• #3SAT is #P-complete under parsimonious reductions (Exercise).

- #3SAT is #P-complete under parsimonious reductions (Exercise).
- **PERMANENT** is **#**P-complete under Turing reductions (Not an exercise).

- #3SAT is #P-complete under parsimonious reductions (Exercise).
- **PERMANENT** is **#**P-complete under Turing reductions (Not an exercise).
 - If PERMANENT is #P-complete under parsimonious reductions, then P = NP (Exercise).

- #3SAT is #P-complete under parsimonious reductions (Exercise).
- **PERMANENT** is **#**P-complete under Turing reductions (Not an exercise).
 - If PERMANENT is #P-complete under parsimonious reductions, then P = NP (Exercise).
- Every #P-complete problem under parsimonious reductions has an NP-complete decision version (Execise).

- #3SAT is #P-complete under parsimonious reductions (Exercise).
- **PERMANENT** is **#**P-complete under Turing reductions (Not an exercise).
 - If PERMANENT is #P-complete under parsimonious reductions, then P = NP (Exercise).
- Every #P-complete problem under parsimonious reductions has an NP-complete decision version (Execise).
- Conjecture: Every NP-complete problem has a #P-complete counting version.

Some basic inclusions

- $FP \subseteq \#P \subseteq FPSPACE$.
- $\mathsf{NP} \subseteq \mathsf{P}^{\#\mathsf{P}[1]}$.
- If FP = #P, then P = NP.
- Toda's Theorem: $PH \subseteq P^{\#P[1]}$.

Overview

Introduction to Counting Complexity

- The class #P
- Three classes of counting problems
- Holographic transformations

Matchgates and Holographic Algorithms

- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
- 3 Polynomial Interpolation

Dichotomy Theorems for counting problems

Graph Homomorphism Problems

Input graph ${\boldsymbol{\mathsf{G}}}$

Graph Homomorphism Problems

- Every homomorphism from G to H is a 2-coloring of G.
- The number of homomorphisms from *G* to *H* is equal to #2-COLORINGS(*G*).

Graph homomorphisms preserve structure

Definition

Given graphs G and H, a homomorphism from G to H is a function $f: V(G) \rightarrow V(H)$ such that every edge $(u, v) \in E(G)$ is mapped to an edge $(f(u), f(v)) \in E(H)$.

Counting graph homomorphisms or H-colorings of G

- We denote by Hom(G, H) the number of homomorphisms from G to H.
- Graph homomorphisms from G to H are also called H-colorings of G.
- We denote by #HOMSTOH (or #H-COLORINGS) the problem of counting the number of homomorphisms from an input graph to a fixed graph *H*.

Other examples – #3-COLORINGS

Other examples – #3-COLORINGS

• Hom $(G, K_3) = #3$ -COLORINGS(G).

• Hom $(G, K_q) = #q$ -COLORINGS(G) for any $q \ge 2$.

Other examples – #VERTEXCOVERS

Other examples – #VERTEXCOVERS

Other examples – #VERTEXCOVERS

- The subset of vertices mapped to 1 form a vertex cover.
- #HomsToH(G) = #VERTEXCOVERS(G).

Other examples – #IS

- The subset of vertices mapped to 0 form an independent set.
- #HomsToH(G) = #IS(G).

- Let A be the (0-1) adjacency matrix of H.
- Given a graph G, #HOMSTOH is the problem of computing the following sum

$$Z_A(G) = \sum_{\sigma: V(G) \to V(H)} \prod_{(u,v) \in E(G)} A(\sigma(u), \sigma(v)).$$

• Sometimes we write $Z_H(G)$ instead of $Z_A(G)$.

So, the following $\sigma: V \to [3]$

contributes 0, since $A(\sigma(e), \sigma(c)) = A(3, 3) = 0.$

• In general, *H* can be a weighted graph, and so *A* can be a matrix over the real or complex numbers.

• In general, *H* can be a weighted graph, and so *A* can be a matrix over the real or complex numbers.

• The product $\prod_{(u,v)\in E(G)} A(\sigma(u), \sigma(v))$ is the weight of assignment σ .

• In general, *H* can be a weighted graph, and so *A* can be a matrix over the real or complex numbers.

• The product $\prod_{(u,v)\in E(G)} A(\sigma(u), \sigma(v))$ is the weight of assignment σ .

• The sum over all assignments

$$Z_{A}(G) = \sum_{\sigma: V(G) \to V(H)} \prod_{(u,v) \in E(G)} A(\sigma(u), \sigma(v))$$

is called the partition function.

- Motivation and applications come from statistical physics.
- To capture the computational complexity of such functions, we consider the closure of #P under Turing reductions.
 That is the class FP^{#P}.

Partition functions in statistical physics

- In statistical physics, partition functions can be represented as weighted graph homomorphisms.
- In this case, H is a weighted graph with both edge and vertex weights.
- Let A be the adjacency matrix of H, where A(u, v) is the weight of the edge (u, v) ∈ E(H) and let {λ_v}_{v∈V(H)} be the vertex weights.
- \bullet Weighted $\# {\rm HOMsToH}$ is the problem of computing the following sum

$$\sum_{\sigma: V(G) \to V(H)} \Big(\prod_{(u,v) \in E(G)} A(\sigma(u), \sigma(v)) \prod_{v \in V(G)} \lambda_{\sigma(v)} \Big).$$

2-spin systems - Ising model

Vertex weights $\lambda_0 = 1$ and $\lambda_1 = \lambda$

 $Z_{a,b,\lambda}(G) =$

 $\sum_{\sigma: V \to \{0,1\}} a^{|\{(u,v) \in E: \sigma(u) = \sigma(v)\}|} \cdot b^{|\{(u,v) \in E: \sigma(u) \neq \sigma(v)\}|} \cdot \lambda^{|\{u \in V: \sigma(u) = 1\}|}$

2-spin systems - Hardcore model

$$\begin{array}{l} \textbf{Adjacency matrix} \\ \textbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \end{array}$$

Vertex weights $\lambda_0 = 1$ and $\lambda_1 = \lambda$

$$Z_{\lambda}(G) = \sum_{I \in \mathcal{I}} \lambda^{|I|}$$

where \mathcal{I} is the set of all independent sets in G

Counting induced subgraphs with an even number of edges

- The term ∏_{(u,v)∈E} A(σ(u), σ(v)) is 1 if the subgraph of G induced by vertices mapped to 1 has an even number of edges and it is -1, otherwise.
- $Z_A(G) = X Y$, where X (resp. Y) is the number of induced subgraphs of G with an even (resp. odd) number of edges.
- $X + Y = 2^n$
- So,

$$X=\frac{2^n+Z_A(G)}{2}.$$

Constraint Satisfaction Problems

 $3\mathrm{SAT}$ as a CSP:

- Variables x₁, ..., x_n
- Domain $\{0,1\}$
- Constraints (*C_i*, *x_{i₁*, *x_{i₂*, *x_{i₃*)}}}

Clause	Relation
$x_1 \lor x_2 \lor x_3$	$C_0 = \{0,1\}^3 \setminus (0,0,0)$
$\neg x_1 \lor x_2 \lor x_3$	$C_1 = \{0,1\}^3 \setminus (1,0,0)$
$\neg x_1 \lor \neg x_2 \lor x_3$	$C_2 = \{0,1\}^3 \setminus (1,1,0)$
$\neg x_1 \lor \neg x_2 \lor \neg x_3$	$C_3 = \{0,1\}^3 \setminus (1,1,1)$

Constraint Satisfaction Problems

Decision version

Input:

- A set of variables $x_1, ..., x_n$.
- A domain [q] of size q.
- A set *C* of constraints (*C_i*, *x_{i₁}*, ..., *x_{i_k}*), where *C_i* are relations on the domain of arity *k*.

Output: Is there an assignment of values to the variables such that all constraints are satisfied?

• A counting constraint satisfaction problem is parameterized by a set of local constraint functions \mathcal{F} .

- A counting constraint satisfaction problem is parameterized by a set of local constraint functions \mathcal{F} .
- It is denoted by #CSP_q(F) when the constraint functions in F are defined over a domain [q] of size q.

- A counting constraint satisfaction problem is parameterized by a set of local constraint functions \mathcal{F} .
- It is denoted by #CSP_q(F) when the constraint functions in F are defined over a domain [q] of size q.
- Every constraint is a function f ∈ F of some arity k together with a sequence of k variables x_{i1},...,x_{ik} ∈ {x₁,...,x_n}.

- A counting constraint satisfaction problem is parameterized by a set of local constraint functions \mathcal{F} .
- It is denoted by #CSP_q(F) when the constraint functions in F are defined over a domain [q] of size q.
- Every constraint is a function f ∈ F of some arity k together with a sequence of k variables x_{i1},..., x_{ik} ∈ {x₁,..., x_n}.
- *Output:* How many assignments of values to the variables are there such that all constraints are satisfied? Equivalently, compute the following sum

$$\sum_{x_1,...,x_n \in [q]} \prod_{(f,x_{i_1},...,x_{i_k}) \in C} f(x_{i_1},...,x_{i_k})$$

Examples of $\#CSP_q(\mathcal{F}) - \#SAT$

- Variables $x_1, ..., x_n$
- Domain $\{0,1\}$

• $\mathcal{F} = \{ OR_k \mid k \ge 1 \} \cup \{ \neq_2 \}$, where

$$OR_k(x_1,...,x_k) = \begin{cases} 0, & \text{if } x_1 = ... = x_k = 0\\ 1, & \text{otherwise} \end{cases}$$
 and

$$\neq_2 (x_1, x_2) = \begin{cases} 0, & \text{if } x_1 = x_2 \\ 1, & \text{otherwise} \end{cases}$$

٠

Examples of $\#CSP_2(\mathcal{F}) - \#SAT$

For example, $(x_1 \lor x_2 \lor x_3) \land (\neg x_3 \lor x_4)$ corresponds to the following instance of $\#CSP_2(\mathcal{F})$:

- Variables x_1, x_2, x_3, x_4, x_5 .
- **2** Constraints (OR_3, x_1, x_2, x_3) , (OR_2, x_5, x_4) , (\neq_2, x_3, x_5) .

Examples of $\#CSP_2(\mathcal{F})$ – Counting satisfying assignments

Problem	Constraint functions
#3Sat	$\mathcal{F} = \{ \mathit{OR}_3, \neq_2 \}$
#NAE-3Sat	$\mathcal{F} = \{Not\text{-}All\text{-}Equal_3, eq_2\}$
#MonSat	$\mathcal{F} = \{ \textit{OR}_k \mid k \geq 1 \}$
#Mon3Sat	$\mathcal{F} = \{OR_3\}$
#Mon1-In-3Sat	$\mathcal{F} = \{Exact-One_3\}$

An Example of $\#CSP_3(\mathcal{F}) - \#3$ -COLORINGS

- Variables x₁, ..., x_n
- Domain $\{1, 2, 3\}$
- $\mathcal{F} = \{\neq_2\}$

For example,

corresponds to the following instance of $\#CSP_3(\mathcal{F})$:

- Variables x_a, x_b, x_c, x_d, x_e .
- ② Constraints (\neq_2 , x_a , x_d), (\neq_2 , x_b , x_d), (\neq_2 , x_d , x_e), (\neq_2 , x_c , x_d), (\neq_2 , x_c , x_e).

Computing #HOMSTOH is a $\#CSP_q(\mathcal{F})$

For graphs G and H, we construct a CSP instance with only one kind of constraint, as follows.

- The variables are the vertices of G.
- The domain is the vertex set of *H*.
- The constraints are ((u, v), E(H)) for every edge $(u, v) \in E(G)$.

An assignment σ of values to the variables is a function from V(G) to V(H) such that $(\sigma(u), \sigma(v)) \in E(H)$ for every $(u, v) \in E(G)$.

Computing #HOMSTOH is a $\#CSP_q(\mathcal{F})$

For graphs G and H, we construct a CSP instance with only one kind of constraint, as follows.

- The variables are the vertices of G.
- The domain is the vertex set of *H*.
- The constraints are ((u, v), E(H)) for every edge $(u, v) \in E(G)$.

An assignment σ of values to the variables is a function from V(G) to V(H) such that $(\sigma(u), \sigma(v)) \in E(H)$ for every $(u, v) \in E(G)$.

For the counting version, we consider the corresponding constraint function $E_H: V(H) \times V(H) \rightarrow \{0, 1\}.$

#3-COLORINGS revisited

- Variables x_a, x_b, x_c, x_d, x_e .
- Obmain {1, 2, 3}
- Source Constraints (E_H, x_a, x_d) , (E_H, x_b, x_d) , (E_H, x_d, x_e) , (E_H, x_c, x_d) , (E_H, x_c, x_e) , where $E_H(x, y) = \begin{cases} 1, & \text{if } (x, y) \in E(H) \\ 0, & \text{otherwise} \end{cases}$.

• $\#CSP_q(\mathcal{F})$ is a generalization of counting graph homomorphisms.

- $\#CSP_q(\mathcal{F})$ is a generalization of counting graph homomorphisms.
- Every $\#CSP_q(\mathcal{F})$ is a problem of counting homomorphisms between two relational structures \mathcal{G} and \mathcal{H} .

- $\#CSP_q(\mathcal{F})$ is a generalization of counting graph homomorphisms.
- Every $\#CSP_q(\mathcal{F})$ is a problem of counting homomorphisms between two relational structures \mathcal{G} and \mathcal{H} .
- Weighted counting CSP are defined by considering constraint functions over the rational, real or complex numbers.

- $\#CSP_q(\mathcal{F})$ is a generalization of counting graph homomorphisms.
- Every $\#CSP_q(\mathcal{F})$ is a problem of counting homomorphisms between two relational structures \mathcal{G} and \mathcal{H} .
- Weighted counting CSP are defined by considering constraint functions over the rational, real or complex numbers.
- Boolean CSP are CSP with Boolean domain $\{0, 1\}$.

The subscript k in *Exact-One*_k denotes the arity of the function.

• A Holant problem is parameterized by a set \mathcal{F} of local constraint functions, also called signatures.

- A Holant problem is parameterized by a set \mathcal{F} of local constraint functions, also called signatures.
- A signature grid $\Omega = (G, \pi)$ over \mathcal{F} consists of a graph G = (V, E)and a mapping π that assigns to each vertex $u \in V$ an $f_u \in \mathcal{F}$ and a linear order on the incident edges at u.

- A Holant problem is parameterized by a set \mathcal{F} of local constraint functions, also called signatures.
- A signature grid $\Omega = (G, \pi)$ over \mathcal{F} consists of a graph G = (V, E)and a mapping π that assigns to each vertex $u \in V$ an $f_u \in \mathcal{F}$ and a linear order on the incident edges at u.
- The arity of f_u is equal to the degree of u, and the incident edges at u are associated with the input variables of f_u .

- A Holant problem is parameterized by a set \mathcal{F} of local constraint functions, also called signatures.
- A signature grid $\Omega = (G, \pi)$ over \mathcal{F} consists of a graph G = (V, E)and a mapping π that assigns to each vertex $u \in V$ an $f_u \in \mathcal{F}$ and a linear order on the incident edges at u.
- The arity of f_u is equal to the degree of u, and the incident edges at u are associated with the input variables of f_u .
- A signature is symmetric if its value is invariant under permutation of its variables.

- A Holant problem is parameterized by a set \mathcal{F} of local constraint functions, also called signatures.
- A signature grid $\Omega = (G, \pi)$ over \mathcal{F} consists of a graph G = (V, E)and a mapping π that assigns to each vertex $u \in V$ an $f_u \in \mathcal{F}$ and a linear order on the incident edges at u.
- The arity of f_u is equal to the degree of u, and the incident edges at u are associated with the input variables of f_u .
- A signature is symmetric if its value is invariant under permutation of its variables.
- If all signatures in \mathcal{F} are symmetric, then there is no need to assign an order for incident edges at any u.

Definition

For a set \mathcal{F} of signatures over a domain [q], we define $\operatorname{Holant}_q(\mathcal{F})$ as the problem with *Input:* A signature grid $\Omega = (G, \pi)$ over \mathcal{F} *Output:*

$$\mathsf{Holant}_q(\Omega,\mathcal{F}) = \sum_{\sigma: E \to [q]} \prod_{u \in V} f_u(\sigma \restriction_{E(u)})$$

- G = (V, E) and E(u) denotes the incident edges of u.
- $\sigma \upharpoonright_{E(u)}$ denotes the restriction of σ to E(u).
- $f_u(\sigma \upharpoonright_{E(u)})$ is the evaluation of f_u on the ordered input tuple $\sigma \upharpoonright_{E(u)}$.
- We use $Holant(\mathcal{F})$ to denote $Holant_2(\mathcal{F})$, the Holant problems over the Boolean domain.

Some notation

• A signature f of arity k over the Boolean domain can be denoted by $(f_0, f_1, ..., f_{2^k-1})$, where f_x is the output of f on $x \in [2]^k$, ordered lexicographically.

Some notation

- A signature f of arity k over the Boolean domain can be denoted by $(f_0, f_1, ..., f_{2^k-1})$, where f_x is the output of f on $x \in [2]^k$, ordered lexicographically.
- A signature f of arity k over the Boolean domain is symmetric if for every x, y ∈ {0,1}^k of equal Hamming weight, f(x) = f(y).
- In this case, f can also be expressed as [f₀, f₁, ..., f_k], where f_w is the value of f on inputs of Hamming weight w.

Some notation

- A signature f of arity k over the Boolean domain can be denoted by $(f_0, f_1, ..., f_{2^k-1})$, where f_x is the output of f on $x \in [2]^k$, ordered lexicographically.
- A signature f of arity k over the Boolean domain is symmetric if for every x, y ∈ {0,1}^k of equal Hamming weight, f(x) = f(y).
- In this case, f can also be expressed as [f₀, f₁, ..., f_k], where f_w is the value of f on inputs of Hamming weight w.
- For example, Equality signature of arity k,

 $(=_k) = [1, 0, ..., 0, 1]$

and Disequality signature of arity 2,

$$(\neq_2) = [0, 1, 0].$$

Holant problems – Examples

Examples of counting problems in k-regular graphs.

• Over the Boolean domain:

$Holant(G; f)$ counts \langle	matchings	in G when $f = \text{At-Most-One}_k$;
	perfect matchings	in G when $f = \text{Exact-One}_k$;
	cycle covers	in G when $f = \text{Exact-Two}_k$;
	edge covers	in G when $f = OR_k$.

• Over domain of size q, Holant_q(G, All-Distinct_k) is the problem #q-EDGECOLORINGS.

Planar / bipartite signature grids

 A planar signature grid is a signature grid s.t. its underlying graph is planar. We use Pl-Holant_q(F) to denote the restriction of Holant_q(F) to planar signature grids.

Planar / bipartite signature grids

- A planar signature grid is a signature grid s.t. its underlying graph is planar. We use Pl-Holant_q(F) to denote the restriction of Holant_q(F) to planar signature grids.
- A bipartite signature grid over (F | G) is a signature grid Ω = (H, π) over F ∪ G, where H = (V₁ ∪ V₂, E) is a bipartite graph, s.t. π(V₁) ⊆ F and π(V₂) ⊆ G. We use Holant_q(F | G) to denote the restriction of Holant_q(F ∪ G) to bipartite signatures over (F | G).