#PL-3-NAE-ICE

Input: A planar graph G = (V, E) of maximum degree 3.

Output: The number of orientations such that no node has all incident
edges directed toward it or all incident edges directed away from it.

o #PL-3-NAE-ICE is the problem of counting the number of
no-sink-no-source orientations.

@ We assume every node has degree 2 or 3, since a node of degree 1
will preclude such an orientation.
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An instance of #PL-3-NAE-ICE with a valid orientation
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A holographic algorithm for #P1L-3-NAE-ICE
Step 1

Let G = (V, E) be an input to the problem.

To solve the problem by a holographic algorithm with matchgates, we
make the following transformations:

© We design a signature grid Q = (G’, 1) based on G:

» We attach to each node of degree 3 a Not-All-Equal (or NAE) gate of

arity 3, i.e. the signature [0,1,1,0], as a contravariant tensor (with
only left dangling edges).

» For any node of degree 2 we use a NAE gate of arity 2, i.e. a binary
Disequality signature (#£,) = [0, 1, 0], also as a contravariant tensor.

> For each edge in E we use a binary Disequality signature
(#2) = [0,1,0] as a covariant tensor (with only right dangling edges).
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Example of Step 1 (edge-vertex incidence graph)

An orientation of G An assignment o on the edges of Q = (G, 7)
a #2
72
d = #2
N .

@ If G is planar, then G’ is also planar.

@ Here, a dashed edge e in Q denotes that o(e) = 0, whereas a solid edge e denotes
that o(e) = 1.
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Step 2

@ We replace each signature in £ by a signature that is realizable as a
matchgate signature.

» The replacement of signatures in 2 is done by a holographic
transformation defined by a 2 x 2 matrix.

» We use the matrix H = 1 E _11} with H™1 = 2H = E _11}
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Step 2

We replace

@ every contravariant signature [0, 1, 1,0] by the signature

(H~1)®3.10,1,1,0] = [6,0, —2,0]

@ every contravariant signature [0, 1, 0] by the signature

(H™1)®2.0,1,0] = [2,0, —2]

@ every covariant signature [0, 1, 0] by the signature

1
0.1,0]- H¥* = 5[1,0, 1]
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A part of Step 2 (holographic transformation)

#2 -

Lyl Not-All-Equals

F2<<

[67 07 _27 0]
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The signatures [6,0,—2,0], [2,0, 2], [%,O, —%] are all realizable as
matchgate signatures.

ol

(eI
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Step 3

© We obtain a weighted graph G” as follows.
» We replace each of the signatures [6,0,—2,0], [2,0, —2] and [%,O, —%]
in the new signature grid by its corresponding matchgate.

» The edges that connect the matchgates to each other are of weight 1.
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A part of Step 3 (matchgates)
Bo-d<

(3.0,-3] «~ [6,0,-2,0]

[%107_%] ~.
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The algorithm for #P1-3-NAE-ICE revisited

The algorithm consists of the following three reductions and Kasteleyn's
algorithm.

Q@ #PL-3-NAE-ICE <7 Holant([0,1,0] | [0,1,0],[0,1,1,0]).

o HOIant([O?]-?O] ‘ [071a0]7[07171a0]) =T
HOIant(%[la Oa _1] ‘ [2a Oa _2]? [67 O’ _27 O])

© Holant(3[1,0,-1] | [2,0,—2],[6,0,—2,0]) <7
#PERFMATCH in planar graphs.
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Other problems with polynomial-time algorithms

@ #P1-3-NAE-SAT: on input a planar 3-NAE formula ¢, count the
satisfying assignments of ¢.

o PL-NODE-BIPARTITION: on input a planar graph G of max degree
3, compute the minimum cardinality of a subset S C V such that
G\ S is a bipartite graph.

o #7PL-RTw-MON-3CNF: on input a planar, read-twice, monotone,

3-CNF formula, compute the number of satisfying assignments
modulo 7.

Note that ®PL-RTw-MON-3CNF is ®GP-complete.
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SIMULTANEOUS REALIZABILITY PROBLEM

2010: Cai & Lu proved that the following problem can be solved in
polynomial time in their paper “Holographic algorithms: From art to

science” .
SIMULTANEOUS REALIZABILITY PROBLEM

Input: A set of symmetric signatures for generators or/and recognizers.

Output: A holographic transformation to matchgate signatures, if any
exists; ‘NQO’, otherwise.
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Holographic Algorithms with matchgates capture precisely
tractable planar #CSP

Theorem (Cai & Fu 2016)

Consider the class of Boolean #CSP with local constraints being not
necessarily symmetric, complex-valued functions. Every problem in this
class belongs to one of the following three categories according to F.

@ those which are tractable (polynomial-time computable) on general
graphs,

@ those which are #P-hard on general graphs but tractable on planar
graphs,

© those which are #P-hard even on planar graphs.

Moreover, problems in category (2) are tractable on planar graphs precisely
by holographic algorithms with matchgates.

v
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e Cai, Lu and Xia (2010) had shown the same theorem for symmetric
real-valued functions.

@ Huo and Williams (2013) had shown the same theorem for symmetric
complex-valued functions.
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Overview

© Polynomial Interpolation
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Polynomial interpolation

@ Polynomial interpolation is a powerful technique to prove
#P-hardness for counting problems under Turing reductions.

Counting Complexity 128 /158



Polynomial interpolation

@ Polynomial interpolation is a powerful technique to prove
#P-hardness for counting problems under Turing reductions.

@ Polynomial interpolation is the inverse of evaluation.

Evaluate

ze{1,2,34

15
p(z) = 2334217+ 10
o

Interpolate

Counting Complexity 128 /158



Proposition
#PERFECTMATCHINGS <7 #MATCHINGS. J

Proof. Let G = (V,E).
o Let my be the number of matchings in G that omit k vertices.
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Proposition
#PERFECTMATCHINGS <71 #MATCHINGS. J

Proof. Let G = (V,E).
o Let my be the number of matchings in G that omit k vertices.
@ Then, mg is the number of perfect matchings in G.
o Let the matching polynomial be P(x) = >, myxk.
°

We will use polynomial interpolation to determine all the coefficients
mg, 0 < k <n.

We will do this by making n+ 1 oracle calls to the problem of
counting (all) matchings.

Counting Complexity 129 /158



Proof cont. For every 0 < [ < n, we construct a graph G, as below.

L ]
®
L ]
L ]

9
L ]
®
L ]

Counting Complexity 130 /158



Proof cont. Let my be the number of matchings in G that omit k vertices.
Then the number of matchings in G; can be expressed as follows.

n

> 1+ 1)kmy = #MarcHINGs(G)).
k=0

So, P(I+ 1) = #MATCHINGS(G)).

@ Each matching in G that omits k vertices can be extended to a
matching in G; in (/4 1)* different ways!

@ Each matching in G; is obtained uniquely this way from a matching of
G.
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Proof cont. We collect these equations to form the following linear system.

O0+1° (0+1) (0+1)2 ... (0+1)" [mo #MATCHINGS( Go)

1+1)° @Q+1)* 1+12 .. Q+1"| |m #MATCHINGS(G)

(n+1° (n+1)' (n+12 .. (n+1)"] |m] |[#Marcies(G,)
@ The linear system is of the form Vm = M.

The coefficient matrix V is a Vandermonde matrix (each row is a
geometric progression).

It is invertible iff the values (/ 4 1) are all distinct, which is true.

The matrix on the RHS can be computed by n+ 1 oracle calls.

So, we can solve the system and find m.

Counting Complexity 132 /158



Overview

@ Dichotomy Theorems for counting problems
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Ladner’s Theorem

Ladner’'s Theorem

If P # NP, then there exists a language L € NP that is neither in P nor
NP-complete.

Corollary 1

If P # NP, there is an infinite hierarchy of separate complexity classes that
lie between P and NP.

o

Corollary 2

If FP £ #P, there is an infinite hierarchy of separate complexity classes
between FP and #P.
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@ All the examples of such intermediate problems are based on
diagonalization constructions and are very artificial.

@ Since the concept of a ‘natural’ problem is somewhat ambiguous, a
possible research direction is to pursue dichotomy results for wide
classes of problems.
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Dichotomy theorems for classes of decision problems

For some broad classes of problems, dichotomy theorems do exist:

@ Schaefer's theorem (1978) is a dichotomy result for the Generalized
Satisfiability problem.

@ Hell and Neget¥il (1990) proved a dichotomy theorem for the
H-COLORING problem.

© Vardi and Feder (1993) posed the CSP dichotomy conjecture.

© Bulatov and Zhuk (2017) independently confirmed the CSP
dichotomy conjecture.
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Dichotomy theorems for counting graph homomorphisms

@ Dyer and Greenhill (2000) proved that, for any undirected unweighted
graph H, the corresponding #H-COLORING is either in FP or
#P-complete.
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Dichotomy theorems for counting graph homomorphisms

@ Dyer and Greenhill (2000) proved that, for any undirected unweighted
graph H, the corresponding #H-COLORING is either in FP or
#P-complete.

e Bulatov and Grohe (2005) gave a classification for the problem of
computing the weighted sum of homomorphisms to a graph H with
non-negative real weights.

e Goldberg, Grohe, Jerrum and Thurley (2010) gave a dichotomy result
for weighted graphs H, where the weights are real numbers.

@ Cai, Chen and Lu (2010) extended the dichotomy to complex weights.

The dichotomy criterion is explicit: Given H, we can decide whether
Zy(G) is in FP or #P-hard.
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The problem of deciding whether a homomorphism exists

@ Given graphs G and H, a homomorphism from G to H is a function
f: V(G) — V(H) such that every edge (u,v) € E(G) is mapped to
an edge (f(u), f(v)) € E(H).

@ Decision problem: Given G as input, is there a homomorphism from
G to H?

@ We call this problem the GRAPH HOMOMORPHISM problem or the
H-COLORING problem.

@ G is the input graph, whereas H is fixed, so part of the description of
the problem.
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Theorem (Hell & Ne3etfil 1990)

Let H be a fixed graph. The H-COLORING problem in in P, if H either
has a loop (self-loop) or is bipartite.
Otherwise, H-COLORING is NP-complete.

Easy cases:

— 0 '
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The problem of counting graph homomorphisms

Theorem (Dyer & Greenhill 2000)

Let H be a fixed graph. The #H-COLORINGS problem is in FP, if every
connected component of H is

© either a complete graph with all loops present
@ or a complete bipartite graph with no loops present.
Otherwise, #H-COLORINGS is #P-complete.

Easy cases:
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Suppose that H is a complete graph with all loops present, or a complete

bipartite graph with no loops. Then, #H-COLORINGS can be solved in
polynomial time.

Proof.

Q If H is an isolated vertex without a loop, then Zy(G) = 0, unless G is
a collection of isolated vertices, in which case Zy(G) = 1.
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Suppose that H is a complete graph with all loops present, or a complete
bipartite graph with no loops. Then, #H-COLORINGS can be solved in
polynomial time.

Proof.

Q If H is an isolated vertex without a loop, then Zy(G) = 0, unless G is
a collection of isolated vertices, in which case Zy(G) = 1.

@ If H is the complete graph on k vertices with all loops present, then if
G has n vertices, it holds that Zy(G) = k".

© Suppose H is the complete bipartite graph with vertex bipartition
G UG, |G| = ki, i =1,2, and with no loops.
» If G is not bipartite, then Zy(G) = 0.
» If G is bipartite with vertex bipartition V3 U Vs, |V;| = n;, i = 1,2, then

Zu(G) = ki - K52 + ki - k1.

O
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