Let \vec{G} be a Pfaffian orientation of G.
Define the skew adjacency matrix $A_{S}(\vec{G})=\left(a_{i j}: 0 \leq i, j \leq n-1\right)$ of G by

$$
a_{i j}= \begin{cases}+1, & \text { if }(i, j) \in E(\vec{G}) \\ -1, & \text { if }(j, i) \in E(\vec{G}) \\ 0, & \text { otherwise }\end{cases}
$$

Kasteleyn's Theorem

For any Pfaffian orientation \vec{G} of G,
\#Perfect Matchings in $G=\sqrt{\operatorname{det}\left(A_{S}(\vec{G})\right)}$.

Proof. Let \overleftrightarrow{G} be the directed graph obtained from G by replacing each undirected edge $\{i, j\}$ by the pair of directed edges $(i, j),(j, i)$.

Step 1. (\#Perfect Matchings in $G)^{2}=$ \#Even cycle covers in \overleftrightarrow{G}.

Step 2. \#Even cycle covers in $\overleftrightarrow{G}=\operatorname{det}\left(A_{S}(\vec{G})\right)$

Even Cycle cover

An even cycle cover of a directed graph G is a collection \mathcal{C} of even length directed cycles s.t. every vertex of G is contained in exactly one cycle in \mathcal{C}.

Proof cont.
Step 1. (\#Perfect Matchings in $G)^{2}=$ \#Even cycle covers in \overleftrightarrow{G}.

Lemma

There is a bijection between ordered pairs of perfect matchings in G and even cycle covers in \overleftrightarrow{G}.

Proof of lemma. Let $\left(M, M^{\prime}\right)$ be an ordered pair of perfect matchings in G.

- For any edge $\{i, j\} \in M \cap M^{\prime}$ take both $(i, j),(j, i)$ in C.
- Orient each cycle \mathbf{c} in $M \cup M^{\prime}$

Proof cont.
Step 2. \#Even cycle covers in $\overleftrightarrow{G}=\operatorname{det}\left(A_{S}(\vec{G})\right)$

- $\operatorname{det}\left(A_{S}(\vec{G})\right)=\sum_{\pi \in S_{n}} \operatorname{sgn} \pi \prod_{i=1}^{n} a_{i, \pi(i)}{ }^{2}$.
${ }^{2} \operatorname{sgn} \pi$ is +1 if the cycle decomposition of π has an even number of even length cycles, and -1 otherwise.

Proof cont.
Step 2. \#Even cycle covers in $\overleftrightarrow{G}=\operatorname{det}\left(A_{S}(\vec{G})\right)$

- $\operatorname{det}\left(A_{S}(\vec{G})\right)=\sum_{\pi \in S_{n}} \operatorname{sgn} \pi \prod_{i=1}^{n} a_{i, \pi(i)}{ }^{2}$.
- Every permutation π has a unique decomposition into disjoint cycles, i.e. $\pi=\gamma_{1} \cdots \gamma_{k}$. For example, $\pi=(23)(145)$ corresponds to $\pi(2)=3, \pi(3)=2$, $\pi(1)=4, \pi(4)=5$ and $\pi(5)=1$.
${ }^{2} \operatorname{sgn} \pi$ is +1 if the cycle decomposition of π has an even number of even length cycles, and -1 otherwise.

Proof cont.
Step 2. \#Even cycle covers in $\overleftrightarrow{G}=\operatorname{det}\left(A_{S}(\vec{G})\right)$

- $\operatorname{det}\left(A_{S}(\vec{G})\right)=\sum_{\pi \in S_{n}} \operatorname{sgn} \pi \prod_{i=1}^{n} a_{i, \pi(i)}{ }^{2}$.
- Every permutation π has a unique decomposition into disjoint cycles, i.e. $\pi=\gamma_{1} \cdots \gamma_{k}$.

For example, $\pi=(23)(145)$ corresponds to $\pi(2)=3, \pi(3)=2$, $\pi(1)=4, \pi(4)=5$ and $\pi(5)=1$.

- Let γ_{j} act on a certain subset $V_{j} \subseteq V$. The product $\prod_{i \in V_{j}} a_{i, \pi(i)}$ is non-zero iff edges $\left\{(i, \pi(i)): i \in V_{j}\right\}$ form a cycle C_{j} in G. For example, $a_{1,4} \cdot a_{4,5} \cdot a_{5,1} \neq 0 \operatorname{iff}\{(1,4),(4,5),(5,1)\}$ is a cycle.

[^0]Proof cont.

- There is a one-to-one correspondence between permutations with non-zero contributions and cycle covers of \overleftrightarrow{G} : A permutation $\pi=\gamma_{1} \cdots \gamma_{k}$ is mapped to the set of directed cycles (of even or odd length) corresponding to $\gamma_{1}, \ldots, \gamma_{k}$. Each cycle C_{j} is given the direction determined by γ_{j}.

Proof cont.

- There is a one-to-one correspondence between permutations with non-zero contributions and cycle covers of \overleftrightarrow{G} : A permutation $\pi=\gamma_{1} \cdots \gamma_{k}$ is mapped to the set of directed cycles (of even or odd length) corresponding to $\gamma_{1}, \ldots, \gamma_{k}$. Each cycle C_{j} is given the direction determined by γ_{j}.
- The permutations with some odd length cycle can be paired so they cancel each other: a permutation $\pi=\gamma_{1} \cdots \gamma_{j} \cdots \gamma_{k}$ cancels out $\pi=\gamma_{1} \cdots\left(\gamma_{j}\right)^{-1} \cdots \gamma_{k}$, where γ_{j} is of odd length.
They have the same sign but opposite corresponding products.

Proof cont.

- We consider only permutations with even length cycles which correspond to even cycle covers of \overleftrightarrow{G}.

Proof cont.

- We consider only permutations with even length cycles which correspond to even cycle covers of \overleftrightarrow{G}.
- Let $\pi=\left(\gamma_{1} \cdots \gamma_{j} \cdots \gamma_{k}\right)$ be a permutation with even cycles.

Proof cont.

- We consider only permutations with even length cycles which correspond to even cycle covers of \overleftrightarrow{G}.
- Let $\pi=\left(\gamma_{1} \cdots \gamma_{j} \cdots \gamma_{k}\right)$ be a permutation with even cycles.
- Since \vec{G} is Pfaffian, each cycle C_{j} (corresponding to an even cycle γ_{j}) is oddly oriented by \vec{G}.

Proof cont.

- We consider only permutations with even length cycles which correspond to even cycle covers of \overleftrightarrow{G}.
- Let $\pi=\left(\gamma_{1} \cdots \gamma_{j} \cdots \gamma_{k}\right)$ be a permutation with even cycles.
- Since \vec{G} is Pfaffian, each cycle C_{j} (corresponding to an even cycle γ_{j}) is oddly oriented by \vec{G}.
- So, γ_{j} contributes a factor -1 to $\prod_{i=1}^{n} a_{i, \pi(i)}$, and a factor -1 to $\operatorname{sgn} \pi$, being an even cycle.

Proof cont.

- We consider only permutations with even length cycles which correspond to even cycle covers of \overleftrightarrow{G}.
- Let $\pi=\left(\gamma_{1} \cdots \gamma_{j} \cdots \gamma_{k}\right)$ be a permutation with even cycles.
- Since \vec{G} is Pfaffian, each cycle C_{j} (corresponding to an even cycle γ_{j}) is oddly oriented by \vec{G}.
- So, γ_{j} contributes a factor -1 to $\prod_{i=1}^{n} a_{i, \pi(i)}$, and a factor -1 to $\operatorname{sgn} \pi$, being an even cycle.
- Therefore, overall π contributes 1 to the sum.

Lemma

Let \vec{G} be a connected planar directed graph, embedded in the plane. Suppose every face, except the outer infinite face, has an odd number of edges that are oriented clockwise. Then, \vec{G} is Pfaffian.

Theorem

Every planar graph has a Pfaffian orientation.
Proof. W.I.o.g. assume G is connected.
By induction on the number m of edges.

- $m=n-1$: G is a tree and every orientation is Pfaffian.
- $m \geq n$: Fix an edge on the exterior. By the induction hypothesis, $G \backslash e$ has a Pfaffian orientation. Adding e creates just one more face. Orient e such that this face has an odd number of edges oriented clockwise.

Overview

(1) Introduction to Counting Complexity

- The class \#P
- Three classes of counting problems
- Holographic transformations
(2) Matchgates and Holographic Algorithms
- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
(3) Polynomial Interpolation
(4) Dichotomy Theorems for counting problems

Matchgates and Holographic algorithms

- In the context of holographic algorithms based on matchgates, counting problems are reduced to counting perfect matchings in planar graphs.
- 2002: Valiant initially introduced matchgates as a way to show that a nontrivial, though restricted, fragment of quantum computation can be simulated in classical polynomial time (he presented a way to simulate certain quantum gates by matchgates).

Matchgates

- A plane graph is a planar graph given with a particular planar embedding.
- W.l.o.g. we assume all edge weights are nonzero.

Definition

A matchgate is an undirected weighted plane graph G with a subset of distinguished nodes on its outer face, called the external nodes, ordered in a clockwise order.

Example of a matchgate

Some notation

- Let G be a matchgate with k external nodes. For each length- k bitstring α, G^{α} is obtained from G by the following operation: For all $1 \leq i \leq k$, if the i-th bit of α is 1 , then we remove the i-th external node and all its incident edges.

Some notation

- For any graph G, we denote by $\mathcal{M}(G)$ the set of perfect matchings of G.
- For any weighted graph G, we denote by $\operatorname{PerfMatch}(G)$ the weighted sum of perfect matchings of G, i.e.

$$
\operatorname{PerfMatch}(G)=\sum_{M \in \mathcal{M}(G)} \prod_{e \in M} w(e) .
$$

The signature of a matchgate

Definition

Let G be a matchgate with k external nodes.
We define the signature of G as the vector $\Gamma_{G}=\left(\Gamma_{G}^{\alpha}\right)$, indexed by $\alpha \in\{0,1\}^{k}$ in lexicographic order, as follows:

$$
\Gamma_{G}^{\alpha}=\operatorname{PerfMatch}\left(G^{\alpha}\right)=\sum_{M \in \mathcal{M}\left(G^{\alpha}\right)} \prod_{e \in M} w(e) .
$$

$$
\begin{aligned}
& \text { For example, } \\
& \Gamma_{G}^{000}=6 \\
& \Gamma_{G}^{100}=0 \\
& \Gamma_{G}^{110}=6 \cdot 1 \cdot\left(-\frac{1}{3}\right)=-2,
\end{aligned}
$$

The signature of a matchgate

Definition

Let G be a matchgate with k external nodes.
We define the signature of G as the vector $\Gamma_{G}=\left(\Gamma_{G}^{\alpha}\right)$, indexed by $\alpha \in\{0,1\}^{k}$ in lexicographic order, as follows:

$$
\Gamma_{G}^{\alpha}=\operatorname{PerfMatch}\left(G^{\alpha}\right)=\sum_{M \in \mathcal{M}\left(G^{\alpha}\right)} \prod_{e \in M} w(e) .
$$

For example,

$$
\Gamma_{G}^{000}=6,
$$

$$
\Gamma_{G}^{100}=0
$$

$$
\Gamma_{G}^{110}=6 \cdot 1 \cdot\left(-\frac{1}{3}\right)=-2,
$$

$$
\Gamma_{G}=(6,0,0,-2,0,-2,-2,0) .
$$

Necessary condition

For any matchgate signature Γ_{G}, either for all α of odd Hamming weight, or for all α of even Hamming weight, $\Gamma_{G}^{\alpha}=0$.

Symmetric matchgate signatures

Definition

A matchgate signature Γ_{G} is symmetric if, for all α and β of equal Hamming weight, $\Gamma_{G}^{\alpha}=\Gamma_{G}^{\beta}$.

Symmetric matchgate signatures

Definition

A matchgate signature Γ_{G} is symmetric if, for all α and β of equal Hamming weight, $\Gamma_{G}^{\alpha}=\Gamma_{G}^{\beta}$.

It holds that

$$
\begin{gathered}
\Gamma_{G}^{001}=\Gamma_{G}^{010}=\Gamma_{G}^{100}=0 \\
\text { and } \\
\Gamma_{G}^{011}=\Gamma_{G}^{110}=\Gamma_{G}^{101}=-2 .
\end{gathered}
$$

Symmetric matchgate signatures

Definition

A matchgate signature Γ_{G} is symmetric if, for all α and β of equal Hamming weight, $\Gamma_{G}^{\alpha}=\Gamma_{G}^{\beta}$.

It holds that

$$
\begin{gathered}
\Gamma_{G}^{001}=\Gamma_{G}^{010}=\Gamma_{G}^{100}=0 \\
\text { and } \\
\Gamma_{G}^{011}=\Gamma_{G}^{110}=\Gamma_{G}^{101}=-2 .
\end{gathered}
$$

So, $\Gamma_{G}=[6,0,-2,0]$.

Characterization of symmetric matchgate signatures

Theorem

A symmetric signature is the signature of a matchgate iff it has the following form, for some $a, b \in \mathbb{C}$ and $k \in \mathbb{Z}^{a}$:
(1) $\left[a^{k} b^{0}, 0, a^{k-1} b, 0, a^{k-2} b^{2}, 0, \ldots, a^{0} b^{k}\right] \quad$ (arity $2 k \geq 2$)
(2) $\left[a^{k} b^{0}, 0, a^{k-1} b, 0, a^{k-2} b^{2}, 0, \ldots, a^{0} b^{k}, 0\right] \quad($ arity $2 k+1 \geq 1)$
(3) $\left[0, a^{k} b^{0}, 0, a^{k-1} b, 0, a^{k-2} b^{2}, 0, \ldots, a^{0} b^{k}\right] \quad($ arity $2 k+1 \geq 1)$
(4) $\left[0, a^{k} b^{0}, 0, a^{k-1} b, 0, a^{k-2} b^{2}, 0, \ldots, a^{0} b^{k}, 0\right]$ (arity $2 k+2 \geq 2$).
${ }^{2}$ We take the convention that $0^{0}=1$.

Overview

(1) Introduction to Counting Complexity

- The class \#P
- Three classes of counting problems
- Holographic transformations
(2) Matchgates and Holographic Algorithms
- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
(3) Polynomial Interpolation

4 Dichotomy Theorems for counting problems

Holographic algorithms for some problems

- 2008: Valiant gave holographic algorithms for a series of problems in his paper "Holographic algorithms".
- The next problem is motivated by statistical physics.
- An "ice problem" involves counting the number of orientations of an undirected graph such that certain local constraints are satisfied.
- Pauling initially proposed such a model for planar square lattices, where the constraint was that an orientation assigned exactly two incoming and two outgoing edges at every node.

\#PL-3-NAE-ICE

Input: A planar graph $G=(V, E)$ of maximum degree 3 .

Output: The number of orientations such that no node has all incident edges directed toward it or all incident edges directed away from it.

- \#PL-3-NAE-IcE is the problem of counting the number of no-sink-no-source orientations.
- We assume every node has degree 2 or 3 , since a node of degree 1 will preclude such an orientation.

A holographic algorithm for \#PL-3-NAE-ICE

 Step 1Let $G=(V, E)$ be an input to the problem.
To solve the problem by a holographic algorithm with matchgates, we make the following transformations:
(1) We design a signature grid $\Omega=\left(G^{\prime}, \pi\right)$ based on G :

- We attach to each node of degree 3 a Not-All-Equal (or NAE) gate of arity 3 , i.e. the signature $[0,1,1,0]$, as a contravariant tensor (with only left dangling edges).
- For any node of degree 2 we use a $N A E$ gate of arity 2 , i.e. a binary Disequality signature $\left(\neq{ }_{2}\right)=[0,1,0]$, also as a contravariant tensor.
- For each edge in E we use a binary Disequality signature $(\neq 2)=[0,1,0]$ as a covariant tensor (with only right dangling edges).

Example of Step 1 (edge-vertex incidence graph)

An orientation of G

An assignment σ on the edges of $\Omega=\left(G^{\prime}, \pi\right)$

- If G is planar, then G^{\prime} is also planar.
- Here, a dashed edge e in Ω denotes that $\sigma(e)=0$, whereas a solid edge e denotes that $\sigma(e)=1$.

[^0]: ${ }^{2} \operatorname{sgn} \pi$ is +1 if the cycle decomposition of π has an even number of even length cycles, and -1 otherwise.

