
Reductions and completeness

#3Sat is #P-complete under parsimonious reductions (Exercise).

Permanent is #P-complete under Turing reductions
(Not an exercise).

▶ If Permanent is #P-complete under parsimonious reductions, then
P = NP (Exercise).

Every #P-complete problem under parsimonious reductions has an
NP-complete decision version (Execise).

Conjecture: Every NP-complete problem has a #P-complete counting
version.
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Some basic inclusions

FP ⊆ #P ⊆ FPSPACE.

NP ⊆ P#P[1].

If FP = #P, then P = NP.

Toda’s Theorem: PH ⊆ P#P[1].
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Overview

1 Introduction to Counting Complexity
The class #P
Three classes of counting problems
Holographic transformations

2 Matchgates and Holographic Algorithms
Kasteleyn’s algorithm
Matchgates
Holographic algorithms

3 Polynomial Interpolation

4 Dichotomy Theorems for counting problems
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Graph Homomorphism Problems

Input graph G

a c

b

f

d

e g Target graph H

1 2
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Graph Homomorphism Problems
Input graph G

a c

b

f

d

e g Target graph H

1 2

Every homomorphism from G to H is a 2-coloring of G .

The number of homomorphisms from G to H is equal to
#2-Colorings(G ).
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Graph homomorphisms preserve structure

Definition

Given graphs G and H, a homomorphism from G to H is a function
f : V (G )→ V (H) such that every edge (u, v) ∈ E (G ) is mapped to an
edge (f (u), f (v)) ∈ E (H).
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Counting graph homomorphisms or H-colorings of G

We denote by Hom(G ,H) the number of homomorphisms from G to
H.

Graph homomorphisms from G to H are also called H-colorings of G .

We denote by #HomsToH (or #H-Colorings) the problem of
counting the number of homomorphisms from an input graph to a
fixed graph H.
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Other examples – #3-Colorings

a b

d

e c 1 2

3
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Other examples – #3-Colorings

a b

d

e c 1 2

3

Hom(G ,K3) = #3-Colorings(G ).

Hom(G ,Kq) = #q-Colorings(G ) for any q ≥ 2.
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Other examples – #VertexCovers

a b

d

e c

f

0 1
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Other examples – #VertexCovers

1 0

0

1 1

1

0 1
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Other examples – #VertexCovers

1 0

0

1 1

1

0 1

The subset of vertices mapped to 1 form a vertex cover.

#HomsToH(G ) = #VertexCovers(G ).
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Other examples – #IS

1 0

0

1 1

1

0 1

The subset of vertices mapped to 0 form an independent set.

#HomsToH(G ) = #IS(G ).
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Let A be the (0-1) adjacency matrix of H.

Given a graph G , #HomsToH is the problem of computing the
following sum

ZA(G ) =
∑

σ:V (G)→V (H)

∏
(u,v)∈E(G)

A(σ(u), σ(v)).

Sometimes we write ZH(G ) instead of ZA(G ).
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For example,

1 2

3

has A =

0 1 1
1 0 1
1 1 0

.

So, the following σ : V → [3]

a b

d

e c

contributes 0, since
A(σ(e), σ(c)) = A(3, 3) = 0.
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Weighted graph homomorphisms

In general, H can be a weighted graph, and so A can be a matrix over
the real or complex numbers.

The product
∏

(u,v)∈E(G)

A(σ(u), σ(v)) is the weight of assignment σ.

The sum over all assignments

ZA(G ) =
∑

σ:V (G)→V (H)

∏
(u,v)∈E(G)

A(σ(u), σ(v))

is called the partition function.
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Weighted graph homomorphisms

Motivation and applications come from statistical physics.

To capture the computational complexity of such functions, we
consider the closure of #P under Turing reductions.

That is the class FP#P.
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Partition functions in statistical physics

In statistical physics, partition functions can be represented as
weighted graph homomorphisms.

In this case, H is a weighted graph with both edge and vertex weights.

Let A be the adjacency matrix of H, where A(u, v) is the weight of
the edge (u, v) ∈ E (H) and let {λv}v∈V (H) be the vertex weights.

Weighted #HomsToH is the problem of computing the following
sum ∑

σ:V (G)→V (H)

( ∏
(u,v)∈E(G)

A(σ(u), σ(v))
∏

v∈V (G)

λσ(v)

)
.
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2-spin systems – Ising model

0 1
b

aa

Adjacency matrix

A =

[
a b
b a

]
Vertex weights

λ0 = 1 and λ1 = λ

Za,b,λ(G ) =∑
σ:V→{0,1}

a|{(u,v)∈E :σ(u)=σ(v)}| · b|{(u,v)∈E :σ(u) ̸=σ(v)}| · λ|{u∈V :σ(u)=1}|
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2-spin systems – Hardcore model

0 1

Adjacency matrix

A =

[
1 1
1 0

]
Vertex weights

λ0 = 1 and λ1 = λ

Zλ(G ) =
∑
I∈I

λ|I |

where I is the set of all independent sets in G
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Counting induced subgraphs with an even number of edges

0 1
1

-11 Adjacency matrix

A =

[
1 1
1 −1

]

The term
∏

(u,v)∈E A(σ(u), σ(v)) is 1 if the subgraph of G induced by
vertices mapped to 1 has an even number of edges and it is -1,
otherwise.

ZA(G ) = X − Y , where X (resp. Y ) is the number of induced
subgraphs of G with an even (resp. odd) number of edges.

X + Y = 2n

So,

X =
2n + ZA(G )

2
.
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Constraint Satisfaction Problems

3Sat as a CSP:

Variables x1, ..., xn

Domain {0, 1}
Constraints (Ci , xi1 , xi2 , xi3)

Clause Relation

x1 ∨ x2 ∨ x3 C0 = {0, 1}3 \ (0, 0, 0)
¬x1 ∨ x2 ∨ x3 C1 = {0, 1}3 \ (1, 0, 0)
¬x1 ∨ ¬x2 ∨ x3 C2 = {0, 1}3 \ (1, 1, 0)
¬x1 ∨ ¬x2 ∨ ¬x3 C3 = {0, 1}3 \ (1, 1, 1)
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Constraint Satisfaction Problems

Decision version

Input:

A set of variables x1, ..., xn.

A domain [q] of size q.

A set C of constraints (Ci , xi1 , ..., xik ), where Ci are relations on the
domain of arity k .

Output: Is there an assignment of values to the variables such that all
constraints are satisfied?
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Counting Constraint Satisfaction Problems

A counting constraint satisfaction problem is parameterized by a set
of local constraint functions F .

It is denoted by #CSPq(F) when the constraint functions in F are
defined over a domain [q] of size q.

Every constraint is a function f ∈ F of some arity k together with a
sequence of k variables xi1 , ..., xik ∈ {x1, ..., xn}.

Output: How many assignments of values to the variables are there
such that all constraints are satisfied?
Equivalently, compute the following sum∑

x1,...,xn∈[q]

∏
(f ,xi1 ,...,xik )∈C

f (xi1 , ..., xik )
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Examples of #CSPq(F) – #Sat

Variables x1, ..., xn

Domain {0, 1}
F = {ORk | k ≥ 1} ∪ {̸=2}, where

ORk(x1, ..., xk) =

{
0, if x1 = ... = xk = 0

1, otherwise
and

̸=2 (x1, x2) =

{
0, if x1 = x2

1, otherwise
.
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Examples of #CSP2(F) – #Sat

For example, (x1 ∨ x2 ∨ x3) ∧ (¬x3 ∨ x4) corresponds to the following
instance of #CSP2(F):

1 Variables x1, x2, x3, x4, x5.

2 Constraints (OR3, x1, x2, x3), (OR2, x5, x4), ( ̸=2, x3, x5).
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Examples of #CSP2(F) – Counting satisfying assignments

Problem Constraint functions

#3Sat F = {OR3, ̸=2}
#NAE-3Sat F = {Not-All-Equal3, ̸=2}
#MonSat F = {ORk | k ≥ 1}
#Mon3Sat F = {OR3}
#Mon1-In-3Sat F = {Exact-One3}
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An Example of #CSP3(F) – #3-Colorings

Variables x1, ..., xn

Domain {1, 2, 3}
F = {̸=2}

For example,

a b

d

e c

corresponds to the following instance of
#CSP3(F):

1 Variables xa, xb, xc , xd , xe .

2 Constraints ( ̸=2, xa, xd), ( ̸=2, xb, xd),
( ̸=2, xd , xe), ( ̸=2, xc , xd), ( ̸=2, xc , xe).
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Computing #HomsToH is a #CSPq(F)

For graphs G and H, we construct a CSP instance with only one kind of
constraint, as follows.

The variables are the vertices of G .

The domain is the vertex set of H.

The constraints are ((u, v),E (H)) for every edge (u, v) ∈ E (G ).

An assignment σ of values to the variables is a function from V (G ) to
V (H) such that (σ(u), σ(v)) ∈ E (H) for every (u, v) ∈ E (G ).

For the counting version, we consider the corresponding constraint
function EH : V (H)× V (H)→ {0, 1}.
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#3-Colorings revisited

a b

d

e c
1 2

3

1 Variables xa, xb, xc , xd , xe .

2 Domain {1, 2, 3}
3 Constraints (EH , xa, xd), (EH , xb, xd), (EH , xd , xe), (EH , xc , xd), (EH , xc , xe),

where EH(x , y) =

{
1, if (x , y) ∈ E (H)

0, otherwise
.

Counting Complexity 52 / 145



#CSPq(F) is a generalization of counting graph homomorphisms.

Every #CSPq(F) is a problem of counting homomorphisms between
two relational structures G and H.

Weighted counting CSP are defined by considering constraint
functions over the rational, real or complex numbers.

Boolean CSP are CSP with Boolean domain {0, 1}.
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Holant problems

Exact-One3

Exact-One3

Exact-One1

Exact-One2

Exact-One2

Exact-One1

e2

e4

e6

e5e3

e1

Exact-One2(ei , ej) =

{
1, if (ei , ej) = (0, 1) or (ei , ej) = (1, 0)

0, otherwise

The subscript k in Exact-Onek denotes the arity of the function.
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Exact-One3

Exact-One3

Exact-One1

Exact-One2

Exact-One2

Exact-One1

e2

e4

e6
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Holant problems

A Holant problem is parameterized by a set F of local constraint
functions, also called signatures.

A signature grid Ω = (G , π) over F consists of a graph G = (V ,E )
and a mapping π that assigns to each vertex u ∈ V an fu ∈ F and a
linear order on the incident edges at u.

The arity of fu is equal to the degree of u, and the incident edges at u
are associated with the input variables of fu.

A signature is symmetric if its value is invariant under permutation of
its variables.

If all signatures in F are symmetric, then there is no need to assign
an order for incident edges at any u.
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Holant problems

Definition

For a set F of signatures over a domain [q], we define Holantq(F) as the
problem with
Input: A signature grid Ω = (G , π) over F
Output:

Holantq(Ω,F) =
∑

σ:E→[q]

∏
u∈V

fu(σ ↾E(u))

G = (V ,E ) and E (u) denotes the incident edges of u.

σ ↾E(u) denotes the restriction of σ to E (u).

fu(σ ↾E(u)) is the evaluation of fu on the ordered input tuple σ ↾E(u).

We use Holant(F) to denote Holant2(F), the Holant problems over
the Boolean domain.
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Some notation

A signature f of arity k over the Boolean domain can be denoted by
(f0, f1, ..., f2k−1), where fx is the output of f on x ∈ [2]k , ordered
lexicographically.

A signature f of arity k over the Boolean domain is symmetric if for
every x , y ∈ {0, 1}k of equal Hamming weight, f (x) = f (y).

In this case, f can also be expressed as [f0, f1, ..., fk ], where fw is the
value of f on inputs of Hamming weight w .

For example, Equality signature of arity k ,

(=k) = [1, 0, ..., 0, 1]

and Disequality signature of arity 2,

(̸=2) = [0, 1, 0].
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Holant problems – Examples

Examples of counting problems in k-regular graphs.

Over the Boolean domain:

Over domain of size q, Holantq(G ,All-Distinctk) is the problem
#q-EdgeColorings.
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Planar / bipartite signature grids

A planar signature grid is a signature grid s.t. its underlying graph is
planar. We use Pl-Holantq(F) to denote the restriction of
Holantq(F) to planar signature grids.

A bipartite signature grid over (F | G) is a signature grid Ω = (H, π)
over F ∪ G, where H = (V1 ∪ V2,E ) is a bipartite graph, s.t.
π(V1) ⊆ F and π(V2) ⊆ G. We use Holantq(F | G) to denote the
restriction of Holantq(F ∪ G) to bipartite signatures over (F | G).
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