Let E be a Pfaffian orientation of G.
Define the skew adjacency matrix AS(E) =(aj:0<i,j<n—1)of Gby
+1, if (i,)) € E(G)

aj =141, if(j,i)e E(G)
0, otherwise

Kasteleyn's Theorem

For any Pfaffian orientation 8 of G,

#Perfect Matchings in G = \/det(As(C)).
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Proof. Let ? be the directed graph obtained from G by replacing each
undirected edge {/,j} by the pair of directed edges (i,;), (J, /)

Step 1. (#Perfect Matchings in G)? = #Even cycle covers in?.

Step 2. #Even cycle covers in'G = det(AS(g)).

Counting Complexity 92 /145



Even Cycle cover

An even cycle cover of a directed graph G is a collection C of even length
directed cycles s.t. every vertex of G is contained in exactly one cycle in C.
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Proof cont.
Step 1. (#Perfect Matchings in G)2 = #Even cycle covers in?.

Lemma
There is a bijection between ordered pairs of perfect matchings in G and
even cycle covers in

Proof of lemma. Let (M, M’) be an ordered palr of perfect matchings in G.
@ For any edge {i,j} € MN M’ take " ‘

both (7,/),(j, i) in C. { ‘ —

@ Orient each cycle cin MU M’
according to the following convention:
take the vertex with lowest number in

c and orient the incident M-edge away
from it.
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Proof cont.
Step 2. #Even cycle covers in'G = det As(g))

o det(As(C)) = > sgnﬂﬂal () 2

ﬂ'ESn

2sgnm is +1 if the cycle decomposition of 7 has an even number of even length
cycles, and —1 otherwise.
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Proof cont.
Step 2. #Even cycle covers in'G = det As(g))

o det(As(C)) = = sgnr H aj (i) 2

ﬂ'ESn

@ Every permutation 7 has a unique decomposition into disjoint cycles,
i.e. T™="791"""Yk-
For example, m = (23)(145) corresponds to 7(2) = 3, 7(3) = 2,
(1) =4, n(4) =5 and 7(5) = 1.

2sgnm is +1 if the cycle decomposition of 7 has an even number of even length
cycles, and —1 otherwise.
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Proof cont.
Step 2. #Even cycle covers in'G = det AS(E))

o det(As(C)) = sgnr H aj (i) 2

ﬂ'ESn

@ Every permutation 7 has a unique decomposition into disjoint cycles,
i.e. T™="791"""Yk-
For example, m = (23)(145) corresponds to m(2) = 3, 7(3) =2,
(1) =4, n(4) =5 and 7(5) = 1.

@ Let 7; act on a certain subset V; C V. The product Hievj aj (i) 1S
non-zero iff edges {(i,7(i)) : i € V;} form a cycle C; in G.
For example, a1 4 - as5 - a5 1 # 0 iff {(1,4),(4,5),(5,1)} is a cycle.

2sgnm is +1 if the cycle decomposition of 7 has an even number of even length
cycles, and —1 otherwise.
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Proof cont.

@ There is a one-to-one correspondence between permutations with
non-zero contributions and cycle covers of G : A permutation

T =1V is mapped to the set of directed cycles (of even or odd
length) corresponding to v1,...,7k-

Each cycle ; is given the direction determined by ~;.
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Proof cont.

@ There is a one-to-one correspondence between permutations with
non-zero contributions and cycle covers of G : A permutation
T =1V is mapped to the set of directed cycles (of even or odd
length) corresponding to v1,...,7k-
Each cycle ; is given the direction determined by ~;.

@ The permutations with some odd length cycle can be paired so they
cancel each other: a permutation m = 71 - - - ;- - - y4 cancels out
T=r ()" Yk where 7; is of odd length.

They have the same sign but opposite corresponding products.

Counting Complexity 96 / 145



Proof cont.

@ We consider only permutations with even length cycles which
correspond to even cycle covers of G .

Counting Complexity 97 / 145



Proof cont.

@ We consider only permutations with even length cycles which
correspond to even cycle covers of G .

@ Let m=(7y1---7 - k) be a permutation with even cycles.
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Proof cont.

@ We consider only permutations with even length cycles which
correspond to even cycle covers of G .

@ Let m=(7y1---7 - k) be a permutation with even cycles.

@ Since 8 is Pfaffian, each cycle C; (corresponding to an even cycle ;)
is oddly oriented by 8
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Proof cont.
@ We consider only permutations with even length cycles which
correspond to even cycle covers of G .

@ Let m=(7y1---7 - k) be a permutation with even cycles.

@ Since 8 is Pfaffian, each cycle C; (corresponding to an even cycle ;)
is oddly oriented by 8

@ So, 7; contributes a factor —1 to []}; 3 x(i)» and a factor —1 to
sgnm, being an even cycle.
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Proof cont.

@ We consider only permutations with even length cycles which
correspond to even cycle covers of G .

@ Let m=(7y1---7 - k) be a permutation with even cycles.

@ Since 8 is Pfaffian, each cycle C; (corresponding to an even cycle ;)
is oddly oriented by 8

@ So, 7; contributes a factor —1 to []}; 3 x(i)» and a factor —1 to
sgnm, being an even cycle.

@ Therefore, overall 7 contributes 1 to the sum.

O
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Lemma

Let Z be a connected planar directed graph, embedded in the plane.
Suppose every face, except the outer infinite face, has an odd number of
edges that are oriented clockwise. Then, 8 is Pfaffian.

98 /145
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Theorem J

Every planar graph has a Pfaffian orientation.

Proof. W.l.0.g. assume G is connected.
By induction on the number m of edges.

@ m=n—1: G is a tree and every orientation is Pfaffian.

@ m > n: Fix an edge on the exterior. By the induction hypothesis,
G \ e has a Pfaffian orientation. Adding e creates just one more face.
Orient e such that this face has an odd number of edges oriented
clockwise.
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Overview

© Matchgates and Holographic Algorithms

@ Matchgates

Counting Complexity 100 / 145



Matchgates and Holographic algorithms

@ In the context of holographic algorithms based on matchgates,
counting problems are reduced to counting perfect matchings in
planar graphs.

@ 2002: Valiant initially introduced matchgates as a way to show that a
nontrivial, though restricted, fragment of quantum computation can
be simulated in classical polynomial time (he presented a way to
simulate certain quantum gates by matchgates).
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Matchgates

@ A plane graph is a planar graph given with a particular planar
embedding.
o W.l.o.g. we assume all edge weights are nonzero.

Definition
A matchgate is an undirected weighted plane graph G with a subset of
distinguished nodes on its outer face, called the external nodes, ordered in

a clockwise order.
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Example of a matchgate
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Some notation

@ Let G be a matchgate with k external nodes. For each length-k
bitstring o, G* is obtained from G by the following operation:
For all 1 < j < k, if the i-th bit of « is 1, then we remove the i-th
external node and all its incident edges.
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Some notation

e For any graph G, we denote by M(G) the set of perfect matchings of
G.

e For any weighted graph G, we denote by PERFMATCH(G) the
weighted sum of perfect matchings of G, i.e.

PERFMATCH(G) = Z Hw(e).

MeM(G) eeM
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The signature of a matchgate

Definition

Let G be a matchgate with k external nodes.

We define the signature of G as the vector ' = (%), indexed by
a € {0,1}¥ in lexicographic order, as follows:

= PERFMATCH(G) = Z H w(e).

MeM(G>) eeM

For example,
000 _

z° =6,
100 _

" =0,

F}}O:G-l.(—%) = -2,
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The signature of a matchgate

Definition

Let G be a matchgate with k external nodes.

We define the signature of G as the vector ' = (%), indexed by
a € {0,1}¥ in lexicographic order, as follows:

= PERFMATCH(G) = Z H w(e).

MeM(G>) eeM

For example,
000 _

z° =6,
100 _

" =0,

rdo=6-1- (_%) = -2,
e =(6,0,0,-2,0,-2,-2,0).
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Necessary condition

For any matchgate signature I, either for all o of odd Hamming weight,
or for all & of even Hamming weight, ¢ = 0.
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Symmetric matchgate signatures

Definition
A matchgate signature ' is symmetric if, for all & and § of equal
Hamming weight, 't = r/é.
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Symmetric matchgate signatures

Definition
A matchgate signature ' is symmetric if, for all & and § of equal
Hamming weight, 't = F/é.

It holds that
rOOl r010 _ r100 =0

and
|-011 — |-110 r101 —2.
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Symmetric matchgate signatures

Definition
A matchgate signature ' is symmetric if, for all & and § of equal
Hamming weight, 't = F/é.

It holds that
r001 r010 _ r100 =0

and
|-011 — |-110 r101 —2.

SO, FG = [6,0, —2,0].
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Characterization of symmetric matchgate signatures

Theorem

A symmetric signature is the signature of a matchgate iff it has the
following form, for some a,b € C and k € Z °:

@ [a¥b°,0,a71h,0,aK2b%,0, ..., a°bK] (arity 2k > 2)
Q@ [a¥b°,0,a1h,0,a¥2b%,0,...,a°b5,0] (arity 2k +1 > 1)
Q [0,a%b%,0,a""1h,0,a2b%,0,...,a°b ] (arity 2k +1 > 1)

Q [0,a%b%,0,a%1h,0,a2b%,0,...,a°b%, 0] (arity 2k + 2 > 2).

aWe take the convention that 0° = 1.
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Overview

© Matchgates and Holographic Algorithms

@ Holographic algorithms
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Holographic algorithms for some problems

@ 2008: Valiant gave holographic algorithms for a series of problems in
his paper “Holographic algorithms” .

@ The next problem is motivated by statistical physics.

» An “ice problem” involves counting the number of orientations of an
undirected graph such that certain local constraints are satisfied.

» Pauling initially proposed such a model for planar square lattices, where
the constraint was that an orientation assigned exactly two incoming
and two outgoing edges at every node.
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#PL-3-NAE-ICE

Input: A planar graph G = (V, E) of maximum degree 3.

Output: The number of orientations such that no node has all incident
edges directed toward it or all incident edges directed away from it.

o #PL-3-NAE-ICE is the problem of counting the number of
no-sink-no-source orientations.

@ We assume every node has degree 2 or 3, since a node of degree 1
will preclude such an orientation.

Counting Complexity 112 /145



A holographic algorithm for #P1L-3-NAE-ICE
Step 1

Let G = (V, E) be an input to the problem.

To solve the problem by a holographic algorithm with matchgates, we
make the following transformations:

© We design a signature grid Q = (G’, 1) based on G:

» We attach to each node of degree 3 a Not-All-Equal (or NAE) gate of

arity 3, i.e. the signature [0,1,1,0], as a contravariant tensor (with
only left dangling edges).

» For any node of degree 2 we use a NAE gate of arity 2, i.e. a binary
Disequality signature (#£,) = [0, 1, 0], also as a contravariant tensor.

> For each edge in E we use a binary Disequality signature
(#2) = [0,1,0] as a covariant tensor (with only right dangling edges).
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Example of Step 1 (edge-vertex incidence graph)

An orientation of G An assignment o on the edges of Q = (G, 7)
a #2
72
d \ = #2
#2
c
72

T d NAE;

@ If G is planar, then G’ is also planar.

@ Here, a dashed edge e in Q denotes that o(e) = 0, whereas a solid edge e denotes
that o(e) = 1.
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