Every $\# \operatorname{CSP}_{q}(\mathcal{F})$ can be expressed as a Holant problem

An instance of $\# \operatorname{CSP}_{q}(\mathcal{F})$ has the following bipartite view.

- Create a node for each variable and each constraint.

Every $\# \operatorname{CSP}_{q}(\mathcal{F})$ can be expressed as a Holant problem

An instance of $\# \operatorname{CSP}_{q}(\mathcal{F})$ has the following bipartite view.

- Create a node for each variable and each constraint.
- Connect a variable node to a constraint node if the variable appears in the constraint.

Every $\# \operatorname{CSP}_{q}(\mathcal{F})$ can be expressed as a Holant problem

An instance of $\# \operatorname{CSP}_{q}(\mathcal{F})$ has the following bipartite view.

- Create a node for each variable and each constraint.
- Connect a variable node to a constraint node if the variable appears in the constraint.
- This graph is called the constraint graph.

Every $\# \operatorname{CSP}_{q}(\mathcal{F})$ can be expressed as a Holant problem

An instance of $\# \operatorname{CSP}_{q}(\mathcal{F})$ has the following bipartite view.

- Create a node for each variable and each constraint.
- Connect a variable node to a constraint node if the variable appears in the constraint.
- This graph is called the constraint graph.
- To each variable we assign the Equality signature of the appropriate arity (which is equal to the number of occurrences of the variable in all constraints).

Every $\# \operatorname{CSP}_{q}(\mathcal{F})$ can be expressed as a Holant problem

An instance of $\# \operatorname{CSP}_{q}(\mathcal{F})$ has the following bipartite view.

- Create a node for each variable and each constraint.
- Connect a variable node to a constraint node if the variable appears in the constraint.
- This graph is called the constraint graph.
- To each variable we assign the Equality signature of the appropriate arity (which is equal to the number of occurrences of the variable in all constraints).
- To each constraint node we assign the constraint function in \mathcal{F} used in that constraint.

Every $\# \operatorname{CSP}_{q}(\mathcal{F})$ can be expressed as a Holant problem

An instance of $\# \operatorname{CSP}_{q}(\mathcal{F})$ has the following bipartite view.

- Create a node for each variable and each constraint.
- Connect a variable node to a constraint node if the variable appears in the constraint.
- This graph is called the constraint graph.
- To each variable we assign the Equality signature of the appropriate arity (which is equal to the number of occurrences of the variable in all constraints).
- To each constraint node we assign the constraint function in \mathcal{F} used in that constraint.
$\# \operatorname{CSP}_{q}(\mathcal{F}) \leq_{T}$ Holant $_{q}\left(\mathcal{E} \mathcal{Q}_{k} \mid \mathcal{F}\right)$, where $\mathcal{E} \mathcal{Q}_{k}=\left\{={ }_{k} \mid k \geq 1\right\}$.

Every $\# \operatorname{CSP}_{q}(\mathcal{F})$ can be expressed as a Holant problem

For example, $\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right)$ which corresponds to
(1) variables $x_{1}, x_{2}, x_{3}, x_{4}$,
(2) constraints $\left(O R_{3}, x_{1}, x_{2}, x_{3}\right),\left(O R_{2}, x_{2}, x_{3}\right),\left(O R_{3}, x_{1}, x_{3}, x_{4}\right)$, becomes

Every $\# \operatorname{CSP}_{q}(\mathcal{F})$ can be expressed as a Holant problem

For example, $\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{3} \vee x_{4}\right)$ which corresponds to
(1) variables $x_{1}, x_{2}, x_{3}, x_{4}$,
(2) constraints $\left(O R_{3}, x_{1}, x_{2}, x_{3}\right),\left(O R_{2}, x_{2}, x_{3}\right),\left(O R_{3}, x_{1}, x_{3}, x_{4}\right)$, becomes

Every Holant problem can be expressed as a \#CSP

- Variables $e_{1}, e_{2}, \ldots, e_{6}$
- Constraints
- $\left(f_{u_{1}}, e_{1}, e_{2}, e_{6}\right)$
- $\left(f_{u_{2}}, e_{2}, e_{3}, e_{4}\right)$
- $\left(f_{u_{3}}, e_{1}\right)$
- $\left(f_{u_{4}}, e_{4}, e_{5}\right)$
- $\left(f_{u_{5}}, e_{5}, e_{6}\right)$
- $\left(f_{L_{6}}, e_{3}\right)$

Holant $_{q}(\mathcal{F}) \leq_{T} \# \operatorname{CSP}_{q}(\mathcal{F})$, where every variable appears exactly in 2 constraints.

Overview

(1) Introduction to Counting Complexity

- The class \#P
- Three classes of counting problems
- Holographic transformations
(2) Matchgates and Holographic Algorithms
- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
(3) Dichotomy Theorems for counting problems

Local gadget constructions via \mathcal{F}-gates

In what follows we focus on functions over the Boolean domain that take values in \mathbb{C}.

- In the context of Holant problems, we construct a graph in order to realize a signature.
- We say a signature f is realizable from \mathcal{F} if there is a graph with some dangling edges, where each vertex is assigned a signature from \mathcal{F}, and the resulting signature with inputs on the dangling edges is exactly f.
- For example, Even $_{3}$ is realizable from $\mathcal{F}=\left\{\mathrm{Odd}_{3}, \mathrm{Odd}_{2}\right\}$.

- We call this an \mathcal{F}-gate.

\mathcal{F}-gates

An \mathcal{F}-gate F is similar to a signature grid (G, π) except that $G=\left(V, E, E^{\prime}\right)$ with regular edges E and some dangling edges E^{\prime}, and $E \cap E^{\prime}=\emptyset$.

Each dangling edge $e^{\prime} \in E^{\prime}$ has only one end incident to a vertex in V, and the other edge dangling.

\mathcal{F}-gates

An \mathcal{F}-gate F is similar to a signature grid (G, π) except that $G=\left(V, E, E^{\prime}\right)$ with regular edges E and some dangling edges E^{\prime}, and $E \cap E^{\prime}=\emptyset$.

Each dangling edge $e^{\prime} \in E^{\prime}$ has only one end incident to a vertex in V, and the other edge dangling.
An \mathcal{F}-gate F with k dangling edges defines the function

$$
\Gamma\left(y_{1}, \ldots, y_{k}\right)=\sum_{\sigma: E \rightarrow[2]} \prod_{u \in V} f_{u}\left(\hat{\sigma} \upharpoonright_{E(u)}\right)
$$

where $\left(y_{1}, \ldots, y_{k}\right) \in[2]^{k}$ is an assignment on the dangling edges, $\hat{\sigma}$ is the extension of the assignment σ on the internal edges E by the assignment $\left(y_{1}, \ldots, y_{k}\right)$ on the dangling edges E^{\prime}.
We call this function 「 the signature of this \mathcal{F}-gate.

An example of an \mathcal{F}-gate with underlying graph H

The signature matrix

Let f be a signature of arity 2 over the Boolean domain. Then f can be written as a vector $f=\left(f_{00}, f_{01}, f_{10}, f_{11}\right)$ or as a matrix $M=\left[\begin{array}{ll}f_{00} & f_{01} \\ f_{10} & f_{11}\end{array}\right]$.
For example, if F, F^{\prime} are the following \mathcal{F}-gates

$$
\begin{array}{ll}
\overline{e_{1}} F \overline{e_{2}} & \text { with } M=\left[\begin{array}{ll}
0 & 1 \\
1 & 3
\end{array}\right] \\
\overline{e_{1}^{\prime}} F^{\prime} \overline{e_{2}^{\prime}} & \text { with } M^{\prime}=\left[\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right]
\end{array}
$$

then $F(0,0)=0, F(0,1)=1, F(1,0)=1$ and $F(1,1)=3$,

$$
F^{\prime}(0,0)=2, F^{\prime}(0,1)=0, F^{\prime}(1,0)=1 \text { and } F^{\prime}(1,1)=1
$$

Multiplication of signature matrices

$$
\begin{array}{ll}
\overline{e_{1}} F \overline{e_{2}} & \text { with } M=\left[\begin{array}{ll}
0 & 1 \\
1 & 3
\end{array}\right] \\
\overline{e_{1}^{\prime}} F^{\prime} \overline{e_{2}^{\prime}} & \text { with } M^{\prime}=\left[\begin{array}{ll}
2 & 0 \\
1 & 1
\end{array}\right]
\end{array}
$$

The matrix product $M M^{\prime}=\left[\begin{array}{ll}1 & 1 \\ 5 & 3\end{array}\right]$ is the signature matrix of the \mathcal{F}-gate

$$
\overline{e_{1}} F \Gamma \overline{\mathbf{e}} F^{\prime} \overline{e_{2}^{\prime}}
$$

which links F and F^{\prime} by merging e_{2} and e_{1}^{\prime}.

Multiplication of signature matrices

$$
\begin{gathered}
M M^{\prime}=\left[\begin{array}{ll}
M_{00} M_{00}^{\prime}+M_{01} M_{10}^{\prime} & M_{00} M_{01}^{\prime}+M_{01} M_{11}^{\prime} \\
M_{10} M_{00}^{\prime}+M_{11} M_{10}^{\prime} & M_{10} M_{01}^{\prime}+M_{11} M_{11}^{\prime}
\end{array}\right] \\
\frac{e_{1}}{e_{2}} \quad \frac{-}{e_{1}^{\prime}} F^{\prime}-\frac{e_{2}^{\prime}}{\Downarrow} \\
\frac{e_{1}}{} F \frac{}{\mathbf{e}} F^{\prime} \frac{}{e_{2}^{\prime}}
\end{gathered}
$$

What about gates that have a different number of left and right dangling edges?

- A gate with $/$ left dangling edges and $n-/$ right dangling edges can be represented by a $2^{\prime} \times 2^{n-l}$ matrix.
- More specifically,
- a gate with only n left dangling edges can be represented as a $2^{n} \times 1$ matrix and it is called contravariant or a generator,
- a gate with only n right dangling edges can be represented as a 1×2^{n} matrix and it is called covariant or a recognizer.

Kronecker product of matrices

- Let A be the 3×3 matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$,
- and B be the 2×2 matrix $B=\left[\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right]$.

Kronecker product of matrices

- Then the Kronecker product of A and B is the following 6×6 matrix:

$$
A \otimes B=\left[\begin{array}{lll}
a_{11} B & a_{12} B & a_{13} B \\
a_{21} B & a_{22} B & a_{23} B \\
a_{31} B & a_{32} B & a_{33} B
\end{array}\right]=
$$

$$
\left[\begin{array}{llllll}
a_{11} b_{11} & a_{11} b_{12} & a_{12} b_{11} & a_{12} b_{12} & a_{13} b_{11} & a_{13} b_{12} \\
a_{11} b_{21} & a_{11} b_{22} & a_{12} b_{21} & a_{12} b_{22} & a_{13} b_{21} & a_{13} b_{22} \\
a_{21} b_{11} & a_{21} b_{12} & a_{22} b_{11} & a_{22} b_{12} & a_{23} b_{11} & a_{23} b_{12} \\
a_{21} b_{21} & a_{21} b_{22} & a_{22} b_{21} & a_{22} b_{22} & a_{23} b_{21} & a_{23} b_{22} \\
a_{31} b_{11} & a_{31} b_{12} & a_{32} b_{11} & a_{32} b_{12} & a_{33} b_{11} & a_{33} b_{12} \\
a_{31} b_{21} & a_{31} b_{22} & a_{32} b_{21} & a_{32} b_{22} & a_{33} b_{21} & a_{33} b_{22}
\end{array}\right] .
$$

Kronecker product of a signature matrix

- Let F be the \mathcal{F}-gate $\overline{e_{1}} F \overline{e_{2}} \quad$ with $M=\left[\begin{array}{ll}0 & 1 \\ 1 & 3\end{array}\right]$.
- Then $M^{\otimes 2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 3\end{array}\right] \otimes\left[\begin{array}{ll}0 & 1 \\ 1 & 3\end{array}\right]=\left(\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 3 \\ 0 & 1 & 0 & 3 \\ 1 & 01 \\ 1 & 3 & 3 & 9\end{array}\right) 11$
is the signature matrix of the \mathcal{F}-gate

$$
\begin{aligned}
& \overline{e_{1}} F-\frac{e_{3}}{e_{2}} F-\frac{e_{4}}{}
\end{aligned}
$$

Kronecker product of a signature matrix

For example, the following assignment on the edges:

$$
\begin{aligned}
& \frac{1}{1} F-\frac{0}{1}
\end{aligned}
$$

corresponds to the content of the $(11,01)$ cell of the matrix $M^{\otimes 2}$.

$$
M^{\otimes 2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 3
\end{array}\right] \otimes\left[\begin{array}{ll}
0 & 1 \\
1 & 3
\end{array}\right]=\left(\begin{array}{cccc}
00 & 01 & 10 & 11 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 3 \\
0 & 1 & 0 & 3 \\
1 & 3 & 3 & 9
\end{array}\right) \begin{aligned}
& 00 \\
& 01 \\
& 10 \\
& \mathbf{1 1}
\end{aligned}
$$

which is equal to the product $M_{10} M_{11}=1 \cdot 3=3$.

Operations with signature matrices

- Let the row vector $(0,1,1,0)$ represent the signature f of a gate with two right dangling edges.
- Let $T=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]$ be the matrix representing the signature of a gate with one left dangling edge and one right dangling edge.
- Then the signature of the following gate with two right dangling edges

$$
\overline{\mathbf{e}_{2}} T \overline{e_{4}}
$$

is given by the matrix $f \cdot T^{\otimes 2}=(0,1,1,2)$.

Holographic transformations

- We consider bipartite graphs. We transform a general graph into a bipartite graph while preserving the Holant value:
- For each edge in the graph, we replace it by a path of length two (2-stretch of the graph, edge-vertex incidence graph).
- Each new vertex is assigned the binary Equality signature ($==_{2}$).

Holographic transformations

- We consider bipartite graphs. We transform a general graph into a bipartite graph while preserving the Holant value:
- For each edge in the graph, we replace it by a path of length two (2-stretch of the graph, edge-vertex incidence graph).
- Each new vertex is assigned the binary Equality signature $\left(=_{2}\right)$.
- Let T be an invertible 2×2 matrix. The holographic transformation defined by T is the following operation:
- Given $\Omega=(H, \pi)$ of $\operatorname{Holant}(\mathcal{F} \mid \mathcal{G})$, we get a new signature grid $\Omega^{\prime}=\left(H, \pi^{\prime}\right)$ of $\operatorname{Holant}\left(\mathcal{F} T \mid T^{-1} \mathcal{G}\right)$ by replacing each signature $f_{u} \in \mathcal{F}$ (resp. $\left.g_{v} \in \mathcal{G}\right)$ by $f_{u} \cdot T^{\otimes \operatorname{deg}(u)}$ (resp. $\left.\left(T^{-1}\right)^{\otimes \operatorname{deg}(v)} \cdot g_{v}\right)$.

Valiant's Holant Theorem

Theorem

Let \mathcal{F} and \mathcal{G} be sets of complex-valued signatures over a Boolean domain. Suppose Ω is a bipartite signature $\operatorname{over}(\mathcal{F} \mid \mathcal{G})$. If T is an invertible 2×2 matrix over \mathbb{C}, then

$$
\operatorname{Holant}(\Omega, \mathcal{F} \mid \mathcal{G})=\operatorname{Holant}\left(\Omega^{\prime}, \mathcal{F} T \mid T^{-1} \mathcal{G}\right)
$$

where Ω^{\prime} is the corresponding signature grid over $\left(\mathcal{F} T \mid T^{-1} \mathcal{G}\right)$.

Proof.
(1) Let $\Omega_{0}=\Omega$. Let $G=(U, V, E)$ be the underlying graph. An edge $e=(u, v)$ is shown below.

(a) $\Omega=\Omega_{0}$

Proof cont.

(2) For each $e \in E$, we subdivide e and assign $(=2)$ to the new vertex w. Let the resulting grid be Ω_{1}. Then
$\operatorname{Holant}\left(\Omega_{0}, \mathcal{F} \mid \mathcal{G}\right)=\operatorname{Holant}\left(\Omega_{1}, \mathcal{F} \cup \mathcal{G} \cup\left\{={ }_{2}\right\}\right)$

(b) Ω_{1}

Proof cont.

(3) We subdivide w to get two vertices u^{\prime}, v^{\prime}. Assign to u^{\prime} and v^{\prime} the binary signature h_{u} and h_{v}, respectively, with signature matrices T and T^{-1}, respectively. Let the resulting grid be Ω_{2}. Then

$$
\operatorname{Holant}\left(\Omega_{1}, \mathcal{F} \cup \mathcal{G} \cup\left\{=_{2}\right\}\right)=\operatorname{Holant}\left(\Omega_{2}, \mathcal{F} \cup \mathcal{G} \cup\left\{T, T^{-1}\right\}\right)
$$

(c) Ω_{2}

Proof cont.

(9) Ω_{3} is the same as Ω_{2}, except we associate the binary T and T^{-1} to the original signatures f and g first. Then
$\operatorname{Holant}\left(\Omega_{2}, \mathcal{F} \cup \mathcal{G} \cup\left\{T, T^{-1}\right\}\right)=\operatorname{Holant}\left(\Omega_{3}, \mathcal{F} \cup \mathcal{G} \cup\left\{T, T^{-1}\right\}\right)$

(d) Ω_{3}

Proof cont.

(5) We contract edges $\left(u, u^{\prime}\right)$ and $\left(v^{\prime}, v\right)$. This defines $\Omega^{\prime}=\Omega_{4}$.

- The underlying graph is the initial bipartite graph G.
- Any vertex $u \in U$ of degree $\operatorname{deg}(u)$ assigned $f \in \mathcal{F}$ in Ω is now assigned $f \cdot T^{\otimes \operatorname{deg}(u)}$.
- Any vertex $v \in V$ of degree $\operatorname{deg}(v)$ assigned $g \in \mathcal{G}$ in Ω is now assigned $\left(T^{-1}\right)^{\otimes \operatorname{deg}(v)} \cdot g$.
Then,

$$
\operatorname{Holant}\left(\Omega_{3}, \mathcal{F} \cup \mathcal{G} \cup\left\{T, T^{-1}\right\}\right)=\operatorname{Holant}\left(\Omega_{4}, \mathcal{F} T \mid T^{-1} \mathcal{G}\right)
$$

Overview

(1) Introduction to Counting Complexity

- The class \#P
- Three classes of counting problems
- Holographic transformations
(2) Matchgates and Holographic Algorithms
- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
(3) Dichotomy Theorems for counting problems

Overview

(1) Introduction to Counting Complexity

- The class \#P
- Three classes of counting problems
- Holographic transformations
(2) Matchgates and Holographic Algorithms
- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
(3) Dichotomy Theorems for counting problems
- Some counting problems are \#P hard on general instances, but are tractable over planar structures.
- Some counting problems are \#P hard on general instances, but are tractable over planar structures.
- The most representative example is counting perfect matchings.
- Counting perfect matchings in general graphs is \#P-complete under Turing reductions.
- Counting perfect matchings in planar graphs can be solved by Kasteleyn's algorithm (FKT algorithm) in polynomial time.
- Some counting problems are \#P hard on general instances, but are tractable over planar structures.
- The most representative example is counting perfect matchings.
- Counting perfect matchings in general graphs is \#P-complete under Turing reductions.
- Counting perfect matchings in planar graphs can be solved by Kasteleyn's algorithm (FKT algorithm) in polynomial time.
- This algorithm can be extended to a universal strategy for a broad class of counting problems.
- These results build on the theory of matchgates and holographic algorithms.

FKT algorithm

- Kasteleyn's algorithm is a method for
- counting perfect matchings
- computing the weighted sum of perfect matchings
in "Pfaffian orientable" graphs.
- Planar graphs are Pfaffian orientable.

Oddly oriented cycles

```
Fact
If M, M' are two perfect matchings in G, then M\cup M' is a collection of
single edges and even length cycles.
```


Oddly oriented cycles

Fact
 If M, M^{\prime} are two perfect matchings in G, then $M \cup M^{\prime}$ is a collection of single edges and even length cycles.

An orientation \vec{G} of an undirected graph G is an assignment of a direction to each of its edges.

Oddly oriented cycles

Fact

If M, M^{\prime} are two perfect matchings in G, then $M \cup M^{\prime}$ is a collection of single edges and even length cycles.

An orientation \vec{G} of an undirected graph G is an assignment of a direction to each of its edges.

Definition 1

Let $G=(V, E)$ be an undirected graph, and \vec{G} an orientation of G. We say that an even cycle C of G is oddly oriented by \vec{G}, if when traversing C, in either direction, the number of co-oriented edges is odd.

Pfaffian orientation

Definition 2

An orientation \vec{G} of G is Pfaffian if the following condition holds: for any two perfect matchings M, M^{\prime} in G, every cycle in $M \cup M^{\prime}$ is oddly oriented by \vec{G}.

G

\vec{G}

