
#Pl-3-NAE-Ice

Input: A planar graph G = (V ,E) of maximum degree 3.

Output: The number of orientations such that no node has all incident
edges directed toward it or all incident edges directed away from it.

#Pl-3-NAE-Ice is the problem of counting the number of
no-sink-no-source orientations.

We assume every node has degree 2 or 3, since a node of degree 1
will preclude such an orientation.

Counting Complexity 112 / 158

An instance of #Pl-3-NAE-Ice with a valid orientation

Counting Complexity 113 / 158

A holographic algorithm for #Pl-3-NAE-Ice
Step 1

Let G = (V ,E) be an input to the problem.

To solve the problem by a holographic algorithm with matchgates, we
make the following transformations:

1 We design a signature grid Ω = (G ′, π) based on G :
▶ We attach to each node of degree 3 a Not-All-Equal (or NAE) gate of

arity 3, i.e. the signature [0, 1, 1, 0], as a contravariant tensor (with
only left dangling edges).

▶ For any node of degree 2 we use a NAE gate of arity 2, i.e. a binary
Disequality signature (̸=2) = [0, 1, 0], also as a contravariant tensor.

▶ For each edge in E we use a binary Disequality signature
(̸=2) = [0, 1, 0] as a covariant tensor (with only right dangling edges).

Counting Complexity 114 / 158

Example of Step 1 (edge-vertex incidence graph)

An orientation of G An assignment σ on the edges of Ω = (G ′, π)

d

b

c

a

=⇒

̸=2

̸=2

̸=2

̸=2

̸=2

a NAE2

b NAE3

c NAE2

d NAE3

If G is planar, then G ′ is also planar.

Here, a dashed edge e in Ω denotes that σ(e) = 0, whereas a solid edge e denotes
that σ(e) = 1.

Counting Complexity 115 / 158

Step 2

2 We replace each signature in Ω by a signature that is realizable as a
matchgate signature.

▶ The replacement of signatures in Ω is done by a holographic
transformation defined by a 2× 2 matrix.

▶ We use the matrix H = 1
2

[
1 1
1 −1

]
with H−1 = 2H =

[
1 1
1 −1

]
.

Counting Complexity 116 / 158

Step 2

We replace

every contravariant signature [0, 1, 1, 0] by the signature

(H−1)⊗3 · [0, 1, 1, 0] = [6, 0,−2, 0]

every contravariant signature [0, 1, 0] by the signature

(H−1)⊗2 · [0, 1, 0] = [2, 0,−2]

every covariant signature [0, 1, 0] by the signature

[0, 1, 0] · H⊗2 =
1

2
[1, 0,−1]

Counting Complexity 117 / 158

A part of Step 2 (holographic transformation)

Not-All-Equal3̸=2

̸=2

̸=2

⇓

[6, 0,−2, 0][12 , 0,−
1
2]

[12 , 0,−
1
2]

[12 , 0,−
1
2]

Counting Complexity 118 / 158

The signatures [6, 0,−2, 0], [2, 0,−2], [12 , 0,−
1
2] are all realizable as

matchgate signatures.

Counting Complexity 119 / 158

Step 3

3 We obtain a weighted graph G ′′ as follows.
▶ We replace each of the signatures [6, 0,−2, 0], [2, 0,−2] and [12 , 0,−

1
2]

in the new signature grid by its corresponding matchgate.

▶ The edges that connect the matchgates to each other are of weight 1.

Counting Complexity 120 / 158

A part of Step 3 (matchgates)

[6, 0,−2, 0][12 , 0,−
1
2]

[12 , 0,−
1
2]

[12 , 0,−
1
2]

⇓

1

2

3

12

1 2

1 2

1

−1
3

−1
3

−1
3

1

1

1
1
2

1
21

1
1
2

1
2 1

1
1
2

1
2 1

Counting Complexity 121 / 158

The algorithm for #Pl-3-NAE-Ice revisited

The algorithm consists of the following three reductions and Kasteleyn’s
algorithm.

1 #Pl-3-NAE-Ice ≤T Holant([0, 1, 0] | [0, 1, 0], [0, 1, 1, 0]).

2 Holant([0, 1, 0] | [0, 1, 0], [0, 1, 1, 0]) ≡T

Holant(12 [1, 0,−1] | [2, 0,−2], [6, 0,−2, 0]).

3 Holant(12 [1, 0,−1] | [2, 0,−2], [6, 0,−2, 0]) ≤T

#PerfMatch in planar graphs.

Counting Complexity 122 / 158

Other problems with polynomial-time algorithms

#Pl-3-NAE-Sat: on input a planar 3-NAE formula ϕ, count the
satisfying assignments of ϕ.

Pl-Node-Bipartition: on input a planar graph G of max degree
3, compute the minimum cardinality of a subset S ⊂ V such that
G \ S is a bipartite graph.

#7Pl-Rtw-Mon-3CNF: on input a planar, read-twice, monotone,
3-CNF formula, compute the number of satisfying assignments
modulo 7.

Note that ⊕Pl-Rtw-Mon-3CNF is ⊕P-complete.

Counting Complexity 123 / 158

Simultaneous Realizability Problem

2010: Cai & Lu proved that the following problem can be solved in
polynomial time in their paper “Holographic algorithms: From art to
science”.

Simultaneous Realizability Problem

Input: A set of symmetric signatures for generators or/and recognizers.

Output: A holographic transformation to matchgate signatures, if any
exists; ‘NO’, otherwise.

Counting Complexity 124 / 158

Holographic Algorithms with matchgates capture precisely
tractable planar #CSP

Theorem (Cai & Fu 2016)

Consider the class of Boolean #CSP with local constraints being not
necessarily symmetric, complex-valued functions. Every problem in this
class belongs to one of the following three categories according to F .

1 those which are tractable (polynomial-time computable) on general
graphs,

2 those which are #P-hard on general graphs but tractable on planar
graphs,

3 those which are #P-hard even on planar graphs.

Moreover, problems in category (2) are tractable on planar graphs precisely
by holographic algorithms with matchgates.

Counting Complexity 125 / 158

Cai, Lu and Xia (2010) had shown the same theorem for symmetric
real-valued functions.

Huo and Williams (2013) had shown the same theorem for symmetric
complex-valued functions.

Counting Complexity 126 / 158

Overview

1 Introduction to Counting Complexity
The class #P
Three classes of counting problems
Holographic transformations

2 Matchgates and Holographic Algorithms
Kasteleyn’s algorithm
Matchgates
Holographic algorithms

3 Polynomial Interpolation

4 Dichotomy Theorems for counting problems

Counting Complexity 127 / 158

Polynomial interpolation

Polynomial interpolation is a powerful technique to prove
#P-hardness for counting problems under Turing reductions.

Polynomial interpolation is the inverse of evaluation.

Counting Complexity 128 / 158

Polynomial interpolation

Polynomial interpolation is a powerful technique to prove
#P-hardness for counting problems under Turing reductions.

Polynomial interpolation is the inverse of evaluation.

Counting Complexity 128 / 158

Proposition

#PerfectMatchings ≤T #Matchings.

Proof. Let G = (V ,E).

Let mk be the number of matchings in G that omit k vertices.

Then, m0 is the number of perfect matchings in G .

Let the matching polynomial be P(x) =
∑

k mkx
k .

We will use polynomial interpolation to determine all the coefficients
mk , 0 ≤ k ≤ n.

We will do this by making n + 1 oracle calls to the problem of
counting (all) matchings.

Counting Complexity 129 / 158

Proposition

#PerfectMatchings ≤T #Matchings.

Proof. Let G = (V ,E).

Let mk be the number of matchings in G that omit k vertices.

Then, m0 is the number of perfect matchings in G .

Let the matching polynomial be P(x) =
∑

k mkx
k .

We will use polynomial interpolation to determine all the coefficients
mk , 0 ≤ k ≤ n.

We will do this by making n + 1 oracle calls to the problem of
counting (all) matchings.

Counting Complexity 129 / 158

Proposition

#PerfectMatchings ≤T #Matchings.

Proof. Let G = (V ,E).

Let mk be the number of matchings in G that omit k vertices.

Then, m0 is the number of perfect matchings in G .

Let the matching polynomial be P(x) =
∑

k mkx
k .

We will use polynomial interpolation to determine all the coefficients
mk , 0 ≤ k ≤ n.

We will do this by making n + 1 oracle calls to the problem of
counting (all) matchings.

Counting Complexity 129 / 158

Proposition

#PerfectMatchings ≤T #Matchings.

Proof. Let G = (V ,E).

Let mk be the number of matchings in G that omit k vertices.

Then, m0 is the number of perfect matchings in G .

Let the matching polynomial be P(x) =
∑

k mkx
k .

We will use polynomial interpolation to determine all the coefficients
mk , 0 ≤ k ≤ n.

We will do this by making n + 1 oracle calls to the problem of
counting (all) matchings.

Counting Complexity 129 / 158

Proposition

#PerfectMatchings ≤T #Matchings.

Proof. Let G = (V ,E).

Let mk be the number of matchings in G that omit k vertices.

Then, m0 is the number of perfect matchings in G .

Let the matching polynomial be P(x) =
∑

k mkx
k .

We will use polynomial interpolation to determine all the coefficients
mk , 0 ≤ k ≤ n.

We will do this by making n + 1 oracle calls to the problem of
counting (all) matchings.

Counting Complexity 129 / 158

Proof cont. For every 0 ≤ l ≤ n, we construct a graph Gl as below.

Counting Complexity 130 / 158

Proof cont. Let mk be the number of matchings in G that omit k vertices.
Then the number of matchings in Gl can be expressed as follows.

n∑
k=0

(l + 1)kmk = #Matchings(Gl).

So, P(l + 1) = #Matchings(Gl).

Each matching in G that omits k vertices can be extended to a
matching in Gl in (l + 1)k different ways!

Each matching in Gl is obtained uniquely this way from a matching of
G .

Counting Complexity 131 / 158

Proof cont. We collect these equations to form the following linear system.
(0 + 1)0 (0 + 1)1 (0 + 1)2 ... (0 + 1)n

(1 + 1)0 (1 + 1)1 (1 + 1)2 ... (1 + 1)n

.

.

.
(n + 1)0 (n + 1)1 (n + 1)2 ... (n + 1)n

m0

m1

.

.

.
mn

 =

#Matchings(G0)
#Matchings(G1)

.

.

.
#Matchings(Gn)

 .

The linear system is of the form Vm = M.

The coefficient matrix V is a Vandermonde matrix (each row is a
geometric progression).

It is invertible iff the values (l + 1) are all distinct, which is true.

The matrix on the RHS can be computed by n + 1 oracle calls.

So, we can solve the system and find m.

Counting Complexity 132 / 158

Overview

1 Introduction to Counting Complexity
The class #P
Three classes of counting problems
Holographic transformations

2 Matchgates and Holographic Algorithms
Kasteleyn’s algorithm
Matchgates
Holographic algorithms

3 Polynomial Interpolation

4 Dichotomy Theorems for counting problems

Counting Complexity 133 / 158

Ladner’s Theorem

Ladner’s Theorem

If P ̸= NP, then there exists a language L ∈ NP that is neither in P nor
NP-complete.

Corollary 1

If P ̸= NP, there is an infinite hierarchy of separate complexity classes that
lie between P and NP.

Corollary 2

If FP ̸= #P, there is an infinite hierarchy of separate complexity classes
between FP and #P.

Counting Complexity 134 / 158

All the examples of such intermediate problems are based on
diagonalization constructions and are very artificial.

Since the concept of a ‘natural’ problem is somewhat ambiguous, a
possible research direction is to pursue dichotomy results for wide
classes of problems.

Counting Complexity 135 / 158

Dichotomy theorems for classes of decision problems

For some broad classes of problems, dichotomy theorems do exist:

1 Schaefer’s theorem (1978) is a dichotomy result for the Generalized
Satisfiability problem.

2 Hell and Nešeťril (1990) proved a dichotomy theorem for the
H-Coloring problem.

3 Vardi and Feder (1993) posed the CSP dichotomy conjecture.

4 Bulatov and Zhuk (2017) independently confirmed the CSP
dichotomy conjecture.

Counting Complexity 136 / 158

Dichotomy theorems for counting graph homomorphisms

Dyer and Greenhill (2000) proved that, for any undirected unweighted
graph H, the corresponding #H-COLORING is either in FP or
#P-complete.

Bulatov and Grohe (2005) gave a classification for the problem of
computing the weighted sum of homomorphisms to a graph H with
non-negative real weights.

Goldberg, Grohe, Jerrum and Thurley (2010) gave a dichotomy result
for weighted graphs H, where the weights are real numbers.

Cai, Chen and Lu (2010) extended the dichotomy to complex weights.

The dichotomy criterion is explicit: Given H, we can decide whether
ZH(G) is in FP or #P-hard.

Counting Complexity 137 / 158

Dichotomy theorems for counting graph homomorphisms

Dyer and Greenhill (2000) proved that, for any undirected unweighted
graph H, the corresponding #H-COLORING is either in FP or
#P-complete.

Bulatov and Grohe (2005) gave a classification for the problem of
computing the weighted sum of homomorphisms to a graph H with
non-negative real weights.

Goldberg, Grohe, Jerrum and Thurley (2010) gave a dichotomy result
for weighted graphs H, where the weights are real numbers.

Cai, Chen and Lu (2010) extended the dichotomy to complex weights.

The dichotomy criterion is explicit: Given H, we can decide whether
ZH(G) is in FP or #P-hard.

Counting Complexity 137 / 158

Dichotomy theorems for counting graph homomorphisms

Dyer and Greenhill (2000) proved that, for any undirected unweighted
graph H, the corresponding #H-COLORING is either in FP or
#P-complete.

Bulatov and Grohe (2005) gave a classification for the problem of
computing the weighted sum of homomorphisms to a graph H with
non-negative real weights.

Goldberg, Grohe, Jerrum and Thurley (2010) gave a dichotomy result
for weighted graphs H, where the weights are real numbers.

Cai, Chen and Lu (2010) extended the dichotomy to complex weights.

The dichotomy criterion is explicit: Given H, we can decide whether
ZH(G) is in FP or #P-hard.

Counting Complexity 137 / 158

Dichotomy theorems for counting graph homomorphisms

Dyer and Greenhill (2000) proved that, for any undirected unweighted
graph H, the corresponding #H-COLORING is either in FP or
#P-complete.

Bulatov and Grohe (2005) gave a classification for the problem of
computing the weighted sum of homomorphisms to a graph H with
non-negative real weights.

Goldberg, Grohe, Jerrum and Thurley (2010) gave a dichotomy result
for weighted graphs H, where the weights are real numbers.

Cai, Chen and Lu (2010) extended the dichotomy to complex weights.

The dichotomy criterion is explicit: Given H, we can decide whether
ZH(G) is in FP or #P-hard.

Counting Complexity 137 / 158

Dichotomy theorems for counting graph homomorphisms

Dyer and Greenhill (2000) proved that, for any undirected unweighted
graph H, the corresponding #H-COLORING is either in FP or
#P-complete.

Bulatov and Grohe (2005) gave a classification for the problem of
computing the weighted sum of homomorphisms to a graph H with
non-negative real weights.

Goldberg, Grohe, Jerrum and Thurley (2010) gave a dichotomy result
for weighted graphs H, where the weights are real numbers.

Cai, Chen and Lu (2010) extended the dichotomy to complex weights.

The dichotomy criterion is explicit: Given H, we can decide whether
ZH(G) is in FP or #P-hard.

Counting Complexity 137 / 158

The problem of deciding whether a homomorphism exists

Given graphs G and H, a homomorphism from G to H is a function
f : V (G)→ V (H) such that every edge (u, v) ∈ E (G) is mapped to
an edge (f (u), f (v)) ∈ E (H).

Decision problem: Given G as input, is there a homomorphism from
G to H?

We call this problem the Graph Homomorphism problem or the
H-Coloring problem.

G is the input graph, whereas H is fixed, so part of the description of
the problem.

Counting Complexity 138 / 158

Theorem (Hell & Nešeťril 1990)

Let H be a fixed graph. The H-Coloring problem in in P, if H either
has a loop (self-loop) or is bipartite.
Otherwise, H-Coloring is NP-complete.

Easy cases:

Counting Complexity 139 / 158

The problem of counting graph homomorphisms

Theorem (Dyer & Greenhill 2000)

Let H be a fixed graph. The #H-Colorings problem is in FP, if every
connected component of H is

1 either a complete graph with all loops present

2 or a complete bipartite graph with no loops present.

Otherwise, #H-Colorings is #P-complete.

Easy cases:

Counting Complexity 140 / 158

Suppose that H is a complete graph with all loops present, or a complete
bipartite graph with no loops. Then, #H-Colorings can be solved in
polynomial time.

Proof.

1 If H is an isolated vertex without a loop, then ZH(G) = 0, unless G is
a collection of isolated vertices, in which case ZH(G) = 1.

2 If H is the complete graph on k vertices with all loops present, then if
G has n vertices, it holds that ZH(G) = kn.

3 Suppose H is the complete bipartite graph with vertex bipartition
C1 ∪ C2, |Ci | = ki , i = 1, 2, and with no loops.

▶ If G is not bipartite, then ZH(G) = 0.
▶ If G is bipartite with vertex bipartition V1 ∪V2, |Vi | = ni , i = 1, 2, then

ZH(G) = kn1
1 · k

n2
2 + kn2

1 · k
n1
2 .

□

Counting Complexity 141 / 158

Suppose that H is a complete graph with all loops present, or a complete
bipartite graph with no loops. Then, #H-Colorings can be solved in
polynomial time.

Proof.

1 If H is an isolated vertex without a loop, then ZH(G) = 0, unless G is
a collection of isolated vertices, in which case ZH(G) = 1.

2 If H is the complete graph on k vertices with all loops present, then if
G has n vertices, it holds that ZH(G) = kn.

3 Suppose H is the complete bipartite graph with vertex bipartition
C1 ∪ C2, |Ci | = ki , i = 1, 2, and with no loops.

▶ If G is not bipartite, then ZH(G) = 0.
▶ If G is bipartite with vertex bipartition V1 ∪V2, |Vi | = ni , i = 1, 2, then

ZH(G) = kn1
1 · k

n2
2 + kn2

1 · k
n1
2 .

□

Counting Complexity 141 / 158

Suppose that H is a complete graph with all loops present, or a complete
bipartite graph with no loops. Then, #H-Colorings can be solved in
polynomial time.

Proof.

1 If H is an isolated vertex without a loop, then ZH(G) = 0, unless G is
a collection of isolated vertices, in which case ZH(G) = 1.

2 If H is the complete graph on k vertices with all loops present, then if
G has n vertices, it holds that ZH(G) = kn.

3 Suppose H is the complete bipartite graph with vertex bipartition
C1 ∪ C2, |Ci | = ki , i = 1, 2, and with no loops.

▶ If G is not bipartite, then ZH(G) = 0.
▶ If G is bipartite with vertex bipartition V1 ∪V2, |Vi | = ni , i = 1, 2, then

ZH(G) = kn1
1 · k

n2
2 + kn2

1 · k
n1
2 .

□

Counting Complexity 141 / 158

	Polynomial Interpolation
	Dichotomy Theorems for counting problems

