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Permanent

Definition 1
The permanent of an 𝑛×𝑛 nonnegative matrix 𝐴 = (𝑎(𝑖,𝑗)) is defined as

per(𝐴) = ∑
𝜎

∏
𝑖

𝑎(𝑖,𝜎(𝑖)), (1.1)

where the sum is over all permutations 𝜎 of {1,2,…,𝑛}.
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Permanent

Definition 1
The permanent of an 𝑛×𝑛 nonnegative matrix 𝐴 = (𝑎(𝑖,𝑗)) is defined as

per(𝐴) = ∑
𝜎

∏
𝑖

𝑎(𝑖,𝜎(𝑖)), (1.2)

where the sum is over all permutations 𝜎 of {1,2,…,𝑛}.

Remark 1
Let 𝐺𝐴 = (𝑉1,𝑉2,𝐸) be a bipartite graph, and 𝐴 the corresponding
0,1adjacency matrix. The permanent of 𝐴 equals the number of perfect
matchings in 𝐺𝐴.
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FPRAS

Definition 2
A fully polynomial randomized approximation scheme (fpras) for a
counting problem 𝑓 ∶ Σ∗ → ℕ is a randomized algorithm that takes as input
an instance 𝑥 ∈ Σ∗, an error tolerance 0 < 𝜖 < 1, and 0 < 𝛿 < 1, and outputs
a number 𝑓(𝑥) ∈ ℕ such that

Pr[(1−𝜖)𝑓(𝑥) ≤ 𝑓(𝑥) ≤ (1+𝜖)𝑓(𝑥)] ≥ 1−𝛿. (1.3)

The algorithm must run in time polynomial in |𝑥|, 1/𝜖 and log(1/𝛿)
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FPRAS

Remark 2
A fully polynomial randomized approximation scheme (fpras) for a the
permanent is a randomized algorithm that takes as input an 𝑛×𝑛
nonnegative matrix 𝐴, an error tolerance 0 < 𝜖 < 1, and 0 < 𝛿 < 1, and
outputs a number 𝑍 such that

Pr[(1−𝜖)𝑍 ≤ per(𝐴) ≤ (1+𝜖)𝑍] ≥ 1−𝛿. (1.4)

The algorithm must run in time polynomial in |𝑥|, 1/𝜖 and log(1/𝛿)
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Main Theorem

Theorem 1
There exists a fully polynomial randomized approximation scheme for the
permanent of an arbitrary n × n matrix A with nonnegative entries.
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Approach

Construct a fullypolynomial almost uniform sampler (fpaus) for perfect
matchings, namely a randomized algorithm which, given as inputs an 𝑛×𝑛
0,1matrix 𝐴 and a bias parameter 𝛿 ∈ (0,1], outputs a random perfect
matching in 𝐺𝐴 from a distribution 𝒰′ that satisfies

𝑑tv(𝒰′,𝒰) ≤ 𝛿,

where 𝒰 is the uniform distribution on perfect matchings of 𝐺𝐴 and 𝑑tv
denotes the total variation distance.

→ The sampler will be based on simulation of a suitable Markov chain.
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Markov Chain Revisited

We consider a Markov Chain (MC)

■ Ergodic MC(Ω,𝑃 ) ⇒ unique stationary distribution 𝜋
■ Satisfies the detailed balance conditions for all 𝑀, 𝑀 ′ ∈ Ω, that is,

𝜋(𝑀)𝑃(𝑀,𝑀 ′) = 𝜋(𝑀 ′)𝑃 (𝑀 ′,𝑀) =∶ 𝑄(𝑀,𝑀 ′),

then the chain is said to be timereversible and 𝜋 is a stationary
distribution.

■ The mixing time (from state M)

𝜏(𝛿) = 𝜏𝑀(𝛿) = min{𝑡 ∶ 𝑑tv(𝑃 𝑡(𝑀,⋅),𝜋) ≤ 𝛿}

When the MC is used as a random sampler, the mixing time determines
the number of simulation steps needed before a sample is produced.
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Markov Chain

The running time of the random sampler is determined by the mixing time of
the Markov chain.

Definition
A Markov chain is called rapidly mixing (from initial state x) if, for any
fixed 𝛿 > 0, 𝜏(𝛿) is bounded above by a polynomial function of 𝑛.
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MC Congestion

• The graph 𝐺𝑃 = (Ω,𝐸𝑃 ), where 𝐸𝑃 = {(𝑀,𝑀 ′) ∶ 𝑃 (𝑀,𝑀 ′) > 0}.
• For all ordered pairs (𝐼,𝐹 ) ∈ Ω×Ω of “initial” and “final” states, let

𝒫𝐼,𝐹 denote a collection of simple directed paths in 𝐺𝑃 from I to F

• 𝑓𝐼,𝐹 ∶ 𝒫𝐼,𝐹 → ℝ+ is a flow from 𝐼 to 𝐹 if the following holds:

∑
𝑝∈𝒫𝐼,𝐹

𝑓𝐼,𝐹 (𝑝) = 𝜋(𝐼)𝜋(𝐹)

• The flow of the Markov chain is 𝑓 = {𝑓𝐼,𝐹 ∶ 𝐼,𝐹 ∈ Ω}
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MC congestion

• The congestion, 𝜚, of a flow 𝑓 is defined as

𝜚 = 𝜚(𝑓) = max
𝑡=(𝑀,𝑀′)∈𝐸𝑃

𝜚𝑡, (2.5)

where
𝜚𝑡 = 1

𝑄(𝑡) ∑
𝐼,𝐹∈Ω

∑
𝑝∶𝑡∈𝑝∈𝒫𝐼,𝐹

𝑓𝐼,𝐹 (𝑝)|𝑝|, (2.6)

and 𝑄(𝑡) = 𝑄(𝑀,𝑀 ′) = 𝜋(𝑀)𝑃(𝑀,𝑀 ′).
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MC congestion

Theorem
For an ergodic, time reversible Markov chain with selfloop probabilities
𝑃(𝑀,𝑀) ≥ 1/2 for all states 𝑀 , and any initial state 𝑀0 ∈ Ω,

𝜏𝑀0(𝛿) ≤ 𝜚(ln𝜋(𝑀0)−1 + ln𝛿−1)

To prove rapid mixing, it suffices to demonstrate a flow with an upper bound
of the form poly(n) on its congestion for our Markov chain on matchings.

[Sin92] Alistair Sinclair. “Improved Bounds for Mixing Rates of Markov Chains and Multicommodity Flow”. In:
Combinatorics, Probability and Computing 1.4 (1992), pp. 351–370. doi: 10.1017/S0963548300000390
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Sampling Algorithm

We consider a Markov Chain (MC)

• 𝐺 = (𝑉 1,𝑉 2,𝐸) be a bipartite graph on 𝑛+𝑛 vertices.

• ℳ: the set of perfect matchings in G

• ℳ(𝑢,𝑣): the set of nearperfect matchings with holes only at the
𝑢 ∈ 𝑉 1 and 𝑣 ∈ 𝑉 2.

• Ω = ℳ∪⋃𝑢,𝑣 ℳ(𝑢,𝑣).
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Problem

|ℳ|/|Ω| must be bounded below by a inverse polynomial in n.

The matchings have insufficient weight in the stationary distribution!

13
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Weights

Let the quantities:

• 𝜆(𝑢,𝑣) is a positive weight , which we call its activity.

• 𝜆(𝑀) = ∏(𝑢,𝑣)∈𝑀 𝜆(𝑢,𝑣)is the activity of the matching 𝑀
• 𝜆(𝒮) = ∑𝑀∈𝒮 𝜆(𝑀) is the activity of the set 𝒮

We consider complete graph on 𝑛+𝑛 vertices, where

• 𝜆(𝑒) = 1 for 𝑒 ∈ 𝐸
• 𝜆(𝑒) = 𝜉 ≈ 0 for 𝑒 ∉ 𝐸
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Stationary distribution

This will be the distribution 𝜋 over Ω defined by 𝜋(𝑀) ∝ Λ(𝑀), where

Λ(𝑀) = {𝜆(𝑀)𝑤(𝑢,𝑣) , if 𝑀 ∈ ℳ(𝑢,𝑣) for some 𝑢,𝑣
𝜆(𝑀) , if 𝑀 ∈ ℳ

(2.7)

where 𝑤 ∶ 𝑉1 ×𝑉2 → ℝ+ is a weight function for holes.

15
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Transitions

(1) If 𝑀 ∈ ℳ, choose an edge 𝑒 = (𝑢,𝑣) uniformly at random from M; set
𝑀 ′ = 𝑀\𝑒.

(2) If 𝑀 ∈ ℳ(𝑢,𝑣), choose z uniformly at random from 𝑉1 ∪𝑉2.

(i) if 𝑧 ∈ {𝑢,𝑣} and (𝑢,𝑣) ∈ 𝐸, let 𝑀 ′ = 𝑀 ∪(𝑢,𝑣)
(ii) if 𝑧 ∈ 𝑉2, (𝑢,𝑧) ∈ 𝐸 and (𝑥,𝑧) ∈ 𝑀 , let 𝑀 ′ = 𝑀 ∪(𝑢,𝑧)\(𝑥,𝑧);
(iii) if 𝑧 ∈ 𝑉1, (𝑧,𝑣) ∈ 𝐸 and (𝑧,𝑦) ∈ 𝑀 , let 𝑀 ′ = 𝑀 ∪(𝑧,𝑣)\(𝑧,𝑦)
(iv) otherwise, let 𝑀 ′ = 𝑀

(3) With probability min{1,Λ(𝑀 ′)/Λ(𝑀)} go to 𝑀 ′; otherwise, stay at
𝑀 . (Metropolis rule)

16
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Transitions

Markov chain properties?

• In steps (1) and (2) for selecting the candidate matching 𝑀 ′ are
symmetric, being 1/𝑛 in the case of moves between perfect and
nearperfect matchings, and 1/2𝑛 between nearperfect matchings.

• Combined with the Metropolis rule for accepting the move to 𝑀 ′

applied in step (3)

⇒ Markov chain is reversible with 𝜋(𝑀) ∝ Λ(𝑀) as its stationary
distribution

• We add a selfloop probability of 1/2 to every state

17
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Weight function

Ideally 𝑤 = 𝑤∗ equals:

𝑤∗(𝑢,𝑣) = 𝜆(ℳ)
𝜆(ℳ(𝑢,𝑣)) (2.8)

for each pair of holes 𝑢,𝑣 with ℳ(𝑢,𝑣) ≠ ∅.
With this choice of weights, any hole pattern is equally likely under the
distribution 𝜋 since there are at most 𝑛2 +1 such patterns. When sampling
from the distribution 𝜋 a perfect matching is generated with probability at
least 1/(𝑛2 +1).
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Weight function

We will not know 𝑤∗ exactly but we will calculate weights w satisfying

𝑤∗(𝑢,𝑣)
2 ≤ 𝑤(𝑢,𝑣) ≤ 2𝑤∗(𝑢,𝑣), (2.9)

with very high probability.

Theorem
Assuming the weight function 𝑤 satisfies inequality (2.9) for all
(𝑢,𝑣) ∈ 𝑉1 ×𝑉2 with ℳ(𝑢,𝑣) ≠ ∅, then the mixing time of the Markov
chain MC is bounded above by 𝜏𝑀(𝛿) = 𝑂(𝑛6𝑔(log(𝜋(𝑀)−1)+ log𝛿−1)).
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Weight function

Since the weight of an invalid matching is at most 1/𝑛! and there are at most
𝑛! possible matchings, the combined weight of all invalid matchings is at
most 1.

⇒ “target” activities are 𝜆𝐺(𝑒) = 1 for all 𝑒 ∈ 𝐸, and 𝜆𝐺(𝑒) = 1/𝑛! for
all other 𝑒.

We are working with the complete graph, the initial choice is to set 𝜆(𝑒) = 1
for all 𝑒.
Phases:
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Weight function

For some vertex 𝑣, the activities 𝜆(𝑒) for all nonedges 𝑒 ∉ 𝐸 which are
incident to 𝑣 are updated to

exp(−1/2)𝜆(𝑒) ≤ 𝜆′(𝑒) ≤ exp(1/2)𝜆(𝑒)

We must consolidate our position by finding, for each pair (𝑢,𝑣), a better
approximation to 𝑤∗(𝑢,𝑣): one that is within ratio 𝑐 for some 1 < 𝑐 < 2. For
this purpose, we may use the identity

𝑤(𝑢,𝑣)
𝑤∗(𝑢,𝑣) = 𝜋(ℳ(𝑢,𝑣))

𝜋(ℳ) , (2.10)

since 𝑤(𝑢,𝑣) is known to us and the probabilities on the right hand side may
be estimated to arbitrary precision by taking sample averages
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Weight function

• Sample, in polynomial time, from a distribution ̂𝜋, 𝑑TV(𝜋, ̂𝜋) ≤ 𝛿.
• We generate 𝑆 samples from ̂𝜋, and for each pair (𝑢,𝑣) ∈ 𝑉1 ×𝑉2 we
consider the proportion 𝑎(𝑢,𝑣) of samples with hole pair 𝑢,𝑣, together
with the proportion 𝑎 of samples that are perfect matchings. Clearly,

𝔼𝑎(𝑢,𝑣) = ̂𝜋(ℳ(𝑢,𝑣)), and 𝔼𝑎 = ̂𝜋(ℳ) (2.11)

• We denote by ̂𝜂 the failure probability.

• Provided the sample size 𝑆 is large enough, 𝑎(𝑢,𝑣) approximates
̂𝜋(ℳ(𝑢,𝑣)) within ratio 𝑐1/4, with probability at least 1− ̂𝜂
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Weight function

Condition (3.13) entails

𝔼𝑎(𝑢,𝑣) = ̂𝜋(ℳ(𝑢,𝑣)) ≥ 𝜋(ℳ(𝑢,𝑣))−𝛿 ≥ 1
4(𝑛2 +1) −𝛿.

Assuming 𝛿 ≤ 1/8(𝑛2 +1), it follows from any of the standard Chernoff
bounds, that 𝑂(𝑛2 log(1/ ̂𝜂)) samples from ̂𝜋 suffice to estimate
𝔼𝑎(𝑢,𝑣) = ̂𝜋(ℳ(𝑢,𝑣)) within ratio 𝑐1/4 with probability at least 1− ̂𝜂.
Taking 𝑐 = 6/5 and using 𝑆 = 𝑂(𝑛2 log(1/ ̂𝜂)) samples, we obtain refined
estimates 𝑤(𝑢,𝑣) satisfying

5𝑤∗(𝑢,𝑣)/6 ≤ 𝑤(𝑢,𝑣) ≤ 6𝑤∗(𝑢,𝑣)/5 (2.12)

with probability 1−(𝑛2 +1) ̂𝜂.
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Algorithm for weight estimation

Initialize 𝜆(𝑢,𝑣) ← 1 for all (𝑢,𝑣) ∈ 𝑉1 ×𝑉2.
Initialize 𝑤(𝑢,𝑣) ← 𝑛 for all (𝑢,𝑣) ∈ 𝑉1 ×𝑉2.
While there exists a pair 𝑦,𝑧 with 𝜆(𝑦,𝑧) > 𝜆𝐺(𝑦,𝑧) do:

Take a sample of size 𝑆 from MC with parameters 𝜆,𝑤,
using a simulation of 𝑇 steps in each case.

Use the sample to obtain estimates 𝑤′(𝑢,𝑣) satisfying
condition (3.13), for all 𝑢,𝑣, with high probability.

Set 𝜆(𝑦,𝑣) ← max{𝜆(𝑦,𝑣)exp(−1/2),𝜆𝐺(𝑦,𝑣)}, for all 𝑣 ∈ 𝑉2,
and 𝑤(𝑢,𝑣) ← 𝑤′(𝑢,𝑣) for all 𝑢,𝑣.

Output the final weights 𝑤(𝑢,𝑣).

24
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Weight function

• 𝑂(𝑛2 log𝑛) phases
• 𝑂(𝑛 log𝑛) to reduce the activities of edges incident at each of these
vertices to their final values

• 𝑂(𝑛9 log𝑛 log(1/ ̂𝜂)) the running time for each phase

⇒ 𝑂(𝑛11(log𝑛)2(log𝑛+ log𝜂−1))
• Set ̂𝜂 = 𝑂(𝜂/(𝑛4 log𝑛)), since there are 𝑂(𝑛4 log𝑛) individual
estimates to make in total.

25
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Weight function

Lemma
The algorithm finds approximations 𝑤(⋅, ⋅) within a constant ratio of the
ideal weights 𝑤∗

𝐺(⋅, ⋅) associated with the desired activities 𝜆𝐺 in time
𝑂(𝑛11(log𝑛)2(log𝑛+ log𝜂−1)), with failure probability 𝜂.

We need to set 𝜂 so that the overall failure probability is strictly less than 𝛿,
e.x. 𝜂 = 𝛿/2.
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Reacap

Theorem
Assuming the weight function 𝑤 satisfies inequality

𝑤∗(𝑢,𝑣)
2 ≤ 𝑤(𝑢,𝑣) ≤ 2𝑤∗(𝑢,𝑣), (3.13)

for all (𝑢,𝑣) ∈ 𝑉1 ×𝑉2 with ℳ(𝑢,𝑣) ≠ ∅, then the mixing time of the
Markov chain MC is bounded above by
𝜏𝑀(𝛿) = 𝑂(𝑛6𝑔(log(𝜋(𝑀)−1)+ log𝛿−1)).

Theorem
For an ergodic, reversible Markov chain with selfloop probabilities
𝑃(𝑀,𝑀) ≥ 1/2 for all states 𝑀 , and any initial state 𝑀0 ∈ Ω,

𝜏𝑀0(𝛿) ≤ 𝜚(ln𝜋(𝑀0)−1 + ln𝛿−1)
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Canonical Paths

• canonical path 𝛾𝐼,𝐹 from each state 𝐼 ∈ Ω to every other state 𝐹 ∈ Ω
• flow 𝑓𝐼,𝐹 for all ordered pairs (𝐼,𝐹 ), 𝑓𝐼,𝐹 (𝛾𝐼,𝐹 ) = 𝜋(𝐼)𝜋(𝐹).
• canonical paths for states 𝐼 ∈ 𝒩 = Ω\ℳ to states in 𝐹 ∈ ℳ
• Γ = 𝛾𝐼,𝐹 ∶ (𝐼,𝐹 ) ∈ 𝒩×ℳ and bound its congestion

• The canonical paths are defined by 𝐼 ⊕𝐹 .

→ alternating cycles
→ single alternating path from y to z.

28
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Canonical Paths

The alternating path 𝑦 = 𝑣0 ∼ · · · ∼ 𝑣2𝑘+1 = 𝑧 is unwound by:

(i) successively, for each 0 ≤ 𝑖 ≤ 𝑘 −1, exchanging the edge (𝑣2𝑖,𝑣2𝑖+1)
for the edge (𝑣2𝑖+1,𝑣2𝑖+2)

(ii) adding the edge (𝑣2𝑘,𝑣2𝑘+1)
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Canonical Paths

A cycle 𝑣0 ∼ 𝑣1 ∼ ⋯ ∼ 𝑣2𝑘 = 𝑣0, where we assume without loss of
generality that the edge (𝑣0,𝑣1) belongs to 𝐼 , is unwound by:

(i) removing the edge (𝑣0,𝑣1)
(ii) successively, for each 1 ≤ 𝑖 ≤ 𝑘 −1, exchanging the edge (𝑣2𝑖 −1,𝑣2𝑖)

for the edge (𝑣2𝑖,𝑣2𝑖+1)
(iii) adding the edge (𝑣2𝑘−1,𝑣2𝑘)
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Canonical Paths

For each transition 𝑡, denote by

cp(𝑡) = {(𝐼,𝐹 ) ∶ 𝛾𝐼,𝐹 contains t as a transition}

The set of canonical paths using that transition.

We define the congestion of Γ as

𝜚(Γ) = max
𝑡

{ 𝐿
𝑄(𝑡) ∑

(𝐼,𝐹)∈cp(𝑡)
𝜋(𝐼)𝜋(𝐹)}, (3.14)

where 𝐿 is an upper bound on the length |𝛾𝐼,𝐹 | of any canonical path, and 𝑡
ranges over all transitions.
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Canonical Paths

Lemma
Assuming the weight function 𝑤 satisfies inequality (3.13) for all
(𝑢,𝑣) ∈ 𝑉1 ×𝑉2, then 𝜚(Γ) ≤ 48𝑛4.
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Congestion bound

Lemma
Denoting by 𝒩 = Ω\ℳ the set of nearperfect matchings, there exists a
flow 𝑓 in MC with congestion

𝜚(𝑓) ≤ [2+4(𝜋(𝒩)
𝜋(ℳ + 𝜋(ℳ)

𝜋(𝒩) ))]𝜚(Γ)
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Theorem
For an ergodic, time reversible Markov chain with selfloop probabilities
𝑃(𝑀,𝑀) ≥ 1/2 for all states 𝑀 , and any initial state 𝑀0 ∈ Ω,

𝜏𝑀0(𝛿) ≤ 𝜚(ln𝜋(𝑀0)−1 + ln𝛿−1)

Also:𝜋(𝒩)/𝜋(ℳ) = Θ(𝑛2)

Theorem
Assuming the weight function 𝑤 satisfies inequality (2.9) for all
(𝑢,𝑣) ∈ 𝑉1 ×𝑉2 with ℳ(𝑢,𝑣) ≠ ∅, then the mixing time of the Markov
chain MC is bounded above by 𝜏𝑀(𝛿) = 𝑂(𝑛6𝑔(log(𝜋(𝑀)−1)+ log𝛿−1)).
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Suppose 𝐺 is a bipartite graph on 𝑛+𝑛 vertices and that we want to estimate
the number of perfect matchings in 𝐺 within ratio 𝑒±𝜀, for some specified
𝜀 > 0.

• Λ𝑖: the weight function associated with the pair (𝜆𝑖,𝑤𝑖) in the 𝑖th
phase
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𝜀 > 0.

• Λ𝑖: the weight function associated with the pair (𝜆𝑖,𝑤𝑖)

Λ(𝑀) = {𝜆(𝑀)𝑤(𝑢,𝑣) , if 𝑀 ∈ ℳ(𝑢,𝑣) for some 𝑢,𝑣
𝜆(𝑀) , if 𝑀 ∈ ℳ
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Suppose 𝐺 is a bipartite graph on 𝑛+𝑛 vertices and that we want to estimate
the number of perfect matchings in 𝐺 within ratio 𝑒±𝜀, for some specified
𝜀 > 0.

• Λ𝑖: the weight function associated with the pair (𝜆𝑖,𝑤𝑖)
• Λ𝑖(Ω) = ∑𝑀∈Ω Λ𝑖(𝑀) is a “partition function” for weighted
matchings after the 𝑖th phase.

• Λ0(Ω) = (𝑛2 +1)𝑛!
• At termination, Λ𝑟(Ω) is roughly 𝑛2 +1 times the number of perfect
matchings in 𝐺.
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Considering the “telescoping product”

Λ𝑟(Ω) = Λ0(Ω)× Λ1(Ω)
Λ0(Ω) × Λ2(Ω)

Λ1(Ω) × ⋯ × Λ𝑟(Ω)
Λ𝑟−1(Ω) , (4.15)

we see that we may obtain a rough estimate for the number of perfect
matchings in 𝐺 by estimating in turn each of the ratios Λ𝑖+1/Λ𝑖(Ω).

The rule for updating the activities from 𝜆𝑖 to 𝜆𝑖+1, together with the
constraints on the weights, ensure

1
4𝑒 ≤ Λ𝑖+1(𝑀)

Λ𝑖(𝑀) ≤ 4𝑒, for all 𝑀 ∈ Ω

Thus we are in ”good shape” to estimate the various ratios in (4.15) by
Monte Carlo sampling.
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Let 𝜋𝑖 denote the stationary distribution of the Markov chain used in phase
𝑖+1, so that 𝜋𝑖(𝑀) = Λ𝑖(𝑀)/Λ𝑖(Ω). Let 𝑍𝑖 denote the random variable
that is the outcome of the following experiment:

By running the Markov chain MC with parameters Λ = Λ𝑖
and 𝛿 = 𝜀/80𝑒2𝑟, obtain a sample matching 𝑀 from a distribution
that is within variation distance 𝜀/80𝑒2𝑟 of 𝜋𝑖.

Return Λ𝑖+1(𝑀)/Λ𝑖(𝑀).
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If we had sampled 𝑀 from the exact stationary distribution 𝜋𝑖 instead of an
approximation, then the resulting modified random variable 𝑍′

𝑖 would have
satisfied

𝔼𝑍′
𝑖 = ∑

𝑀∈Ω

Λ𝑖(𝑀)
Λ𝑖(Ω)

Λ𝑖+1(𝑀)
Λ𝑖(𝑀) = Λ𝑖+1(Ω)

Λ𝑖(Ω)

We must settle for

exp(− 𝜀
4𝑟)Λ𝑖+1(Ω)

Λ𝑖(Ω) ≤ 𝔼𝑍𝑖 ≤ exp( 𝜀
4𝑟)Λ𝑖+1(Ω)

Λ𝑖(Ω)
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Suppose 𝑠 independent trials are conducted for each 𝑖 using the above
experiment, and denote by ̄𝑍𝑖 the sample mean of the results.

Then 𝔼 ̄𝑍𝑖 = 𝔼𝑍𝑖, and

exp(− 𝜀
4)Λ𝑟(Ω)

Λ0(Ω) ≤ 𝔼( ̄𝑍0 ̄𝑍1 … ̄𝑍𝑟−1) ≤ exp(𝜀
4)Λ𝑟(Ω)

Λ0(Ω) (4.16)

𝑠 = Θ(𝑟𝜀−1) sufficiently large
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By Chebyshev’s inequality,

𝑃𝑟[exp(−𝜀/4)𝔼( ̄𝑍0 ⋯ ̄𝑍𝑟−1) ≤ (𝑛2 +1)𝑛! ̄𝑍0 ⋯ ̄𝑍𝑟−1 ≤ exp(𝜀/4)𝔼( ̄𝑍0 ⋯ ̄𝑍𝑟−1)]
≥ 11

12

Combining the inequalities with the fact that Λ0(Ω) = (𝑛2 +1)𝑛!

𝑃𝑟[exp(−𝜀/2)Λ𝑟(Ω) ≤ (𝑛2 +1)𝑛! ̄𝑍0 ⋯ ̄𝑍𝑟−1 ≤ exp(𝜀/2)Λ𝑟(Ω)] ≥ 11
12

Denote by ℳ𝐺 ⊂ ℳ the set of perfect matchings in the graph 𝐺. The
inequality provides an effective estimator for Λ𝑟(ℳ𝐺), already yielding a
rough estimate for |ℳ𝐺|.
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Consider the following experiment:

By running the Markov chain MC with parameters Λ = Λ𝑟
and 𝛿 = 𝜀/80𝑒2, obtain a sample matching 𝑀 from a distribution
that is within variation distance 𝜀/80𝑒2 of 𝜋𝑟.

Return 1 if 𝑀 ∈ ℳ𝐺, and 0 otherwise.

𝑌 : the outcome of the experiment.
̄𝑌 : denotes the sample mean of 𝑠′ = Θ(𝑛2𝜀−1) independent trials.

41



Introduction Markov Chain Congestion Bound Estimate the Permanent Arbitrary Weights Conclusion References

Permanent Estimator

From the experiments we obtain:

𝑃𝑟[exp(−𝜀)|ℳ𝐺| ≤ (𝑛2 +1)𝑛! ̄𝑌 ̄𝑍0 ⋯ ̄𝑍𝑟−1 ≤ exp(𝜀)|ℳ𝐺|] ≥ 5
6

The running time is 𝑂(𝜀−2𝑛11(log𝑛)3)
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Arbitrary Weights

Let an arbitrary matrix A with nonnegative entries

• 𝑎max = max𝑖,𝑗 𝑎(𝑖,𝑗)
• 𝑎min = min𝑖,𝑗 𝑎(𝑖,𝑗)
• per(𝐴) > 0 ⇒ per(𝐴) ≥ (𝑎min)𝑛

• Rounding zero entries 𝑎(𝑖,𝑗) to (𝑎min)𝑛/𝑛!,
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Generalization

Initialize 𝜆(𝑢,𝑣) ← 𝑎max for all (𝑢,𝑣) ∈ 𝑉1 ×𝑉2.
Initialize 𝑤(𝑢,𝑣) ← 𝑛𝑎max for all (𝑢,𝑣) ∈ 𝑉1 ×𝑉2.
While there exists a pair 𝑦,𝑧 with 𝜆(𝑦,𝑧) > 𝑎(𝑦,𝑧) do:

Take a sample of size 𝑆 from MC with parameters 𝜆,𝑤,
using a simulation of 𝑇 steps in each case.

Use the sample to obtain estimates 𝑤′(𝑢,𝑣) satisfying
condition (3.13), for all 𝑢,𝑣, with high probability.

Set 𝜆(𝑦,𝑣) ← max{𝜆(𝑦,𝑣)exp(−1/2),𝑎(𝑦,𝑣)}, for all 𝑣 ∈ 𝑉2,
and 𝑤(𝑢,𝑣) ← 𝑤′(𝑢,𝑣) for all 𝑢,𝑣.

Output the final weights 𝑤(𝑢,𝑣).

!The running time of this algorithm is polynomial in 𝑛 and log(𝑎max/𝑎min).
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Conclusion

■ We obtain a FPRAS for the Permanent

■ Interesting techniques

■ The disproportionate number of nearperfect matchings is resolved.

■ Several counting problems are reducible via approximationpreserving
reductions to the 0,1 permanent,

→ computing the number of labeled subgraphs of G with a specified
degree sequence of an arbitrary bipartite graph G.

→ counting the number of 0, 1flows of an arbitrary directed graph G
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Thank you!
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