Let \overrightarrow{G} be a Pfaffian orientation of G.

Define the skew adjacency matrix $A_S(\overrightarrow{G}) = (a_{ij} : 0 \le i, j \le n-1)$ of G by

$$a_{ij} = \begin{cases} +1, & \text{if } (i,j) \in E(\overrightarrow{G}) \\ -1, & \text{if } (j,i) \in E(\overrightarrow{G}) \\ 0, & \text{otherwise} \end{cases}$$

Kasteleyn's Theorem

For any Pfaffian orientation \overrightarrow{G} of G,

#Perfect Matchings in
$$G = \sqrt{\det(A_S(\overrightarrow{G}))}$$
.

Proof. Let \overleftrightarrow{G} be the directed graph obtained from G by replacing each undirected edge $\{i, j\}$ by the pair of directed edges (i, j), (j, i).

Step 1. (#Perfect Matchings in G)² = #Even cycle covers in \overleftrightarrow{G} .

Step 2. #Even cycle covers in $\overleftarrow{G} = \det(A_S(\overrightarrow{G}))$.

Even Cycle cover

An even cycle cover of a directed graph G is a collection C of even length directed cycles s.t. every vertex of G is contained in exactly one cycle in C.

Proof cont. **Step 1.** (#Perfect Matchings in $G)^2 = \#$ Even cycle covers in \overleftrightarrow{G} .

Lemma

There is a bijection between ordered pairs of perfect matchings in G and even cycle covers in \overleftarrow{G} .

Proof of lemma. Let (M, M') be an ordered pair of perfect matchings in G.

 Orient each cycle c in M ∪ M' according to the following convention: take the vertex with lowest number in c and orient the incident M-edge away from it.

Proof cont. **Step 2.** #Even cycle covers in $\overleftrightarrow{G} = \det(A_S(\overrightarrow{G}))$. • $\det(A_S(\overrightarrow{G})) = \sum_{\pi \in S_n} \operatorname{sgn} \pi \prod_{i=1}^n a_{i,\pi(i)}^2$.

 $^{^2{\}rm sgn}\,\pi$ is +1 if the cycle decomposition of π has an even number of even length cycles, and -1 otherwise.

Proof cont. **Step 2.** #Even cycle covers in $\overleftrightarrow{G} = \det(A_S(\overrightarrow{G}))$. • $\det(A_S(\overrightarrow{G})) = \sum_{\pi \in S_n} \operatorname{sgn} \pi \prod_{i=1}^n a_{i,\pi(i)}^2$.

Every permutation π has a unique decomposition into disjoint cycles, i.e. π = γ₁ · · · γ_k. For example, π = (23)(145) corresponds to π(2) = 3, π(3) = 2, π(1) = 4, π(4) = 5 and π(5) = 1.

 $^{^2{\}rm sgn}\,\pi$ is +1 if the cycle decomposition of π has an even number of even length cycles, and -1 otherwise.

Proof cont. **Step 2.** #Even cycle covers in $\overleftrightarrow{G} = \det(A_S(\overrightarrow{G}))$. • $\det(A_S(\overrightarrow{G})) = \sum_{\pi \in S_n} \operatorname{sgn} \pi \prod_{i=1}^n a_{i,\pi(i)}^2$.

- Every permutation π has a unique decomposition into disjoint cycles, i.e. π = γ₁ · · · γ_k. For example, π = (23)(145) corresponds to π(2) = 3, π(3) = 2, π(1) = 4, π(4) = 5 and π(5) = 1.
- Let γ_j act on a certain subset V_j ⊆ V. The product ∏_{i∈V_j} a_{i,π(i)} is non-zero iff edges {(i, π(i)) : i ∈ V_j} form a cycle C_j in G. For example, a_{1,4} · a_{4,5} · a_{5,1} ≠ 0 iff {(1,4), (4,5), (5,1)} is a cycle.

 $^{^2{\}rm sgn}\,\pi$ is +1 if the cycle decomposition of π has an even number of even length cycles, and -1 otherwise.

There is a one-to-one correspondence between permutations with non-zero contributions and cycle covers of G : A permutation π = γ₁ · · · γ_k is mapped to the set of directed cycles (of even or odd length) corresponding to γ₁,...,γ_k. Each cycle C_i is given the direction determined by γ_i.

- There is a one-to-one correspondence between permutations with non-zero contributions and cycle covers of G : A permutation π = γ₁ · · · γ_k is mapped to the set of directed cycles (of even or odd length) corresponding to γ₁,...,γ_k. Each cycle C_i is given the direction determined by γ_i.
- The permutations with some odd length cycle can be paired so they cancel each other: a permutation $\pi = \gamma_1 \cdots \gamma_j \cdots \gamma_k$ cancels out $\pi = \gamma_1 \cdots (\gamma_j)^{-1} \cdots \gamma_k$, where γ_j is of odd length. They have the same sign but opposite corresponding products.

• We consider only permutations with even length cycles which correspond to even cycle covers of \overleftarrow{G} .

• We consider only permutations with even length cycles which correspond to even cycle covers of \overleftarrow{G} .

• Let $\pi = (\gamma_1 \cdots \gamma_j \cdots \gamma_k)$ be a permutation with even cycles.

• We consider only permutations with even length cycles which correspond to even cycle covers of \overleftarrow{G} .

• Let $\pi = (\gamma_1 \cdots \gamma_j \cdots \gamma_k)$ be a permutation with even cycles.

• Since \overrightarrow{G} is Pfaffian, each cycle C_j (corresponding to an even cycle γ_j) is oddly oriented by \overrightarrow{G} .

• We consider only permutations with even length cycles which correspond to even cycle covers of \overleftarrow{G} .

• Let $\pi = (\gamma_1 \cdots \gamma_j \cdots \gamma_k)$ be a permutation with even cycles.

- Since \overrightarrow{G} is Pfaffian, each cycle C_j (corresponding to an even cycle γ_j) is oddly oriented by \overrightarrow{G} .
- So, γ_j contributes a factor −1 to ∏ⁿ_{i=1} a_{i,π(i)}, and a factor −1 to sgn π, being an even cycle.

• We consider only permutations with even length cycles which correspond to even cycle covers of \overleftarrow{G} .

• Let $\pi = (\gamma_1 \cdots \gamma_j \cdots \gamma_k)$ be a permutation with even cycles.

- Since \overrightarrow{G} is Pfaffian, each cycle C_j (corresponding to an even cycle γ_j) is oddly oriented by \overrightarrow{G} .
- So, γ_j contributes a factor −1 to ∏ⁿ_{i=1} a_{i,π(i)}, and a factor −1 to sgn π, being an even cycle.
- Therefore, overall π contributes 1 to the sum.

Lemma

Let \overrightarrow{G} be a connected planar directed graph, embedded in the plane. Suppose every face, except the outer infinite face, has an odd number of edges that are oriented clockwise. Then, \overrightarrow{G} is Pfaffian.

Theorem

Every planar graph has a Pfaffian orientation.

Proof. W.I.o.g. assume G is connected. By induction on the number m of edges.

- m = n 1: G is a tree and every orientation is Pfaffian.
- m ≥ n: Fix an edge on the exterior. By the induction hypothesis,
 G \ e has a Pfaffian orientation. Adding e creates just one more face.
 Orient e such that this face has an odd number of edges oriented clockwise.

Overview

- The class #P
- Three classes of counting problems
- Holographic transformations

Matchgates and Holographic Algorithms

- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
- 3 Polynomial Interpolation

Dichotomy Theorems for counting problems

Matchgates and Holographic algorithms

- In the context of holographic algorithms based on matchgates, counting problems are reduced to counting perfect matchings in planar graphs.
- 2002: Valiant initially introduced matchgates as a way to show that a nontrivial, though restricted, fragment of quantum computation can be simulated in classical polynomial time (he presented a way to simulate certain quantum gates by matchgates).

Matchgates

- A plane graph is a planar graph given with a particular planar embedding.
- W.I.o.g. we assume all edge weights are nonzero.

Definition

A matchgate is an undirected weighted plane graph G with a subset of distinguished nodes on its outer face, called the external nodes, ordered in a clockwise order.

Example of a matchgate

Some notation

Let G be a matchgate with k external nodes. For each length-k bitstring α, G^α is obtained from G by the following operation:
 For all 1 ≤ i ≤ k, if the *i*-th bit of α is 1, then we remove the *i*-th external node and all its incident edges.

Some notation

- For any graph G, we denote by $\mathcal{M}(G)$ the set of perfect matchings of G.
- For any weighted graph G, we denote by PERFMATCH(G) the weighted sum of perfect matchings of G, i.e.

$$\operatorname{PerfMatch}(G) = \sum_{M \in \mathcal{M}(G)} \prod_{e \in M} w(e).$$

The signature of a matchgate

Definition

Let G be a matchgate with k external nodes. We define the signature of G as the vector $\Gamma_G = (\Gamma_G^{\alpha})$, indexed by $\alpha \in \{0,1\}^k$ in lexicographic order, as follows:

$$\Gamma_{G}^{\alpha} = \operatorname{PerfMatch}(G^{\alpha}) = \sum_{M \in \mathcal{M}(G^{\alpha})} \prod_{e \in M} w(e).$$

For example,

$$\Gamma_{G}^{000} = 6$$
,
 $\Gamma_{G}^{100} = 0$,
 $\Gamma_{G}^{110} = 6 \cdot 1 \cdot (-\frac{1}{3}) = -2$,

The signature of a matchgate

Definition

Let G be a matchgate with k external nodes. We define the signature of G as the vector $\Gamma_G = (\Gamma_G^{\alpha})$, indexed by $\alpha \in \{0,1\}^k$ in lexicographic order, as follows:

$$\Gamma_{G}^{\alpha} = \operatorname{PerfMatch}(G^{\alpha}) = \sum_{M \in \mathcal{M}(G^{\alpha})} \prod_{e \in M} w(e).$$

For example,

$$\Gamma_G^{000} = 6$$
,
 $\Gamma_G^{100} = 0$,
 $\Gamma_G^{110} = 6 \cdot 1 \cdot (-\frac{1}{3}) = -2$,
 $\Gamma_G = (6, 0, 0, -2, 0, -2, -2, 0)$.

Necessary condition

For any matchgate signature Γ_G , either for all α of odd Hamming weight, or for all α of even Hamming weight, $\Gamma_G^{\alpha} = 0$.

Symmetric matchgate signatures

Definition

A matchgate signature Γ_G is symmetric if, for all α and β of equal Hamming weight, $\Gamma_G^{\alpha} = \Gamma_G^{\beta}$.

Symmetric matchgate signatures

Definition

A matchgate signature Γ_G is symmetric if, for all α and β of equal Hamming weight, $\Gamma_G^{\alpha} = \Gamma_G^{\beta}$.

Symmetric matchgate signatures

Definition

A matchgate signature Γ_G is symmetric if, for all α and β of equal Hamming weight, $\Gamma_G^{\alpha} = \Gamma_G^{\beta}$.

Characterization of symmetric matchgate signatures

Theorem

A symmetric signature is the signature of a matchgate iff it has the following form, for some $a, b \in \mathbb{C}$ and $k \in \mathbb{Z}^{a}$:

$$\ \, {\small [} a^k b^0, 0, a^{k-1} b, 0, a^{k-2} b^2, 0, ..., a^0 b^k {\small]} \qquad ({\rm arity} \ 2k \geq 2)$$

2
$$[a^k b^0, 0, a^{k-1}b, 0, a^{k-2}b^2, 0, ..., a^0b^k, 0]$$
 (arity $2k + 1 \ge 1$)

③
$$[0, a^k b^0, 0, a^{k-1}b, 0, a^{k-2}b^2, 0, ..., a^0 b^k]$$
 (arity $2k + 1 ≥ 1$)

3
$$[0, a^k b^0, 0, a^{k-1}b, 0, a^{k-2}b^2, 0, ..., a^0 b^k, 0]$$
 (arity $2k + 2 \ge 2$).

^aWe take the convention that $0^0 = 1$.

Overview

- The class #P
- Three classes of counting problems
- Holographic transformations

Matchgates and Holographic Algorithms

- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms

3 Polynomial Interpolation

Dichotomy Theorems for counting problems

Holographic algorithms for some problems

- 2008: Valiant gave holographic algorithms for a series of problems in his paper "Holographic algorithms".
- The next problem is motivated by statistical physics.
 - ► An "ice problem" involves counting the number of orientations of an undirected graph such that certain local constraints are satisfied.
 - Pauling initially proposed such a model for planar square lattices, where the constraint was that an orientation assigned exactly two incoming and two outgoing edges at every node.

#PL-3-NAE-ICE

Input: A planar graph G = (V, E) of maximum degree 3.

Output: The number of orientations such that no node has all incident edges directed toward it or all incident edges directed away from it.

- #PL-3-NAE-ICE is the problem of counting the number of no-sink-no-source orientations.
- We assume every node has degree 2 or 3, since a node of degree 1 will preclude such an orientation.

A holographic algorithm for $\#\mathrm{PL}\mbox{-}3\mbox{-}\mathrm{NAE}\mbox{-}\mathrm{ICE}$ Step 1

Let G = (V, E) be an input to the problem.

To solve the problem by a holographic algorithm with matchgates, we make the following transformations:

- We design a signature grid $\Omega = (G', \pi)$ based on G:
 - ▶ We attach to each node of degree 3 a *Not-All-Equal* (or *NAE*) gate of arity 3, i.e. the signature [0, 1, 1, 0], as a contravariant tensor (with only left dangling edges).
 - For any node of degree 2 we use a NAE gate of arity 2, i.e. a binary Disequality signature (≠2) = [0, 1, 0], also as a contravariant tensor.
 - For each edge in E we use a binary Disequality signature (≠2) = [0,1,0] as a covariant tensor (with only right dangling edges).

Example of Step 1 (edge-vertex incidence graph) An orientation of G An assignment σ on the edges of $\Omega = (G', \pi)$

- If G is planar, then G' is also planar.
- Here, a dashed edge e in Ω denotes that σ(e) = 0, whereas a solid edge e denotes that σ(e) = 1.