
Every #CSPq(F) can be expressed as a Holant problem

An instance of #CSPq(F) has the following bipartite view.

Create a node for each variable and each constraint.

Connect a variable node to a constraint node if the variable appears
in the constraint.

This graph is called the constraint graph.

To each variable we assign the Equality signature of the appropriate
arity (which is equal to the number of occurrences of the variable in
all constraints).

To each constraint node we assign the constraint function in F used
in that constraint.

#CSPq(F) ≤T Holantq(EQk | F), where EQk = {=k | k ≥ 1}.
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Every #CSPq(F) can be expressed as a Holant problem

For example, (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4)(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4)(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) which corresponds
to

1 variables x1, x2, x3, x4,

2 constraints (OR3, x1, x2, x3), (OR2, x2, x3), (OR3, x1, x3, x4)(OR3, x1, x2, x3), (OR2, x2, x3), (OR3, x1, x3, x4)(OR3, x1, x2, x3), (OR2, x2, x3), (OR3, x1, x3, x4),

becomes

x4=1

x3=3

x2=2

x1=2

c3 OR3

c2 OR2

c1 OR3
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Every Holant problem can be expressed as a #CSP

fu1

fu2

fu3

fu4

fu5

fu6

=⇒

e2

e4

e6

e5e3

e1

Variables e1, e2, ..., e6
Constraints

▶ (fu1 , e1, e2, e6)
▶ (fu2 , e2, e3, e4)
▶ (fu3 , e1)
▶ (fu4 , e4, e5)
▶ (fu5 , e5, e6)
▶ (fu6 , e3)

Holantq(F) ≤T #CSPq(F), where every variable appears exactly in 2
constraints.
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Overview

1 Introduction to Counting Complexity
The class #P
Three classes of counting problems
Holographic transformations

2 Matchgates and Holographic Algorithms
Kasteleyn’s algorithm
Matchgates
Holographic algorithms

3 Dichotomy Theorems for counting problems
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Local gadget constructions via F -gates

In what follows we focus on functions over the Boolean domain that take values in C.

In the context of Holant problems, we construct a graph in order to
realize a signature.

We say a signature f is realizable from F if there is a graph with some
dangling edges, where each vertex is assigned a signature from F , and
the resulting signature with inputs on the dangling edges is exactly f .

For example, Even3 is realizable from F = {Odd3,Odd2}.

Odd3 Odd2

e2 e1

e4

e3

We call this an F-gate.
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F -gates

An F-gate F is similar to a signature grid (G , π) except that
G = (V ,E ,E ′) with regular edges E and some dangling edges E ′, and
E ∩ E ′ = ∅.
Each dangling edge e ′ ∈ E ′ has only one end incident to a vertex in V ,
and the other edge dangling.

An F-gate F with k dangling edges defines the function

Γ(y1, ..., yk) =
∑

σ:E→[2]

∏
u∈V

fu(σ̂ ↾E(u))

where (y1, ..., yk) ∈ [2]k is an assignment on the dangling edges, σ̂ is the
extension of the assignment σ on the internal edges E by the assignment
(y1, ..., yk) on the dangling edges E ′.

We call this function Γ the signature of this F-gate.
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An example of an F -gate with underlying graph H
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The signature matrix

Let f be a signature of arity 2 over the Boolean domain. Then f can be

written as a vector f = (f00, f01, f10, f11) or as a matrix M =

[
f00 f01
f10 f11

]
.

For example, if F , F ′ are the following F-gates

F e2e1 with M =

[
0 1
1 3

]
F ′

e ′2e ′1 with M ′ =

[
2 0
1 1

]
then F (0, 0) = 0, F (0, 1) = 1, F (1, 0) = 1 and F (1, 1) = 3,

F ′(0, 0) = 2, F ′(0, 1) = 0, F ′(1, 0) = 1 and F ′(1, 1) = 1.
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Multiplication of signature matrices

F e2e1 with M =

[
0 1
1 3

]
F ′

e ′2e ′1 with M ′ =

[
2 0
1 1

]

The matrix product MM ′ =

[
1 1
5 3

]
is the signature matrix of the F-gate

F F ′
e1 e e ′2

which links F and F ′ by merging e2 and e ′1.
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Multiplication of signature matrices

MM ′ =

[
M00M

′
00 +M01M

′
10 M00M

′
01 +M01M

′
11

M10M
′
00 +M11M

′
10 M10M

′
01 +M11M

′
11

]

F e2e1 F ′

⇓

e ′2e ′1

F F ′
e1 e e ′2
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What about gates that have a different number of left and right dangling
edges?

A gate with l left dangling edges and n − l right dangling edges can
be represented by a 2l × 2n−l matrix.

More specifically,
▶ a gate with only n left dangling edges can be represented as a 2n × 1

matrix and it is called contravariant or a generator,

▶ a gate with only n right dangling edges can be represented as a 1× 2n

matrix and it is called covariant or a recognizer.
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Kronecker product of matrices

Let A be the 3× 3 matrix A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

,

and B be the 2× 2 matrix B =

[
b11 b12
b21 b22

]
.
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Kronecker product of matrices

Then the Kronecker product of A and B is the following 6×6 matrix:

A⊗ B =

a11B a12B a13B
a21B a22B a23B
a31B a32B a33B

 =

. 

a11b11 a11b12 a12b11 a12b12 a13b11 a13b12
a11b21 a11b22 a12b21 a12b22 a13b21 a13b22
a21b11 a21b12 a22b11 a22b12 a23b11 a23b12
a21b21 a21b22 a22b21 a22b22 a23b21 a23b22
a31b11 a31b12 a32b11 a32b12 a33b11 a33b12
a31b21 a31b22 a32b21 a32b22 a33b21 a33b22

 .

Counting Complexity 74 / 132



Kronecker product of a signature matrix

Let F be the F-gate
F e2e1 with M =

[
0 1
1 3

]
.

Then M⊗2 =

[
0 1
1 3

]
⊗
[
0 1
1 3

]
=

00 01 10 11


0 0 0 1 00
0 0 1 3 01
0 1 0 3 10
1 3 3 9 11

is the signature matrix of the F-gate

F e3e1

F e4e2
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Kronecker product of a signature matrix

For example, the following assignment on the edges:

F
01

F
11

corresponds to the content of the (11, 01) cell of the matrix M⊗2:

M⊗2 =

[
0 1
1 3

]
⊗
[
0 1
1 3

]
=

00 01 10 11


0 0 0 1 00
0 0 1 3 01
0 1 0 3 10
1 3 3 9 11

which is equal to the product M10M11 = 1 · 3 = 3.
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Operations with signature matrices

Let the row vector (0, 1, 1, 0) represent the signature f of a gate with
two right dangling edges.

Let T =

[
0 1
1 1

]
be the matrix representing the signature of a gate

with one left dangling edge and one right dangling edge.

Then the signature of the following gate with two right dangling
edges

T

T

f
e3e1

e4e2

is given by the matrix f · T⊗2 = (0, 1, 1, 2).
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Holographic transformations

We consider bipartite graphs. We transform a general graph into a
bipartite graph while preserving the Holant value:

▶ For each edge in the graph, we replace it by a path of length two
(2-stretch of the graph, edge-vertex incidence graph).

▶ Each new vertex is assigned the binary Equality signature (=2).

Let T be an invertible 2× 2 matrix. The holographic transformation
defined by T is the following operation:

▶ Given Ω = (H, π) of Holant(F | G), we get a new signature grid
Ω′ = (H, π′) of Holant(FT | T−1G) by replacing each signature
fu ∈ F (resp. gv ∈ G) by fu · T⊗deg(u) (resp. (T−1)⊗deg(v) · gv ).
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Valiant’s Holant Theorem

Theorem

Let F and G be sets of complex-valued signatures over a Boolean domain.
Suppose Ω is a bipartite signature over (F | G). If T is an invertible 2× 2
matrix over C, then

Holant(Ω,F | G) = Holant(Ω′,FT | T−1G)

where Ω′ is the corresponding signature grid over (FT | T−1G).
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Proof.

1 Let Ω0 = Ω. Let G = (U,V ,E ) be the underlying graph. An edge
e = (u, v) is shown below.
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Proof cont.

2 For each e ∈ E , we subdivide e and assign (=2) to the new vertex w .
Let the resulting grid be Ω1. Then

Holant(Ω0,F | G) = Holant(Ω1,F ∪ G ∪ {=2})
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Proof cont.
3 We subdivide w to get two vertices u′, v ′. Assign to u′ and v ′ the

binary signature hu and hv , respectively, with signature matrices T
and T−1, respectively. Let the resulting grid be Ω2. Then

Holant(Ω1,F ∪ G ∪ {=2}) = Holant(Ω2,F ∪ G ∪ {T ,T−1})
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Proof cont.

4 Ω3 is the same as Ω2, except we associate the binary T and T−1 to
the original signatures f and g first. Then

Holant(Ω2,F ∪ G ∪ {T ,T−1}) = Holant(Ω3,F ∪ G ∪ {T ,T−1})
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Proof cont.
5 We contract edges (u, u′) and (v ′, v). This defines Ω′ = Ω4.

▶ The underlying graph is the initial bipartite graph G .
▶ Any vertex u ∈ U of degree deg(u) assigned f ∈ F in Ω is now

assigned f · T⊗deg(u).
▶ Any vertex v ∈ V of degree deg(v) assigned g ∈ G in Ω is now

assigned (T−1)⊗deg(v) · g .
Then,

Holant(Ω3,F ∪ G ∪ {T ,T−1}) = Holant(Ω4,FT | T−1G).

□
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Some counting problems are #P hard on general instances, but are
tractable over planar structures.

The most representative example is counting perfect matchings.

Counting perfect matchings in general graphs is #P-complete under
Turing reductions.

Counting perfect matchings in planar graphs can be solved by
Kasteleyn’s algorithm (FKT algorithm) in polynomial time.

This algorithm can be extended to a universal strategy for a broad
class of counting problems.

These results build on the theory of matchgates and holographic
algorithms.
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FKT algorithm

Kasteleyn’s algorithm is a method for
▶ counting perfect matchings
▶ computing the weighted sum of perfect matchings

in “Pfaffian orientable” graphs.

Planar graphs are Pfaffian orientable.
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Oddly oriented cycles

Fact

If M, M ′ are two perfect matchings in G , then M ∪M ′ is a collection of
single edges and even length cycles.

An orientation
−→
G of an undirected graph G is an assignment of a direction

to each of its edges.

Definition 1

Let G = (V ,E ) be an undirected graph, and
−→
G an orientation of G .

We say that an even cycle C of G is oddly oriented by
−→
G , if when

traversing C , in either direction, the number of co-oriented edges is odd.
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Pfaffian orientation

Definition 2

An orientation
−→
G of G is Pfaffian if the following condition holds:

for any two perfect matchings M, M ′ in G , every cycle in M ∪M ′ is oddly

oriented by
−→
G .

M ∪M ′ −→
GG
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