
Let
−→
G be a Pfaffian orientation of G .

Define the skew adjacency matrix AS(
−→
G ) = (aij : 0 ≤ i , j ≤ n− 1) of G by

aij =


+1, if (i , j) ∈ E (

−→
G )

−1, if (j , i) ∈ E (
−→
G )

0, otherwise

Kasteleyn’s Theorem

For any Pfaffian orientation
−→
G of G ,

#Perfect Matchings in G =

√
det(AS(

−→
G )).

Counting Complexity 91 / 145



Proof. Let
←→
G be the directed graph obtained from G by replacing each

undirected edge {i , j} by the pair of directed edges (i , j), (j , i).

Step 1. (#Perfect Matchings in G )2 = #Even cycle covers in
←→
G .

Step 2. #Even cycle covers in
←→
G = det(AS(

−→
G )).
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Even Cycle cover

An even cycle cover of a directed graph G is a collection C of even length
directed cycles s.t. every vertex of G is contained in exactly one cycle in C.
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Proof cont.
Step 1. (#Perfect Matchings in G )2 = #Even cycle covers in

←→
G .

Lemma

There is a bijection between ordered pairs of perfect matchings in G and

even cycle covers in
←→
G .

Proof of lemma. Let (M,M ′) be an ordered pair of perfect matchings in G .

For any edge {i , j} ∈ M ∩M ′ take
both (i , j), (j , i) in C .

Orient each cycle c in M ∪M ′

according to the following convention:
take the vertex with lowest number in
c and orient the incident M-edge away
from it.

M ′ CM

=⇒

□
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Proof cont.
Step 2. #Even cycle covers in

←→
G = det(AS(

−→
G )).

det(AS(
−→
G )) =

∑
π∈Sn

sgnπ
n∏

i=1

ai ,π(i)
2.

Every permutation π has a unique decomposition into disjoint cycles,
i.e. π = γ1 · · · γk .
For example, π = (2 3)(1 4 5) corresponds to π(2) = 3, π(3) = 2,
π(1) = 4, π(4) = 5 and π(5) = 1.

Let γj act on a certain subset Vj ⊆ V . The product
∏

i∈Vj
ai ,π(i) is

non-zero iff edges {(i , π(i)) : i ∈ Vj} form a cycle Cj in G .
For example, a1,4 · a4,5 · a5,1 ̸= 0 iff {(1, 4), (4, 5), (5, 1)} is a cycle.

2sgnπ is +1 if the cycle decomposition of π has an even number of even length
cycles, and −1 otherwise.
Counting Complexity 95 / 145



Proof cont.
Step 2. #Even cycle covers in

←→
G = det(AS(

−→
G )).

det(AS(
−→
G )) =

∑
π∈Sn

sgnπ
n∏

i=1

ai ,π(i)
2.

Every permutation π has a unique decomposition into disjoint cycles,
i.e. π = γ1 · · · γk .
For example, π = (2 3)(1 4 5) corresponds to π(2) = 3, π(3) = 2,
π(1) = 4, π(4) = 5 and π(5) = 1.

Let γj act on a certain subset Vj ⊆ V . The product
∏

i∈Vj
ai ,π(i) is

non-zero iff edges {(i , π(i)) : i ∈ Vj} form a cycle Cj in G .
For example, a1,4 · a4,5 · a5,1 ̸= 0 iff {(1, 4), (4, 5), (5, 1)} is a cycle.

2sgnπ is +1 if the cycle decomposition of π has an even number of even length
cycles, and −1 otherwise.
Counting Complexity 95 / 145



Proof cont.
Step 2. #Even cycle covers in

←→
G = det(AS(

−→
G )).

det(AS(
−→
G )) =

∑
π∈Sn

sgnπ
n∏

i=1

ai ,π(i)
2.

Every permutation π has a unique decomposition into disjoint cycles,
i.e. π = γ1 · · · γk .
For example, π = (2 3)(1 4 5) corresponds to π(2) = 3, π(3) = 2,
π(1) = 4, π(4) = 5 and π(5) = 1.

Let γj act on a certain subset Vj ⊆ V . The product
∏

i∈Vj
ai ,π(i) is

non-zero iff edges {(i , π(i)) : i ∈ Vj} form a cycle Cj in G .
For example, a1,4 · a4,5 · a5,1 ̸= 0 iff {(1, 4), (4, 5), (5, 1)} is a cycle.

2sgnπ is +1 if the cycle decomposition of π has an even number of even length
cycles, and −1 otherwise.
Counting Complexity 95 / 145



Proof cont.

There is a one-to-one correspondence between permutations with

non-zero contributions and cycle covers of
←→
G : A permutation

π = γ1 · · · γk is mapped to the set of directed cycles (of even or odd
length) corresponding to γ1,...,γk .
Each cycle Cj is given the direction determined by γj .

The permutations with some odd length cycle can be paired so they
cancel each other: a permutation π = γ1 · · · γj · · · γk cancels out
π = γ1 · · · (γj)−1 · · · γk , where γj is of odd length.
They have the same sign but opposite corresponding products.
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Proof cont.

We consider only permutations with even length cycles which

correspond to even cycle covers of
←→
G .

Let π = (γ1 · · · γj · · · γk) be a permutation with even cycles.

Since
−→
G is Pfaffian, each cycle Cj (corresponding to an even cycle γj)

is oddly oriented by
−→
G .

So, γj contributes a factor −1 to
∏n

i=1 ai ,π(i), and a factor −1 to
sgnπ, being an even cycle.

Therefore, overall π contributes 1 to the sum.

□
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Lemma

Let
−→
G be a connected planar directed graph, embedded in the plane.

Suppose every face, except the outer infinite face, has an odd number of

edges that are oriented clockwise. Then,
−→
G is Pfaffian.
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Theorem

Every planar graph has a Pfaffian orientation.

Proof. W.l.o.g. assume G is connected.
By induction on the number m of edges.

m = n − 1: G is a tree and every orientation is Pfaffian.

m ≥ n: Fix an edge on the exterior. By the induction hypothesis,
G \ e has a Pfaffian orientation. Adding e creates just one more face.
Orient e such that this face has an odd number of edges oriented
clockwise.

□
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Overview

1 Introduction to Counting Complexity
The class #P
Three classes of counting problems
Holographic transformations

2 Matchgates and Holographic Algorithms
Kasteleyn’s algorithm
Matchgates
Holographic algorithms

3 Polynomial Interpolation

4 Dichotomy Theorems for counting problems
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Matchgates and Holographic algorithms

In the context of holographic algorithms based on matchgates,
counting problems are reduced to counting perfect matchings in
planar graphs.

2002: Valiant initially introduced matchgates as a way to show that a
nontrivial, though restricted, fragment of quantum computation can
be simulated in classical polynomial time (he presented a way to
simulate certain quantum gates by matchgates).
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Matchgates

A plane graph is a planar graph given with a particular planar
embedding.

W.l.o.g. we assume all edge weights are nonzero.

Definition

A matchgate is an undirected weighted plane graph G with a subset of
distinguished nodes on its outer face, called the external nodes, ordered in
a clockwise order.
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Example of a matchgate
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Some notation

Let G be a matchgate with k external nodes. For each length-k
bitstring α, Gα is obtained from G by the following operation:
For all 1 ≤ i ≤ k , if the i-th bit of α is 1, then we remove the i-th
external node and all its incident edges.

G

G 100
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Some notation

For any graph G , we denote byM(G ) the set of perfect matchings of
G .

For any weighted graph G , we denote by PerfMatch(G ) the
weighted sum of perfect matchings of G , i.e.

PerfMatch(G ) =
∑

M∈M(G)

∏
e∈M

w(e).
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The signature of a matchgate

Definition

Let G be a matchgate with k external nodes.
We define the signature of G as the vector ΓG = (ΓαG ), indexed by
α ∈ {0, 1}k in lexicographic order, as follows:

ΓαG = PerfMatch(Gα) =
∑

M∈M(Gα)

∏
e∈M

w(e).

G
For example,
Γ000G = 6,

Γ100G = 0,

Γ110G = 6 · 1 · (−1
3) = −2,

ΓG = (6, 0, 0,−2, 0,−2,−2, 0).
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Necessary condition

For any matchgate signature ΓG , either for all α of odd Hamming weight,
or for all α of even Hamming weight, ΓαG = 0.
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Symmetric matchgate signatures

Definition

A matchgate signature ΓG is symmetric if, for all α and β of equal
Hamming weight, ΓαG = ΓβG .

G It holds that

Γ001G = Γ010G = Γ100G = 0

and

Γ011G = Γ110G = Γ101G = −2.

So, ΓG = [6, 0,−2, 0].
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Characterization of symmetric matchgate signatures

Theorem

A symmetric signature is the signature of a matchgate iff it has the
following form, for some a, b ∈ C and k ∈ Z a:

1 [akb0, 0, ak−1b, 0, ak−2b2, 0, ..., a0bk ] (arity 2k ≥ 2)

2 [akb0, 0, ak−1b, 0, ak−2b2, 0, ..., a0bk , 0] (arity 2k + 1 ≥ 1)

3 [0, akb0, 0, ak−1b, 0, ak−2b2, 0, ..., a0bk ] (arity 2k + 1 ≥ 1)

4 [0, akb0, 0, ak−1b, 0, ak−2b2, 0, ..., a0bk , 0] (arity 2k + 2 ≥ 2).

aWe take the convention that 00 = 1.
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Holographic algorithms for some problems

2008: Valiant gave holographic algorithms for a series of problems in
his paper “Holographic algorithms”.

The next problem is motivated by statistical physics.
▶ An “ice problem” involves counting the number of orientations of an

undirected graph such that certain local constraints are satisfied.

▶ Pauling initially proposed such a model for planar square lattices, where
the constraint was that an orientation assigned exactly two incoming
and two outgoing edges at every node.

Counting Complexity 111 / 145



#Pl-3-NAE-Ice

Input: A planar graph G = (V ,E ) of maximum degree 3.

Output: The number of orientations such that no node has all incident
edges directed toward it or all incident edges directed away from it.

#Pl-3-NAE-Ice is the problem of counting the number of
no-sink-no-source orientations.

We assume every node has degree 2 or 3, since a node of degree 1
will preclude such an orientation.
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A holographic algorithm for #Pl-3-NAE-Ice
Step 1

Let G = (V ,E ) be an input to the problem.

To solve the problem by a holographic algorithm with matchgates, we
make the following transformations:

1 We design a signature grid Ω = (G ′, π) based on G :
▶ We attach to each node of degree 3 a Not-All-Equal (or NAE ) gate of

arity 3, i.e. the signature [0, 1, 1, 0], as a contravariant tensor (with
only left dangling edges).

▶ For any node of degree 2 we use a NAE gate of arity 2, i.e. a binary
Disequality signature ( ̸=2) = [0, 1, 0], also as a contravariant tensor.

▶ For each edge in E we use a binary Disequality signature
(̸=2) = [0, 1, 0] as a covariant tensor (with only right dangling edges).
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Example of Step 1 (edge-vertex incidence graph)

An orientation of G An assignment σ on the edges of Ω = (G ′, π)

d

b

c

a

=⇒

̸=2

̸=2

̸=2

̸=2

̸=2

a ̸=2

b NAE3

c ̸=2

d NAE3

If G is planar, then G ′ is also planar.

Here, a dashed edge e in Ω denotes that σ(e) = 0, whereas a solid edge e denotes
that σ(e) = 1.
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