r1+ r2 r1+ r3
r1+ r2 0 0
r1+ r3 0 2r3



λmax <
e
‖B‖1
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2nd Result: Random point allocations

16

The previous arguments work for any δ-ε-allocation Φ : V→ X

y

ε

x

Taking a set of n ∈ Θ(ν(V)2) points X uniformly at random gives
a δ-ε-allocation w.h.p.

The hard-core model with fugacity λν(V)/n

concentrates around ΞV(λ, r)
of (V, r)-geometric random graphs

Theorem:

(1− δ)ν(V)
|X| ≤ ν

(
Φ−1(x)

)
≤ (1 + δ)ν(V)

|X|
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y
φ(x,y) ≥ 0On any complete, separable measure space X.
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ΞV(λ,φ) = 1+
∑
k∈N≥1

λk

k!

∫
Vk
e−H(x1,...,xk)νk(dx)

Spatial process, where the particles interact via repulsive forces

φ(x,y)
x
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Gibbs measure:

Partition function:

φ(x,y) ≥ 0On any complete, separable measure space X.
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Gibbs point processes

ΞV(λ,φ) = 1+
∑
k∈N≥1

λk

k!

∫
Vk
e−H(x1,...,xk)νk(dx)

Spatial process, where the particles interact via repulsive forces

φ(x,y)
x

y

Gibbs measure:

Partition function:

φ(x,y) ≥ 0On any complete, separable measure space X.

17

Hard-sphere model:

H(x1 . . . ,xk) =
∑

{i,j}∈([k]2 )
φ(xi,xj)

dP(λ,φ)V

dQλ
(x1, . . . ,xk) =

1∀i∈[k]: xi∈V · e−H(x1,...,xk)eλν(V)
ΞV(λ,φ)

φ(x,y) =
{
∞, if dist(x,y) < r
0, otherwise
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X
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Sampling and approximation of Gibbs point processes

Phase transitions

Temperedness constant:

measures the strength of interactions between points

Cφ = ess supx
∫
X

∣∣∣1− e−φ(x,y)∣∣∣ν(dy)

Michelen et al. 2020: no phase transition for λ < e
Cφ

Analiticity of the pressure

Michelen et al. 2021: no phase transition for λ < e
∆φ

Potential weighted constant ∆φ ≤ Cφ

Question: Can we get efficient approximation and sampling algorithms?

17
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Result 3: General random graph model

The model ζ(n)V,φ

n vertices and bounded measurable region V ⊆ X

for each i ∈ [n] draw a point xi ∼ unifV independently

For all i, j ∈ [n], with i 6= j, connect i and j with an edge with
probability pφ = 1− e−φ(xi,xj) independently
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Result 3: General random graph model

The model ζ(n)V,φ

n vertices and bounded measurable region V ⊆ X

for each i ∈ [n] draw a point xi ∼ unifV independently

For all i, j ∈ [n], with i 6= j, connect i and j with an edge with
probability pφ = 1− e−φ(xi,xj) independently

Erdős–Rényi random graphs

Geometric random graphs

Hyperbolic random graphs

Encompasses:

19
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Result 3: Hard-core model on ζ(n)V,φ

20

Can we show that the hard-core model on G ∼ ζ(n)V,φ with fugacity λν(V)/n
concentrates around ΞV(λ,φ), its expected value?

1st attempt: Use method of bounded differences

Does not work: counterexample

2nd attempt: Prove a new concentration result, with weaker assumpti-
nos giving weaker concentration

Already known: Effron–Stein bound
Theorem: For n ∈ Θ(ν

(
V)2

)
,

Pr
[∣∣∣∣Z(G, λν(V)n − ΞV(λ,φ)

∣∣∣∣ ≥ εΞV(λ,φ)] ≤ δ
Randomized approximation for the partition function when λ < e

Cφ



Sampling and approximation of Gibbs point processes

Result 3: Approximate sampler

1. Sample the graph G from ζ(n)V,φ, with n ∈ Θ
(
ν(V)

)
2. For each v ∈ V(G), keep its position xv ∈ V

3. Sample an independent set I from Z(G,λν(V)/n)

4. Return the point set XI that corresponds to the vertices of I.
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Sampling and approximation of Gibbs point processes

Result 3: Approximate sampler

1. Sample the graph G from ζ(n)V,φ, with n ∈ Θ
(
ν(V)

)
2. For each v ∈ V(G), keep its position xv ∈ V

3. Sample an independent set I from Z(G,λν(V)/n)

4. Return the point set XI that corresponds to the vertices of I.

To prove that the two densities have small total variation density, we
compare each one of them to a Poisson point process of intensity λ uti-
lizing a theorem of Rényi–Mönch

21



Sampling and approximation of Gibbs point processes

Independent work and open problems

Michelen and Perkins 2022 give algorithms for λ < e
∆φ

Requires finite range potentials i.e. φ = 0 above some range r
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Sampling and approximation of Gibbs point processes

Independent work and open problems

Michelen and Perkins 2022 give algorithms for λ < e
∆φ

Requires finite range potentials i.e. φ = 0 above some range r

Can we get deterministic approximation of Ξ in poly(ν(V))?

Can we get approximation for λ < e
∆φ

without finite range
assumption?

What about other potentials (e.g. Lennard–Jones)?

Is there a way to show hardness or approximation for some
parameter range?

22


