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Πληροφορίες μαθήματος

Ειδικά Θέματα Αλγορίθμων: Μετρητική Πολυπλοκότητα (ΑΛΜΑ)
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Κρυπτογραφία) (ΣΗΜΜΥ)

Διδάσκοντες: Σ. Ζάχος, Α. Παγουρτζής

Βοηθός διδασκαλίας & επιμέλεια διαφανειών: Α. Χαλκή

Διαλέξεις: Κάθε Πέμπτη: 16:00 – 20:00 (1.1.31, Παλαιά Κτίρια

ΣΗΜΜΥ)

΄Ωρες γραφείου: πριν και μετά από κάθε μάθημα

Σελίδα: https://courses.corelab.ntua.gr/course/view.php?id=83

Προαπαιτούμενα: Επιτυχής παρακολούθηση μαθήματος

Υπολογιστικής Πολυπλοκότητας

Εξέταση:

▶ Ομιλία

▶ Ασκήσεις

https://courses.corelab.ntua.gr/course/view.php?id=83


Course information

This course is designed for students of the graduate program ”Algorithms,
Logic, and Discrete Mathematics” and for PhD students of the School of
Electrical and Computer Engineering.

Teachers: S. Zachos, A. Pagourtzis

Teaching assistant: A. Chalki

Course material creators: S. Zachos, A. Pagourtzis, A. Chalki

Course slides created by A. Chalki

Website: https://courses.corelab.ntua.gr/course/view.php?id=83

Lectures: Every Thursday 16:00 – 20:00 (room 1.1.31, old buildings)

Prerequisites: Successful completion of a Computational Complexity
course.

To succeed in this course, students are required to submit two series
of exercises and deliver a talk.
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Motivation for this course

2021 Gödel Prize was jointly awarded to the three papers about the
complexity of counting CSP (Bulatov 2013, Dyer & Richerby 2013,
Cai & Chen 2017).

Workshop ‘Counting complexity and phase transitions’ at Simons
Institute for the Theory of Computing (2016).

Two recent invited talks at conferences co-organized by CoReLab.
▶ Richerby’s talk
▶ Cai’s talk

Research interests of CoReLab include Counting Complexity.
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https://eatcs.org/index.php/component/content/article/1-news/2885-2021-05-07-21-20-13
https://simons.berkeley.edu/programs/counting2016
https://www.corelab.ntua.gr/fct2021/tutorial.html
http://www.sci.brooklyn.cuny.edu/~zachos/nycac_2021/


Plan for this course

Introduction to counting complexity.

Counting problems that are efficiently solved (counting perfect
matchings in planar graphs and problems reducible to it).

Dichotomy theorems for classes of counting problems (counting graph
homomorphisms, #CSPs).

Approximating hard counting problems (sampling vs counting, intro
to MCMC, FPRAS for counting problems).

Descriptive complexity for counting (logical characterizations of #P
and some of its subclasses).
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Why counting?

Why not? But also many interesting problems from different areas can be
expressed as counting problems:

Computing the partition function in statistical physics.

Computing the volume of a convex body in computational geometry.

Computing the permanent in linear algebra.

Computing the social cost of a given mixed Nash equilibrium in selfish
games in algorithmic game theory (in fact a probability problem can
be reduced to this one).

Optimizing an objective function under the presence of uncertainty
requires counting approximate solutions for the corresponding decision
problem.
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Overview
1 Introduction to Counting Complexity

The class #P
Three classes of counting problems
Holographic transformations

2 Matchgates and Holographic Algorithms
Kasteleyn’s algorithm
Matchgates
Holographic algorithms

3 Polynomial Interpolation

4 Dichotomy Theorems for counting problems

5 Approximation of counting problems
Sampling and counting
Markov chains
Markov chain for sampling graph colorings

6 Appendix
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The class NP

Decision problem: Is there an independent set of size at least k in
the input graph G?

Membership in NP: The set of graphs that have an independent set
of size at least k .

NP: L ∈ NP iff there is an NPTM M s.t.

x ∈ L⇔ M(x) has an accepting computation

NP (alt def): L ∈ NP iff L = {x | ∃y R(x , y)} for a polynomially
decidable and polynomially balanced relation R.
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The class #P

Counting problem: How many satisfying assignments does a 3CNF
formula ϕ have?

Membership in #P: The function that on input a 3CNF formula
returns the number of its satisfying assignments.

Definition

A function f : {0, 1}∗ → N is in #P if there exists a polynomially decidable
and polynomially balanced relation R such that for every x ∈ {0, 1}∗,

f (x) =
∣∣{y ∈ {0, 1}∗ : R(x , y)}∣∣.

#P is a class of functions that take values in N.
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An NPTM outputs ‘yes’ or ‘no’ and we want to compute the number
of accepting computation paths.

f ∈ #P iff there is an NPTM M s.t. M(x) has f (x) accepting paths.

For an NPTM M, we define the function accM(x) : {0, 1}∗ → N as
follows:

accM(x) = # accepting paths of M on input x

Then,
#P = {accM |M is an NPTM }
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Examples of counting problems in #P (1)

Every decision problem in NP has a counting version in #P.

Decision version: Is a graph 2-colourable?

1
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Counting version: How many 2-colorings does a graph have?
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Examples of counting problems in #P (1)

Every decision problem in NP has a counting version in #P.

Decision version: Is a graph 2-colourable? in P
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Counting version: How many 2-colorings does a graph have? in FP1

1FP is the class of functions computable in deterministic polynomial time.
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Examples of counting problems in #P (2)

Decision version: Is a 3CNF formula satisfiable?

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x4 ∨ x2) ∧ (x4 ∨ x1 ∨ x2)

Counting version: How many satisfying assignments does a 3CNF
formula have?
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Examples of counting problems in #P (2)

Decision version: Is a 3CNF formula satisfiable? NP-complete

(x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x4 ∨ x2) ∧ (x4 ∨ x1 ∨ x2)

Counting version: How many satisfying assignments does a 3CNF
formula have? NP-hard (we will see it is #P-complete)
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Examples of counting problems in #P (3)

Decision version: Does a bipartite graph have a perfect matching?

1

2
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5

6

Counting version: How many perfect matchings does a bipartite graph
have?

A =

1 1 0
0 1 1
1 0 1


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Examples of counting problems in #P (3)

Decision version: Does a bipartite graph have a perfect matching? in P

1
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Counting version: How many perfect matchings does a bipartite graph
have? #P-complete

A =

1 1 0
0 1 1
1 0 1


Permanent(A) =

∑
σ∈Sn

n∏
i=1

ai ,σ(i)
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Examples of counting problems in #P (4)

Decision version: Is there an independent set (of any size) in a graph?
trivial

Counting version: How many independent sets (of any size) are there in
a graph? #P-complete
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Reductions between counting functions

Cook (poly-time Turing)

f ⩽T g : f ∈ FPg

Karp / parsimonious (poly-time many one)

f ⩽m g : ∃h ∈ FP, ∀x f (x) = g(h(x))

We write f ≡T g (resp. f ≡m g) to denote that f , g are Turing equivalent
(resp. parsimoniously equivalent).
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