Counting Complexity

Computation and Reasoning Laboratory

Graduate course
Spring semester 2022

П入прочорíяऽ $\mu \alpha$ Өи́ $\mu \alpha$ тоऽ

 Kриттоүраюí $)$ ($\Sigma \mathrm{HMM} \Upsilon$)

- ВоךӨós $\delta \iota \delta \alpha \sigma \kappa \alpha \lambda i ́ \alpha \varsigma ~ \& ~ \varepsilon \pi \iota \mu \varepsilon ́ \lambda \varepsilon ı \alpha ~ \delta \iota \alpha \varphi \alpha \nu \varepsilon \iota \omega ́ v: ~ A . ~ Х \alpha \lambda к \eta ́ ~$
- $\Delta \iota \alpha \lambda \varepsilon ́ \xi \varepsilon ı \varsigma: K \alpha ́ \theta \varepsilon ~ П \varepsilon ́ \mu \pi \tau \eta: ~ 16: 00-20: 00 ~(1.1 .31, ~ П \alpha \lambda \alpha ı \alpha ́ ~ K \tau i ́ \rho ı \alpha ~$ $\Sigma H M M \Upsilon)$

- $\sum \varepsilon \lambda i ́ \delta \alpha:$ https://courses.corelab.ntua.gr/course/view.php?id=83
- Про $\pi \alpha \iota \tau о и ́ \mu \varepsilon v \alpha:$ Eтıтихŋ́s $\pi \alpha \rho \alpha к о \lambda о и ́ \theta \eta \sigma \eta \mu \alpha \theta \eta ́ \mu \alpha \tau о \varsigma$

- E $\xi^{\prime} \varepsilon^{\prime} \alpha \sigma \eta$:
- Ouı入ía
- Абкท́бєıs

Course information

This course is designed for students of the graduate program "Algorithms, Logic, and Discrete Mathematics" and for PhD students of the School of Electrical and Computer Engineering.

- Teachers: S. Zachos, A. Pagourtzis
- Teaching assistant: A. Chalki
- Course material creators: S. Zachos, A. Pagourtzis, A. Chalki
- Course slides created by A. Chalki
- Website: https://courses.corelab.ntua.gr/course/view.php?id=83
- Lectures: Every Thursday 16:00-20:00 (room 1.1.31, old buildings)
- Prerequisites: Successful completion of a Computational Complexity course.
- To succeed in this course, students are required to submit two series of exercises and deliver a talk.

Motivation for this course

- 2021 Gödel Prize was jointly awarded to the three papers about the complexity of counting CSP (Bulatov 2013, Dyer \& Richerby 2013, Cai \& Chen 2017).
- Workshop 'Counting complexity and phase transitions' at Simons Institute for the Theory of Computing (2016).
- Two recent invited talks at conferences co-organized by CoReLab.
- Richerby's talk
- Cai's talk
- Research interests of CoReLab include Counting Complexity.

Plan for this course

- Introduction to counting complexity.
- Counting problems that are efficiently solved (counting perfect matchings in planar graphs and problems reducible to it).
- Dichotomy theorems for classes of counting problems (counting graph homomorphisms, \#CSPs).
- Approximating hard counting problems (sampling vs counting, intro to MCMC, FPRAS for counting problems).
- Descriptive complexity for counting (logical characterizations of $\mathrm{\# P}$ and some of its subclasses).

Why counting?

Why not? But also many interesting problems from different areas can be expressed as counting problems:

- Computing the partition function in statistical physics.
- Computing the volume of a convex body in computational geometry.
- Computing the permanent in linear algebra.
- Computing the social cost of a given mixed Nash equilibrium in selfish games in algorithmic game theory (in fact a probability problem can be reduced to this one).
- Optimizing an objective function under the presence of uncertainty requires counting approximate solutions for the corresponding decision problem.

Bibliography

Textbooks

(1) Jin-Yi Cai, Xi Chen, Complexity dichotomies for counting problems, Cambridge University Press, 2017.
(2) Mark Jerrum, Counting and Markov chains, CMU Math.
(3) Sanjeev Arora, Boaz Barak, Computational Complexity: A Modern Approach, Cambridge University Press, 2009.

Overview

(1) Introduction to Counting Complexity

- The class \#P
- Three classes of counting problems
- Holographic transformations
(2) Matchgates and Holographic Algorithms
- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
(3) Polynomial Interpolation
(4) Dichotomy Theorems for counting problems
(5) Approximation of counting problems
- Sampling and counting
- Markov chains
- Markov chain for sampling graph colorings
(6) Appendix

Overview

(1) Introduction to Counting Complexity

- The class \#P
- Three classes of counting problems
- Holographic transformations
(2) Matchgates and Holographic Algorithms
- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
(3) Polynomial Interpolation
(4) Dichotomy Theorems for counting problems
(5) Approximation of counting problems
- Sampling and counting
- Markov chains
- Markov chain for sampling graph colorings
(6) Appendix

Overview

(1) Introduction to Counting Complexity

- The class \#P
- Three classes of counting problems
- Holographic transformations
(2) Matchgates and Holographic Algorithms
- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
(3) Polynomial Interpolation
(4) Dichotomy Theorems for counting problems
(5) Approximation of counting problems
- Sampling and counting
- Markov chains
- Markov chain for sampling graph colorings
(6) Appendix

The class NP

- Decision problem: Is there an independent set of size at least k in the input graph G ?
- Membership in NP: The set of graphs that have an independent set of size at least k.
- NP: $L \in$ NP iff there is an NPTM M s.t.

$$
x \in L \Leftrightarrow M(x) \text { has an accepting computation }
$$

- NP (alt def): $L \in$ NP iff $L=\{x \mid \exists y R(x, y)\}$ for a polynomially decidable and polynomially balanced relation R.

The class \#P

- Counting problem: How many satisfying assignments does a 3CNF formula ϕ have?
- Membership in \#P: The function that on input a 3CNF formula returns the number of its satisfying assignments.

Definition

A function $f:\{0,1\}^{*} \rightarrow \mathbb{N}$ is in \#P if there exists a polynomially decidable and polynomially balanced relation R such that for every $x \in\{0,1\}^{*}$,

$$
f(x)=\left|\left\{y \in\{0,1\}^{*}: R(x, y)\right\}\right| .
$$

- \# \mathbf{P} is a class of functions that take values in \mathbb{N}.
- An NPTM outputs 'yes' or 'no' and we want to compute the number of accepting computation paths.
- $f \in \# P$ iff there is an NPTM M s.t. $M(x)$ has $f(x)$ accepting paths.
- For an NPTM M, we define the function $\operatorname{acc}_{M}(x):\{0,1\}^{*} \rightarrow \mathbb{N}$ as follows:

$$
\operatorname{acc}_{M}(x)=\# \text { accepting paths of } M \text { on input } x
$$

Then,

$$
\# \mathrm{P}=\left\{a c c_{M} \mid M \text { is an NPTM }\right\}
$$

Examples of counting problems in \#P (1)

Every decision problem in NP has a counting version in \#P.
Decision version: Is a graph 2-colourable?

Counting version: How many 2-colorings does a graph have?

Examples of counting problems in \#P (1)

Every decision problem in NP has a counting version in \#P.
Decision version: Is a graph 2-colourable? in P

Counting version: How many 2-colorings does a graph have? in FP1
${ }^{1} \mathrm{FP}$ is the class of functions computable in deterministic polynomial time.

Examples of counting problems in \#P (2)

Decision version: Is a 3CNF formula satisfiable?

$$
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee x_{2}\right) \wedge\left(x_{4} \vee x_{1} \vee x_{2}\right)
$$

Counting version: How many satisfying assignments does a 3CNF formula have?

Examples of counting problems in \#P (2)

Decision version: Is a 3CNF formula satisfiable? NP-complete

$$
\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee x_{2}\right) \wedge\left(x_{4} \vee x_{1} \vee x_{2}\right)
$$

Counting version: How many satisfying assignments does a 3CNF formula have? NP-hard (we will see it is \#P-complete)

Examples of counting problems in \#P (3)

Decision version: Does a bipartite graph have a perfect matching?

Counting version: How many perfect matchings does a bipartite graph have?

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

Examples of counting problems in \#P (3)

Decision version: Does a bipartite graph have a perfect matching?

Counting version: How many perfect matchings does a bipartite graph have?

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

Examples of counting problems in \#P (3)

Decision version: Does a bipartite graph have a perfect matching?

Counting version: How many perfect matchings does a bipartite graph have?

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

Examples of counting problems in \#P (3)

Decision version: Does a bipartite graph have a perfect matching? in P

Counting version: How many perfect matchings does a bipartite graph have? \#P-complete

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right] \\
\operatorname{Permanent}(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i, \sigma(i)}
\end{gathered}
$$

Examples of counting problems in \#P (4)

Decision version: Is there an independent set (of any size) in a graph? trivial

Counting version: How many independent sets (of any size) are there in a graph? \#P-complete

Reductions between counting functions

- Cook (poly-time Turing)

$$
f \leqslant T g: f \in F P^{g}
$$

- Karp / parsimonious (poly-time many one)

$$
f \leqslant_{m} g: \exists h \in F P, \forall x f(x)=g(h(x))
$$

We write $f \equiv_{T} g$ (resp. $f \equiv_{m} g$) to denote that f, g are Turing equivalent (resp. parsimoniously equivalent).

