An instance of $\#CSP_q(\mathcal{F})$ has the following bipartite view.

• Create a node for each variable and each constraint.

- Create a node for each variable and each constraint.
- Connect a variable node to a constraint node if the variable appears in the constraint.

- Create a node for each variable and each constraint.
- Connect a variable node to a constraint node if the variable appears in the constraint.
- This graph is called the constraint graph.

- Create a node for each variable and each constraint.
- Connect a variable node to a constraint node if the variable appears in the constraint.
- This graph is called the constraint graph.
- To each variable we assign the *Equality* signature of the appropriate arity (which is equal to the number of occurrences of the variable in all constraints).

- Create a node for each variable and each constraint.
- Connect a variable node to a constraint node if the variable appears in the constraint.
- This graph is called the constraint graph.
- To each variable we assign the *Equality* signature of the appropriate arity (which is equal to the number of occurrences of the variable in all constraints).
- \bullet To each constraint node we assign the constraint function in ${\cal F}$ used in that constraint.

An instance of $\#CSP_q(\mathcal{F})$ has the following bipartite view.

- Create a node for each variable and each constraint.
- Connect a variable node to a constraint node if the variable appears in the constraint.
- This graph is called the constraint graph.
- To each variable we assign the *Equality* signature of the appropriate arity (which is equal to the number of occurrences of the variable in all constraints).
- To each constraint node we assign the constraint function in ${\cal F}$ used in that constraint.

 $\# CSP_q(\mathcal{F}) \leq_T Holant_q(\mathcal{EQ}_k \mid \mathcal{F})$, where $\mathcal{EQ}_k = \{=_k \mid k \geq 1\}$.

For example, $(x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3) \land (x_1 \lor x_3 \lor x_4)$ which corresponds to

• variables x_1, x_2, x_3, x_4 ,

constraints (OR₃, x₁, x₂, x₃), (OR₂, x₂, x₃), (OR₃, x₁, x₃, x₄), becomes

Every $\#CSP_q(\mathcal{F})$ can be expressed as a Holant problem For example, $(x_1 \lor x_2 \lor x_3) \land (x_2 \lor x_3) \land (x_1 \lor x_3 \lor x_4)$ which corresponds to

• variables x_1, x_2, x_3, x_4 ,

constraints (OR₃, x₁, x₂, x₃), (OR₂, x₂, x₃), (OR₃, x₁, x₃, x₄), becomes

Every Holant problem can be expressed as a #CSP

Holant_q(\mathcal{F}) $\leq_{\mathcal{T}} \# CSP_q(\mathcal{F})$, where every variable appears exactly in 2 constraints.

Overview

Introduction to Counting Complexity

- The class #P
- Three classes of counting problems
- Holographic transformations

2 Matchgates and Holographic Algorithms

- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms

3 Dichotomy Theorems for counting problems

Local gadget constructions via \mathcal{F} -gates

In what follows we focus on functions over the Boolean domain that take values in $\mathbb{C}.$

- In the context of Holant problems, we construct a graph in order to realize a signature.
- We say a signature f is realizable from \mathcal{F} if there is a graph with some dangling edges, where each vertex is assigned a signature from \mathcal{F} , and the resulting signature with inputs on the dangling edges is exactly f.
- For example, *Even*₃ is realizable from $\mathcal{F} = \{ Odd_3, Odd_2 \}$.

• We call this an *F*-gate.

\mathcal{F} -gates

An \mathcal{F} -gate F is similar to a signature grid (G, π) except that G = (V, E, E') with regular edges E and some dangling edges E', and $E \cap E' = \emptyset$.

Each dangling edge $e' \in E'$ has only one end incident to a vertex in V, and the other edge dangling.

\mathcal{F} -gates

An \mathcal{F} -gate F is similar to a signature grid (G, π) except that G = (V, E, E') with regular edges E and some dangling edges E', and $E \cap E' = \emptyset$.

Each dangling edge $e' \in E'$ has only one end incident to a vertex in V, and the other edge dangling.

An \mathcal{F} -gate F with k dangling edges defines the function

$$\Gamma(y_1,...,y_k) = \sum_{\sigma: E \to [2]} \prod_{u \in V} f_u(\hat{\sigma} \restriction_{E(u)})$$

where $(y_1, ..., y_k) \in [2]^k$ is an assignment on the dangling edges, $\hat{\sigma}$ is the extension of the assignment σ on the internal edges E by the assignment $(y_1, ..., y_k)$ on the dangling edges E'.

We call this function Γ the signature of this $\mathcal{F}\text{-}\mathsf{gate}.$

An example of an \mathcal{F} -gate with underlying graph H

The signature matrix

Let f be a signature of arity 2 over the Boolean domain. Then f can be written as a vector $f = (f_{00}, f_{01}, f_{10}, f_{11})$ or as a matrix $M = \begin{bmatrix} f_{00} & f_{01} \\ f_{10} & f_{11} \end{bmatrix}$. For example, if F, F' are the following \mathcal{F} -gates

$$\begin{array}{c} \hline e_1 & F & \hline e_2 \\ \hline e_1 & F' & \hline e_2' \\ \hline e_1' & F' & \hline e_2' \\ \hline \end{array} \quad \text{with } M' = \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix}$$

then
$$F(0,0) = 0$$
, $F(0,1) = 1$, $F(1,0) = 1$ and $F(1,1) = 3$,
 $F'(0,0) = 2$, $F'(0,1) = 0$, $F'(1,0) = 1$ and $F'(1,1) = 1$.

Multiplication of signature matrices

$$\begin{array}{c} \hline e_1 & F & \hline e_2 & \text{with } M = \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix} \\ \hline \hline e_1' & F' & \hline e_2' & \text{with } M' = \begin{bmatrix} 2 & 0 \\ 1 & 1 \end{bmatrix}$$

The matrix product $MM' = \begin{bmatrix} 1 & 1 \\ 5 & 3 \end{bmatrix}$ is the signature matrix of the \mathcal{F} -gate $-\frac{e_1}{e_1} F - \frac{e}{e} F' - \frac{e_2'}{e_2'}$

which links F and F' by merging e_2 and e'_1 .

Multiplication of signature matrices

$$MM' = \begin{bmatrix} M_{00}M'_{00} + M_{01}M'_{10} & M_{00}M'_{01} + M_{01}M'_{11} \\ M_{10}M'_{00} + M_{11}M'_{10} & M_{10}M'_{01} + M_{11}M'_{11} \end{bmatrix}$$
$$\underbrace{-e_1}_{e_1}F \underbrace{-e_2}_{e_2} & \underbrace{-e'_1}_{e'_1}F' \underbrace{-e'_2}_{e'_2}$$
$$\downarrow$$

What about gates that have a different number of left and right dangling edges?

- A gate with *l* left dangling edges and *n* − *l* right dangling edges can be represented by a 2^{*l*} × 2^{*n*−*l*} matrix.
- More specifically,
 - ► a gate with only *n* left dangling edges can be represented as a 2ⁿ × 1 matrix and it is called contravariant or a generator,
 - ▶ a gate with only *n* right dangling edges can be represented as a 1 × 2ⁿ matrix and it is called covariant or a recognizer.

Kronecker product of matrices

• Let A be the 3 × 3 matrix
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$
,

• and B be the 2 × 2 matrix
$$B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$
.

Kronecker product of matrices

• Then the Kronecker product of A and B is the following 6×6 matrix:

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & a_{13}B \\ a_{21}B & a_{22}B & a_{23}B \\ a_{31}B & a_{32}B & a_{33}B \end{bmatrix} =$$

a ₁₁ b ₁₁	$a_{11}b_{12}$	$a_{12}b_{11}$	$a_{12}b_{12}$	$a_{13}b_{11}$	a ₁₃ b ₁₂
a ₁₁ b ₂₁	$a_{11}b_{22}$	$a_{12}b_{21}$	$a_{12}b_{22}$	$a_{13}b_{21}$	a ₁₃ b ₂₂
a ₂₁ b ₁₁	$a_{21}b_{12}$	$a_{22}b_{11}$	$a_{22}b_{12}$	$a_{23}b_{11}$	$a_{23}b_{12}$
a ₂₁ b ₂₁	$a_{21}b_{22}$	$a_{22}b_{21}$	a ₂₂ b ₂₂	$a_{23}b_{21}$	a ₂₃ b ₂₂
a ₃₁ b ₁₁	$a_{31}b_{12}$	$a_{32}b_{11}$	$a_{32}b_{12}$	$a_{33}b_{11}$	$a_{33}b_{12}$
a ₃₁ b ₂₁	a ₃₁ b ₂₂	a ₃₂ b ₂₁	a ₃₂ b ₂₂	a ₃₃ b ₂₁	a33 b22_

.

•

Kronecker product of a signature matrix

• Let F be the
$$\mathcal{F}$$
-gate $\begin{array}{c} \hline e_1 \\ e_1 \end{array} F \hline e_2 \\ \hline e_$

is the signature matrix of the $\mathcal{F}\text{-}\mathsf{gate}$

$$\begin{array}{c} \hline e_1 & F \\ \hline e_2 & F \\ \hline e_4 \end{array}$$

Kronecker product of a signature matrix

For example, the following assignment on the edges:

corresponds to the content of the (11,01) cell of the matrix $M^{\otimes 2}$:

$$M^{\otimes 2} = \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix} \otimes \begin{bmatrix} 0 & 1 \\ 1 & 3 \end{bmatrix} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 1 & 0 & 3 \\ 1 & 3 & 3 & 9 \end{pmatrix} \begin{pmatrix} 00 \\ 01 \\ 10 \\ 10 \\ 11 \end{pmatrix}$$

which is equal to the product $M_{10}M_{11} = 1 \cdot 3 = 3$.

Operations with signature matrices

- Let the row vector (0,1,1,0) represent the signature f of a gate with two right dangling edges.
- Let $T = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ be the matrix representing the signature of a gate with one left dangling edge and one right dangling edge.
- Then the signature of the following gate with two right dangling edges

$$f \xrightarrow{\mathbf{e_1}} T \xrightarrow{\mathbf{e_3}} f \xrightarrow{\mathbf{e_2}} T \xrightarrow{\mathbf{e_4}} f$$

is given by the matrix $f \cdot T^{\otimes 2} = (0, 1, 1, 2)$.

Holographic transformations

- We consider bipartite graphs. We transform a general graph into a bipartite graph while preserving the Holant value:
 - ► For each edge in the graph, we replace it by a path of length two (2-stretch of the graph, edge-vertex incidence graph).
 - Each new vertex is assigned the binary *Equality* signature $(=_2)$.

Holographic transformations

- We consider bipartite graphs. We transform a general graph into a bipartite graph while preserving the Holant value:
 - For each edge in the graph, we replace it by a path of length two (2-stretch of the graph, edge-vertex incidence graph).
 - Each new vertex is assigned the binary *Equality* signature $(=_2)$.
- Let *T* be an invertible 2 × 2 matrix. The holographic transformation defined by *T* is the following operation:
 - Given $\Omega = (H, \pi)$ of Holant $(\mathcal{F} \mid \mathcal{G})$, we get a new signature grid $\Omega' = (H, \pi')$ of Holant $(\mathcal{FT} \mid T^{-1}\mathcal{G})$ by replacing each signature $f_u \in \mathcal{F}$ (resp. $g_v \in \mathcal{G}$) by $f_u \cdot T^{\otimes deg(u)}$ (resp. $(T^{-1})^{\otimes deg(v)} \cdot g_v$).

Valiant's Holant Theorem

Theorem

Let \mathcal{F} and \mathcal{G} be sets of complex-valued signatures over a Boolean domain. Suppose Ω is a bipartite signature over $(\mathcal{F} \mid \mathcal{G})$. If T is an invertible 2×2 matrix over \mathbb{C} , then

$$Holant(\Omega, \mathcal{F} \mid \mathcal{G}) = Holant(\Omega', \mathcal{F}T \mid T^{-1}\mathcal{G})$$

where Ω' is the corresponding signature grid over $(\mathcal{FT} \mid T^{-1}\mathcal{G})$.

Proof.

• Let $\Omega_0 = \Omega$. Let G = (U, V, E) be the underlying graph. An edge e = (u, v) is shown below.

So For each *e* ∈ *E*, we subdivide *e* and assign (=₂) to the new vertex *w*. Let the resulting grid be Ω₁. Then

 $\mathsf{Holant}(\Omega_0, \mathcal{F} \mid \mathcal{G}) = \mathsf{Holant}(\Omega_1, \mathcal{F} \cup \mathcal{G} \cup \{=_2\})$

We subdivide w to get two vertices u', v'. Assign to u' and v' the binary signature h_u and h_v, respectively, with signature matrices T and T⁻¹, respectively. Let the resulting grid be Ω₂. Then

 $\mathsf{Holant}(\Omega_1, \mathcal{F} \cup \mathcal{G} \cup \{=_2\}) = \mathsf{Holant}(\Omega_2, \mathcal{F} \cup \mathcal{G} \cup \{\mathcal{T}, \mathcal{T}^{-1}\})$

(c) Ω_2

• Ω_3 is the same as Ω_2 , except we associate the binary T and T^{-1} to the original signatures f and g first. Then

 $\mathsf{Holant}(\Omega_2, \mathcal{F} \cup \mathcal{G} \cup \{\mathsf{T}, \mathsf{T}^{-1}\}) = \mathsf{Holant}(\Omega_3, \mathcal{F} \cup \mathcal{G} \cup \{\mathsf{T}, \mathsf{T}^{-1}\})$

(d) Ω_3

• We contract edges (u, u') and (v', v). This defines $\Omega' = \Omega_4$.

- ▶ The underlying graph is the initial bipartite graph *G*.
- Any vertex u ∈ U of degree deg(u) assigned f ∈ F in Ω is now assigned f · T^{⊗deg(u)}.
- Any vertex v ∈ V of degree deg(v) assigned g ∈ G in Ω is now assigned (T⁻¹)^{⊗deg(v)} ⋅ g.

Then,

$$\mathsf{Holant}(\Omega_3, \mathcal{F} \cup \mathcal{G} \cup \{T, T^{-1}\}) = \mathsf{Holant}(\Omega_4, \mathcal{F}T \mid T^{-1}\mathcal{G}).$$

Overview

- The class #P
- Three classes of counting problems
- Holographic transformations

2 Matchgates and Holographic Algorithms

- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms

Dichotomy Theorems for counting problems

Overview

- The class #P
- Three classes of counting problems
- Holographic transformations

2 Matchgates and Holographic Algorithms

- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms

3 Dichotomy Theorems for counting problems

• Some counting problems are #P hard on general instances, but are tractable over planar structures.

- Some counting problems are #P hard on general instances, but are tractable over planar structures.
- The most representative example is counting perfect matchings.
- Counting perfect matchings in general graphs is #P-complete under Turing reductions.
- Counting perfect matchings in planar graphs can be solved by Kasteleyn's algorithm (FKT algorithm) in polynomial time.

- Some counting problems are #P hard on general instances, but are tractable over planar structures.
- The most representative example is counting perfect matchings.
- Counting perfect matchings in general graphs is #P-complete under Turing reductions.
- Counting perfect matchings in planar graphs can be solved by Kasteleyn's algorithm (FKT algorithm) in polynomial time.
- This algorithm can be extended to a *universal* strategy for a broad class of counting problems.
- These results build on the theory of matchgates and holographic algorithms.

FKT algorithm

- Kasteleyn's algorithm is a method for
 - counting perfect matchings
 - computing the weighted sum of perfect matchings
 - in "Pfaffian orientable" graphs.
- Planar graphs are Pfaffian orientable.

Oddly oriented cycles

Fact

If M, M' are two perfect matchings in G, then $M \cup M'$ is a collection of single edges and even length cycles.

Oddly oriented cycles

Fact

If M, M' are two perfect matchings in G, then $M \cup M'$ is a collection of single edges and even length cycles.

An orientation \overrightarrow{G} of an undirected graph G is an assignment of a direction to each of its edges.

Oddly oriented cycles

Fact

If M, M' are two perfect matchings in G, then $M \cup M'$ is a collection of single edges and even length cycles.

An orientation \overrightarrow{G} of an undirected graph G is an assignment of a direction to each of its edges.

Definition 1

Let G = (V, E) be an undirected graph, and \overrightarrow{G} an orientation of G. We say that an even cycle C of G is oddly oriented by \overrightarrow{G} , if when traversing C, in either direction, the number of co-oriented edges is odd.

Pfaffian orientation

Definition 2

An orientation \overrightarrow{G} of G is Pfaffian if the following condition holds: for any two perfect matchings M, M' in G, every cycle in $M \cup M'$ is oddly oriented by \overrightarrow{G} .

