Reductions and completeness

- \#3SAT is \#P-complete under parsimonious reductions (Exercise).

Reductions and completeness

- \#3SAT is \#P-complete under parsimonious reductions (Exercise).
- Permanent is \#P-complete under Turing reductions (Not an exercise).

Reductions and completeness

- \#3SAT is \#P-complete under parsimonious reductions (Exercise).
- Permanent is \#P-complete under Turing reductions (Not an exercise).
- If Permanent is \#P-complete under parsimonious reductions, then $\mathrm{P}=\mathrm{NP}$ (Exercise).

Reductions and completeness

- \#3SAT is \#P-complete under parsimonious reductions (Exercise).
- Permanent is \#P-complete under Turing reductions (Not an exercise).
- If Permanent is \#P-complete under parsimonious reductions, then $\mathrm{P}=\mathrm{NP}$ (Exercise).
- Every \#P-complete problem under parsimonious reductions has an NP-complete decision version (Execise).

Reductions and completeness

- \#3SAT is \#P-complete under parsimonious reductions (Exercise).
- Permanent is \#P-complete under Turing reductions (Not an exercise).
- If Permanent is \#P-complete under parsimonious reductions, then $\mathrm{P}=\mathrm{NP}$ (Exercise).
- Every \#P-complete problem under parsimonious reductions has an NP-complete decision version (Execise).
- Conjecture: Every NP-complete problem has a \#P-complete counting version.

Some basic inclusions

- $\mathrm{FP} \subseteq \# \mathrm{P} \subseteq \mathrm{FPSPACE}$.
- $\mathrm{NP} \subseteq \mathrm{P}^{\# \mathrm{P}[1]}$.
- If $F P=\# P$, then $P=N P$.
- Toda's Theorem: $\mathrm{PH} \subseteq \mathrm{P}^{\# \mathrm{P}}{ }^{[1]}$.

Overview

(1) Introduction to Counting Complexity

- The class \#P
- Three classes of counting problems
- Holographic transformations
(2) Matchgates and Holographic Algorithms
- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
(3) Polynomial Interpolation

4 Dichotomy Theorems for counting problems

Graph Homomorphism Problems

Target graph H

1
2

Graph Homomorphism Problems

Input graph G

Target graph H

- Every homomorphism from G to H is a 2-coloring of G.
- The number of homomorphisms from G to H is equal to \#2-Colorings(G).

Graph homomorphisms preserve structure

Definition

Given graphs G and H, a homomorphism from G to H is a function $f: V(G) \rightarrow V(H)$ such that every edge $(u, v) \in E(G)$ is mapped to an edge $(f(u), f(v)) \in E(H)$.

Counting graph homomorphisms or H -colorings of G

- We denote by $\operatorname{Hom}(G, H)$ the number of homomorphisms from G to H.
- Graph homomorphisms from G to H are also called H-colorings of G.
- We denote by \#HomsToH (or \#H-Colorings) the problem of counting the number of homomorphisms from an input graph to a fixed graph H.

Other examples - \#3-Colorings

Other examples - \#3-Colorings

- $\operatorname{Hom}\left(G, K_{3}\right)=\# 3-\operatorname{Colorings}(G)$.
- $\operatorname{Hom}\left(G, K_{q}\right)=\# q$-Colorings(G) for any $q \geq 2$.

Other examples - \#VertexCovers

Other examples - \#VErtexCovers

Other examples - \#VErtexCovers

- The subset of vertices mapped to 1 form a vertex cover.
- \#HomsToH $(G)=\# \operatorname{VertexCovers}(G)$.

Other examples - \#IS

- The subset of vertices mapped to 0 form an independent set.
- \#HomsToH(G) $=\# \operatorname{IS}(G)$.
- Let A be the (0-1) adjacency matrix of H.
- Given a graph G, \#HomsToH is the problem of computing the following sum

$$
Z_{A}(G)=\sum_{\sigma: V(G) \rightarrow V(H)} \prod_{(u, v) \in E(G)} A(\sigma(u), \sigma(v))
$$

- Sometimes we write $Z_{H}(G)$ instead of $Z_{A}(G)$.

For example,
So, the following $\sigma: V \rightarrow[3]$

contributes 0 , since

$$
A(\sigma(e), \sigma(c))=A(3,3)=0
$$

Weighted graph homomorphisms

- In general, H can be a weighted graph, and so A can be a matrix over the real or complex numbers.

Weighted graph homomorphisms

- In general, H can be a weighted graph, and so A can be a matrix over the real or complex numbers.
- The product $\prod A(\sigma(u), \sigma(v))$ is the weight of assignment σ. $(u, v) \in E(G)$

Weighted graph homomorphisms

- In general, H can be a weighted graph, and so A can be a matrix over the real or complex numbers.
- The product $\prod A(\sigma(u), \sigma(v))$ is the weight of assignment σ.

$$
(u, v) \in E(G)
$$

- The sum over all assignments

$$
Z_{A}(G)=\sum_{\sigma: V(G) \rightarrow V(H)} \prod_{(u, v) \in E(G)} A(\sigma(u), \sigma(v))
$$

is called the partition function.

Weighted graph homomorphisms

- Motivation and applications come from statistical physics.
- To capture the computational complexity of such functions, we consider the closure of \#P under Turing reductions.
That is the class FP\#P.

Partition functions in statistical physics

- In statistical physics, partition functions can be represented as weighted graph homomorphisms.
- In this case, H is a weighted graph with both edge and vertex weights.
- Let A be the adjacency matrix of H, where $A(u, v)$ is the weight of the edge $(u, v) \in E(H)$ and let $\left\{\lambda_{v}\right\}_{v \in V(H)}$ be the vertex weights.
- Weighted \#HomsToH is the problem of computing the following sum

$$
\sum_{\sigma: V(G) \rightarrow V(H)}\left(\prod_{(u, v) \in E(G)} A(\sigma(u), \sigma(v)) \prod_{v \in V(G)} \lambda_{\sigma(v)}\right) .
$$

2-spin systems - Ising model

Adjacency matrix

$$
A=\left[\begin{array}{ll}
a & b \\
b & a
\end{array}\right]
$$

Vertex weights

$$
\lambda_{0}=1 \text { and } \lambda_{1}=\lambda
$$

$$
\begin{gathered}
Z_{a, b, \lambda}(G)= \\
\sum_{\sigma: V \rightarrow\{0,1\}} a^{|\{(u, v) \in E: \sigma(u)=\sigma(v)\}|} \cdot b^{|\{(u, v) \in E: \sigma(u) \neq \sigma(v)\}|} \cdot \lambda^{|\{u \in V: \sigma(u)=1\}|}
\end{gathered}
$$

2-spin systems - Hardcore model

Adjacency matrix

$$
\begin{gathered}
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right] \\
\text { Vertex weights } \\
\lambda_{0}=1 \text { and } \lambda_{1}=\lambda
\end{gathered}
$$

$$
Z_{\lambda}(G)=\sum_{I \in \mathcal{I}} \lambda^{|I|}
$$

where \mathcal{I} is the set of all independent sets in G

Counting induced subgraphs with an even number of edges

Adjacency matrix

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

- The term $\prod_{(u, v) \in E} A(\sigma(u), \sigma(v))$ is 1 if the subgraph of G induced by vertices mapped to 1 has an even number of edges and it is -1 , otherwise.
- $Z_{A}(G)=X-Y$, where X (resp. Y) is the number of induced subgraphs of G with an even (resp. odd) number of edges.
- $X+Y=2^{n}$
- So,

$$
X=\frac{2^{n}+Z_{A}(G)}{2} .
$$

Constraint Satisfaction Problems

3SAT as a CSP:

- Variables x_{1}, \ldots, x_{n}
- Domain $\{0,1\}$
- Constraints $\left(C_{i}, x_{i_{1}}, x_{i_{2}}, x_{i_{3}}\right)$

Clause	Relation
$x_{1} \vee x_{2} \vee x_{3}$	$C_{0}=\{0,1\}^{3} \backslash(0,0,0)$
$\neg x_{1} \vee x_{2} \vee x_{3}$	$C_{1}=\{0,1\}^{3} \backslash(1,0,0)$
$\neg x_{1} \vee \neg x_{2} \vee x_{3}$	$C_{2}=\{0,1\}^{3} \backslash(1,1,0)$
$\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}$	$C_{3}=\{0,1\}^{3} \backslash(1,1,1)$

Constraint Satisfaction Problems

Decision version

Input:

- A set of variables x_{1}, \ldots, x_{n}.
- A domain [q] of size q.
- A set C of constraints $\left(C_{i}, x_{i_{1}}, \ldots, x_{i_{k}}\right)$, where C_{i} are relations on the domain of arity k.

Output: Is there an assignment of values to the variables such that all constraints are satisfied?

Counting Constraint Satisfaction Problems

- A counting constraint satisfaction problem is parameterized by a set of local constraint functions \mathcal{F}.

Counting Constraint Satisfaction Problems

- A counting constraint satisfaction problem is parameterized by a set of local constraint functions \mathcal{F}.
- It is denoted by $\# \operatorname{CSP}_{q}(\mathcal{F})$ when the constraint functions in \mathcal{F} are defined over a domain $[q]$ of size q.

Counting Constraint Satisfaction Problems

- A counting constraint satisfaction problem is parameterized by a set of local constraint functions \mathcal{F}.
- It is denoted by $\# \operatorname{CSP}_{q}(\mathcal{F})$ when the constraint functions in \mathcal{F} are defined over a domain $[q]$ of size q.
- Every constraint is a function $f \in \mathcal{F}$ of some arity k together with a sequence of k variables $x_{i_{1}}, \ldots, x_{i_{k}} \in\left\{x_{1}, \ldots, x_{n}\right\}$.

Counting Constraint Satisfaction Problems

- A counting constraint satisfaction problem is parameterized by a set of local constraint functions \mathcal{F}.
- It is denoted by $\# \operatorname{CSP}_{q}(\mathcal{F})$ when the constraint functions in \mathcal{F} are defined over a domain $[q]$ of size q.
- Every constraint is a function $f \in \mathcal{F}$ of some arity k together with a sequence of k variables $x_{i_{1}}, \ldots, x_{i_{k}} \in\left\{x_{1}, \ldots, x_{n}\right\}$.
- Output: How many assignments of values to the variables are there such that all constraints are satisfied?
Equivalently, compute the following sum

$$
\sum_{x_{1}, \ldots, x_{n} \in[q]} \prod_{\left(f, x_{i_{1}}, \ldots, x_{i_{k}}\right) \in C} f\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)
$$

Examples of $\# \operatorname{CSP}_{q}(\mathcal{F})-\#$ SAT

- Variables x_{1}, \ldots, x_{n}
- Domain $\{0,1\}$
- $\mathcal{F}=\left\{O R_{k} \mid k \geq 1\right\} \cup\{\neq 2\}$, where

$$
\begin{gathered}
O R_{k}\left(x_{1}, \ldots, x_{k}\right)=\left\{\begin{array}{ll}
0, & \text { if } x_{1}=\ldots=x_{k}=0 \\
1, & \text { otherwise }
\end{array}\right. \text { and } \\
\not \neq 2\left(x_{1}, x_{2}\right)= \begin{cases}0, & \text { if } x_{1}=x_{2} \\
1, & \text { otherwise }\end{cases}
\end{gathered}
$$

Examples of $\# \operatorname{CSP}_{2}(\mathcal{F})-\#$ SAT

For example, $\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(\neg x_{3} \vee x_{4}\right)$ corresponds to the following instance of $\# \operatorname{CSP}_{2}(\mathcal{F})$:
(1) Variables $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$.
(2) Constraints $\left(O R_{3}, x_{1}, x_{2}, x_{3}\right),\left(O R_{2}, x_{5}, x_{4}\right),\left(\neq 2, x_{3}, x_{5}\right)$.

Examples of $\# \mathrm{CSP}_{2}(\mathcal{F})$ - Counting satisfying assignments

Problem	Constraint functions
\#3SAT	$\mathcal{F}=\left\{O R_{3}, \neq 2\right\}$
\#NAE-3SAT	$\mathcal{F}=\left\{\right.$ Not-All-Equa $\left._{3}, \neq 2\right\}$
\#MonSat	$\mathcal{F}=\left\{O R_{k} \mid k \geq 1\right\}$
\#Mon3SAT	$\mathcal{F}=\left\{O R_{3}\right\}$
\#Mon1-In-3SAT	$\mathcal{F}=\left\{\right.$ Exact-One $\left._{3}\right\}$

An Example of $\# \mathrm{CSP}_{3}(\mathcal{F})-\# 3$-Colorings

- Variables x_{1}, \ldots, x_{n}
- Domain $\{1,2,3\}$
- $\mathcal{F}=\{\neq 2\}$

For example,

corresponds to the following instance of $\# \mathrm{CSP}_{3}(\mathcal{F})$:
(1) Variables $x_{a}, x_{b}, x_{c}, x_{d}, x_{e}$.
(2) Constraints $\left(\neq 2, x_{a}, x_{d}\right)$, $\left(\neq 2, x_{b}, x_{d}\right)$, $\left(\neq 2, x_{d}, x_{e}\right),\left(\neq 2, x_{c}, x_{d}\right),\left(\neq 2, x_{c}, x_{e}\right)$.

Computing \#HomsToH is a $\# \operatorname{CSP}_{q}(\mathcal{F})$

For graphs G and H, we construct a CSP instance with only one kind of constraint, as follows.

- The variables are the vertices of G.
- The domain is the vertex set of H.
- The constraints are $((u, v), E(H))$ for every edge $(u, v) \in E(G)$.

An assignment σ of values to the variables is a function from $V(G)$ to $V(H)$ such that $(\sigma(u), \sigma(v)) \in E(H)$ for every $(u, v) \in E(G)$.

Computing \#HomsToH is a $\# \operatorname{CSP}_{q}(\mathcal{F})$

For graphs G and H, we construct a CSP instance with only one kind of constraint, as follows.

- The variables are the vertices of G.
- The domain is the vertex set of H.
- The constraints are $((u, v), E(H))$ for every edge $(u, v) \in E(G)$.

An assignment σ of values to the variables is a function from $V(G)$ to $V(H)$ such that $(\sigma(u), \sigma(v)) \in E(H)$ for every $(u, v) \in E(G)$.

For the counting version, we consider the corresponding constraint function $E_{H}: V(H) \times V(H) \rightarrow\{0,1\}$.

\#3-Colorings revisited

3
(1) Variables $x_{a}, x_{b}, x_{c}, x_{d}, x_{e}$.
(2) Domain $\{1,2,3\}$
(3) Constraints $\left(E_{H}, x_{a}, x_{d}\right),\left(E_{H}, x_{b}, x_{d}\right),\left(E_{H}, x_{d}, x_{e}\right),\left(E_{H}, x_{c}, x_{d}\right),\left(E_{H}, x_{c}, x_{e}\right)$, where $E_{H}(x, y)=\left\{\begin{array}{ll}1, & \text { if }(x, y) \in E(H) \\ 0, & \text { otherwise }\end{array}\right.$.

- $\# \operatorname{CSP}_{q}(\mathcal{F})$ is a generalization of counting graph homomorphisms.
- $\#_{\operatorname{CSP}_{q}}(\mathcal{F})$ is a generalization of counting graph homomorphisms.
- Every $\# \operatorname{CSP}_{q}(\mathcal{F})$ is a problem of counting homomorphisms between two relational structures \mathcal{G} and \mathcal{H}.
- $\# \operatorname{CSP}_{q}(\mathcal{F})$ is a generalization of counting graph homomorphisms.
- Every $\# \operatorname{CSP}_{q}(\mathcal{F})$ is a problem of counting homomorphisms between two relational structures \mathcal{G} and \mathcal{H}.
- Weighted counting CSP are defined by considering constraint functions over the rational, real or complex numbers.
- $\# \operatorname{CSP}_{q}(\mathcal{F})$ is a generalization of counting graph homomorphisms.
- Every $\# \operatorname{CSP}_{q}(\mathcal{F})$ is a problem of counting homomorphisms between two relational structures \mathcal{G} and \mathcal{H}.
- Weighted counting CSP are defined by considering constraint functions over the rational, real or complex numbers.
- Boolean CSP are CSP with Boolean domain $\{0,1\}$.

Holant problems

Exact-One $2\left(e_{i}, e_{j}\right)= \begin{cases}1, & \text { if }\left(e_{i}, e_{j}\right)=(0,1) \text { or }\left(e_{i}, e_{j}\right)=(1,0) \\ 0, & \text { otherwise }\end{cases}$
The subscript k in Exact-One e_{k} denotes the arity of the function.

Holant problems

Holant problems

- A Holant problem is parameterized by a set \mathcal{F} of local constraint functions, also called signatures.

Holant problems

- A Holant problem is parameterized by a set \mathcal{F} of local constraint functions, also called signatures.
- A signature grid $\Omega=(G, \pi)$ over \mathcal{F} consists of a graph $G=(V, E)$ and a mapping π that assigns to each vertex $u \in V$ an $f_{u} \in \mathcal{F}$ and a linear order on the incident edges at u.

Holant problems

- A Holant problem is parameterized by a set \mathcal{F} of local constraint functions, also called signatures.
- A signature grid $\Omega=(G, \pi)$ over \mathcal{F} consists of a graph $G=(V, E)$ and a mapping π that assigns to each vertex $u \in V$ an $f_{u} \in \mathcal{F}$ and a linear order on the incident edges at u.
- The arity of f_{u} is equal to the degree of u, and the incident edges at u are associated with the input variables of f_{u}.

Holant problems

- A Holant problem is parameterized by a set \mathcal{F} of local constraint functions, also called signatures.
- A signature grid $\Omega=(G, \pi)$ over \mathcal{F} consists of a graph $G=(V, E)$ and a mapping π that assigns to each vertex $u \in V$ an $f_{u} \in \mathcal{F}$ and a linear order on the incident edges at u.
- The arity of f_{u} is equal to the degree of u, and the incident edges at u are associated with the input variables of f_{u}.
- A signature is symmetric if its value is invariant under permutation of its variables.

Holant problems

- A Holant problem is parameterized by a set \mathcal{F} of local constraint functions, also called signatures.
- A signature grid $\Omega=(G, \pi)$ over \mathcal{F} consists of a graph $G=(V, E)$ and a mapping π that assigns to each vertex $u \in V$ an $f_{u} \in \mathcal{F}$ and a linear order on the incident edges at u.
- The arity of f_{u} is equal to the degree of u, and the incident edges at u are associated with the input variables of f_{u}.
- A signature is symmetric if its value is invariant under permutation of its variables.
- If all signatures in \mathcal{F} are symmetric, then there is no need to assign an order for incident edges at any u.

Holant problems

Definition

For a set \mathcal{F} of signatures over a domain [q], we $\operatorname{define~}^{\operatorname{Holant}_{q}(\mathcal{F}) \text { as the }}$ problem with
Input: A signature grid $\Omega=(G, \pi)$ over \mathcal{F}
Output:

$$
\operatorname{Holant}_{q}(\Omega, \mathcal{F})=\sum_{\sigma: E \rightarrow[q]} \prod_{u \in V} f_{u}\left(\sigma \upharpoonright_{E(u)}\right)
$$

- $G=(V, E)$ and $E(u)$ denotes the incident edges of u.
- $\sigma \upharpoonright_{E(u)}$ denotes the restriction of σ to $E(u)$.
- $f_{u}\left(\sigma \upharpoonright_{E(u)}\right)$ is the evaluation of f_{u} on the ordered input tuple $\sigma \upharpoonright_{E(u)}$.
- We use Holant (\mathcal{F}) to denote $\operatorname{Holant}_{2}(\mathcal{F})$, the Holant problems over the Boolean domain.

Some notation

- A signature f of arity k over the Boolean domain can be denoted by $\left(f_{0}, f_{1}, \ldots, f_{2^{k}-1}\right)$, where f_{x} is the output of f on $x \in[2]^{k}$, ordered lexicographically.

Some notation

- A signature f of arity k over the Boolean domain can be denoted by $\left(f_{0}, f_{1}, \ldots, f_{2^{k}-1}\right)$, where f_{x} is the output of f on $x \in[2]^{k}$, ordered lexicographically.
- A signature f of arity k over the Boolean domain is symmetric if for every $x, y \in\{0,1\}^{k}$ of equal Hamming weight, $f(x)=f(y)$.
- In this case, f can also be expressed as $\left[f_{0}, f_{1}, \ldots, f_{k}\right]$, where f_{w} is the value of f on inputs of Hamming weight w.

Some notation

- A signature f of arity k over the Boolean domain can be denoted by $\left(f_{0}, f_{1}, \ldots, f_{2^{k}-1}\right)$, where f_{x} is the output of f on $x \in[2]^{k}$, ordered lexicographically.
- A signature f of arity k over the Boolean domain is symmetric if for every $x, y \in\{0,1\}^{k}$ of equal Hamming weight, $f(x)=f(y)$.
- In this case, f can also be expressed as $\left[f_{0}, f_{1}, \ldots, f_{k}\right]$, where f_{w} is the value of f on inputs of Hamming weight w.
- For example, Equality signature of arity k,

$$
\left(=_{k}\right)=[1,0, \ldots, 0,1]
$$

and Disequality signature of arity 2 ,

$$
(\neq 2)=[0,1,0] .
$$

Holant problems - Examples

Examples of counting problems in k-regular graphs.

- Over the Boolean domain:
$\operatorname{Holant}(G ; f)$ counts $\left\{\begin{array}{ll}\text { matchings } & \text { in } G \text { when } f=\text { AT-Most-One } \\ k\end{array} ;\right.$
- Over domain of size q, Holant $_{q}\left(G\right.$, All- $_{\text {Distinct }}^{k}$) is the problem \#q-EdgeColorings.

Planar / bipartite signature grids

- A planar signature grid is a signature grid s.t. its underlying graph is planar. We use Pl -Holant ${ }_{q}(\mathcal{F})$ to denote the restriction of Holant ${ }_{q}(\mathcal{F})$ to planar signature grids.

Planar / bipartite signature grids

- A planar signature grid is a signature grid s.t. its underlying graph is planar. We use Pl -Holant ${ }_{q}(\mathcal{F})$ to denote the restriction of Holant ${ }_{q}(\mathcal{F})$ to planar signature grids.
- A bipartite signature grid over $(\mathcal{F} \mid \mathcal{G})$ is a signature grid $\Omega=(H, \pi)$ over $\mathcal{F} \cup \mathcal{G}$, where $H=\left(V_{1} \cup V_{2}, E\right)$ is a bipartite graph, s.t. $\pi\left(V_{1}\right) \subseteq \mathcal{F}$ and $\pi\left(V_{2}\right) \subseteq \mathcal{G}$. We use Holant ${ }_{q}(\mathcal{F} \mid \mathcal{G})$ to denote the restriction of $\operatorname{Holant}_{q}(\mathcal{F} \cup \mathcal{G})$ to bipartite signatures over $(\mathcal{F} \mid \mathcal{G})$.

