\#PL-3-NAE-ICE

Input: A planar graph $G=(V, E)$ of maximum degree 3 .

Output: The number of orientations such that no node has all incident edges directed toward it or all incident edges directed away from it.

- \#PL-3-NAE-IcE is the problem of counting the number of no-sink-no-source orientations.
- We assume every node has degree 2 or 3 , since a node of degree 1 will preclude such an orientation.

An instance of \#PL-3-NAE-ICE with a valid orientation

A holographic algorithm for \#PL-3-NAE-ICE

 Step 1Let $G=(V, E)$ be an input to the problem.
To solve the problem by a holographic algorithm with matchgates, we make the following transformations:
(1) We design a signature grid $\Omega=\left(G^{\prime}, \pi\right)$ based on G :

- We attach to each node of degree 3 a Not-All-Equal (or NAE) gate of arity 3 , i.e. the signature $[0,1,1,0]$, as a contravariant tensor (with only left dangling edges).
- For any node of degree 2 we use a $N A E$ gate of arity 2 , i.e. a binary Disequality signature $\left(\neq{ }_{2}\right)=[0,1,0]$, also as a contravariant tensor.
- For each edge in E we use a binary Disequality signature $(\neq 2)=[0,1,0]$ as a covariant tensor (with only right dangling edges).

Example of Step 1 (edge-vertex incidence graph)

An orientation of G

An assignment σ on the edges of $\Omega=\left(G^{\prime}, \pi\right)$

- If G is planar, then G^{\prime} is also planar.
- Here, a dashed edge e in Ω denotes that $\sigma(e)=0$, whereas a solid edge e denotes that $\sigma(e)=1$.

Step 2

(2) We replace each signature in Ω by a signature that is realizable as a matchgate signature.

- The replacement of signatures in Ω is done by a holographic transformation defined by a 2×2 matrix.
- We use the matrix $H=\frac{1}{2}\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ with $H^{-1}=2 H=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$.

Step 2

We replace

- every contravariant signature $[0,1,1,0]$ by the signature

$$
\left(H^{-1}\right)^{\otimes 3} \cdot[0,1,1,0]=[6,0,-2,0]
$$

- every contravariant signature $[0,1,0]$ by the signature

$$
\left(H^{-1}\right)^{\otimes 2} \cdot[0,1,0]=[2,0,-2]
$$

- every covariant signature $[0,1,0]$ by the signature

$$
[0,1,0] \cdot H^{\otimes 2}=\frac{1}{2}[1,0,-1]
$$

A part of Step 2 (holographic transformation)

The signatures $[6,0,-2,0],[2,0,-2],\left[\frac{1}{2}, 0,-\frac{1}{2}\right]$ are all realizable as matchgate signatures.

Step 3

(3) We obtain a weighted graph $G^{\prime \prime}$ as follows.

- We replace each of the signatures $[6,0,-2,0],[2,0,-2]$ and $\left[\frac{1}{2}, 0,-\frac{1}{2}\right]$ in the new signature grid by its corresponding matchgate.
- The edges that connect the matchgates to each other are of weight 1.

A part of Step 3 (matchgates)

The algorithm for \#PL-3-NAE-IcE revisited

The algorithm consists of the following three reductions and Kasteleyn's algorithm.
(1) \#PL-3-NAE-IcE $\leq_{T} \operatorname{Holant}([0,1,0] \mid[0,1,0],[0,1,1,0])$.
(2) $\operatorname{Holant}([0,1,0] \mid[0,1,0],[0,1,1,0]) \equiv_{T}$

Holant $\left(\left.\frac{1}{2}[1,0,-1] \right\rvert\,[2,0,-2],[6,0,-2,0]\right)$.
(3) Holant $\left(\left.\frac{1}{2}[1,0,-1] \right\rvert\,[2,0,-2],[6,0,-2,0]\right) \leq_{T}$ \#PerfMatch in planar graphs.

Other problems with polynomial-time algorithms

- \#Pl-3-NAE-SAT: on input a planar 3-NAE formula ϕ, count the satisfying assignments of ϕ.
- Pl-Node-Bipartition: on input a planar graph G of max degree 3 , compute the minimum cardinality of a subset $S \subset V$ such that $G \backslash S$ is a bipartite graph.
- \#7PL-RTw-Mon-3CNF: on input a planar, read-twice, monotone, 3-CNF formula, compute the number of satisfying assignments modulo 7.

Note that \oplus PL-RTw-Mon-3CNF is $\oplus \mathrm{P}$-complete.

Simultaneous Realizability Problem

2010: Cai \& Lu proved that the following problem can be solved in polynomial time in their paper "Holographic algorithms: From art to science".

Simultaneous Realizability Problem

Input: A set of symmetric signatures for generators or/and recognizers.
Output: A holographic transformation to matchgate signatures, if any exists; 'NO', otherwise.

Holographic Algorithms with matchgates capture precisely

 tractable planar \#CSP
Theorem (Cai \& Fu 2016)

Consider the class of Boolean \#CSP with local constraints being not necessarily symmetric, complex-valued functions. Every problem in this class belongs to one of the following three categories according to \mathcal{F}.
(1) those which are tractable (polynomial-time computable) on general graphs,
(2) those which are \#P-hard on general graphs but tractable on planar graphs,
(3) those which are \#P-hard even on planar graphs.

Moreover, problems in category (2) are tractable on planar graphs precisely by holographic algorithms with matchgates.

- Cai, Lu and Xia (2010) had shown the same theorem for symmetric real-valued functions.
- Huo and Williams (2013) had shown the same theorem for symmetric complex-valued functions.

Overview

(1) Introduction to Counting Complexity

- The class \#P
- Three classes of counting problems
- Holographic transformations
(2) Matchgates and Holographic Algorithms
- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
(3) Polynomial Interpolation

4 Dichotomy Theorems for counting problems

Polynomial interpolation

- Polynomial interpolation is a powerful technique to prove \#P-hardness for counting problems under Turing reductions.

Polynomial interpolation

- Polynomial interpolation is a powerful technique to prove \#P-hardness for counting problems under Turing reductions.
- Polynomial interpolation is the inverse of evaluation.

Proposition

\#PerfectMatchings $\leq T$ \#Matchings.
Proof. Let $G=(V, E)$.

- Let m_{k} be the number of matchings in G that omit k vertices.

Proposition

\#PerfectMatchings \leq_{T} \#Matchings.
Proof. Let $G=(V, E)$.

- Let m_{k} be the number of matchings in G that omit k vertices.
- Then, m_{0} is the number of perfect matchings in G.

Proposition

\#PerfectMatchings $\leq T$ \#Matchings.
Proof. Let $G=(V, E)$.

- Let m_{k} be the number of matchings in G that omit k vertices.
- Then, m_{0} is the number of perfect matchings in G.
- Let the matching polynomial be $P(x)=\sum_{k} m_{k} x^{k}$.

Proposition

```
#PerfectMatchings \leqt #Matchings.
```

Proof. Let $G=(V, E)$.

- Let m_{k} be the number of matchings in G that omit k vertices.
- Then, m_{0} is the number of perfect matchings in G.
- Let the matching polynomial be $P(x)=\sum_{k} m_{k} x^{k}$.
- We will use polynomial interpolation to determine all the coefficients $m_{k}, 0 \leq k \leq n$.

Proposition

\#PerfectMatchings \leq_{T} \#Matchings.
Proof. Let $G=(V, E)$.

- Let m_{k} be the number of matchings in G that omit k vertices.
- Then, m_{0} is the number of perfect matchings in G.
- Let the matching polynomial be $P(x)=\sum_{k} m_{k} x^{k}$.
- We will use polynomial interpolation to determine all the coefficients $m_{k}, 0 \leq k \leq n$.
- We will do this by making $n+1$ oracle calls to the problem of counting (all) matchings.

Proof cont. For every $0 \leq I \leq n$, we construct a graph G_{I} as below.

$G=G_{0}$

G_{1}

G_{2}

G_{ℓ}

Proof cont. Let m_{k} be the number of matchings in G that omit k vertices. Then the number of matchings in G_{l} can be expressed as follows.

$$
\sum_{k=0}^{n}(I+1)^{k} m_{k}=\# \operatorname{MATChings}\left(G_{l}\right)
$$

So, $\quad P(I+1)=\# \operatorname{Matchings}\left(G_{l}\right)$.

- Each matching in G that omits k vertices can be extended to a matching in G_{I} in $(I+1)^{k}$ different ways!
- Each matching in G_{l} is obtained uniquely this way from a matching of G.

Proof cont. We collect these equations to form the following linear system.

$$
\left[\begin{array}{ccccc}
(0+1)^{0} & (0+1)^{1} & (0+1)^{2} & \ldots & (0+1)^{n} \\
(1+1)^{0} & (1+1)^{1} & (1+1)^{2} & \ldots & (1+1)^{n} \\
\cdot & \cdot & \cdot & \ldots & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot \\
(n+1)^{0} & (n+1)^{1} & (n+1)^{2} & \ldots & (n+1)^{n}
\end{array}\right]\left[\begin{array}{c}
m_{0} \\
m_{1} \\
\cdot \\
\cdot \\
\cdot \\
m_{n}
\end{array}\right]=\left[\begin{array}{c}
\text { \#Matchings }\left(G_{0}\right) \\
\text { \#Matchings }\left(G_{1}\right) \\
\cdot \\
\cdot \\
\cdot \\
\cdot \operatorname{Matchings}\left(G_{n}\right)
\end{array}\right]
$$

- The linear system is of the form $\mathbf{V m}=\mathbf{M}$.
- The coefficient matrix \mathbf{V} is a Vandermonde matrix (each row is a geometric progression).
- It is invertible iff the values $(I+1)$ are all distinct, which is true.
- The matrix on the RHS can be computed by $n+1$ oracle calls.
- So, we can solve the system and find \mathbf{m}.

Overview

(1) Introduction to Counting Complexity

- The class \#P
- Three classes of counting problems
- Holographic transformations
(2) Matchgates and Holographic Algorithms
- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
(3) Polynomial Interpolation

4 Dichotomy Theorems for counting problems

Ladner's Theorem

Ladner's Theorem

If $P \neq N P$, then there exists a language $L \in N P$ that is neither in P nor NP-complete.

Corollary 1

If $\mathrm{P} \neq \mathrm{NP}$, there is an infinite hierarchy of separate complexity classes that lie between P and NP .

Corollary 2

If $\mathrm{FP} \neq \# \mathrm{P}$, there is an infinite hierarchy of separate complexity classes between FP and \#P.

- All the examples of such intermediate problems are based on diagonalization constructions and are very artificial.
- Since the concept of a 'natural' problem is somewhat ambiguous, a possible research direction is to pursue dichotomy results for wide classes of problems.

Dichotomy theorems for classes of decision problems

For some broad classes of problems, dichotomy theorems do exist:
(1) Schaefer's theorem (1978) is a dichotomy result for the Generalized Satisfiability problem.
(2) Hell and Nešetřil (1990) proved a dichotomy theorem for the H-Coloring problem.
(3) Vardi and Feder (1993) posed the CSP dichotomy conjecture.
(9) Bulatov and Zhuk (2017) independently confirmed the CSP dichotomy conjecture.

Dichotomy theorems for counting graph homomorphisms

- Dyer and Greenhill (2000) proved that, for any undirected unweighted graph H, the corresponding \#H-COLORING is either in FP or \#P-complete.

Dichotomy theorems for counting graph homomorphisms

- Dyer and Greenhill (2000) proved that, for any undirected unweighted graph H, the corresponding \#H-COLORING is either in FP or \#P-complete.
- Bulatov and Grohe (2005) gave a classification for the problem of computing the weighted sum of homomorphisms to a graph H with non-negative real weights.

Dichotomy theorems for counting graph homomorphisms

- Dyer and Greenhill (2000) proved that, for any undirected unweighted graph H, the corresponding \#H-COLORING is either in FP or \#P-complete.
- Bulatov and Grohe (2005) gave a classification for the problem of computing the weighted sum of homomorphisms to a graph H with non-negative real weights.
- Goldberg, Grohe, Jerrum and Thurley (2010) gave a dichotomy result for weighted graphs H, where the weights are real numbers.

Dichotomy theorems for counting graph homomorphisms

- Dyer and Greenhill (2000) proved that, for any undirected unweighted graph H, the corresponding \#H-COLORING is either in FP or \#P-complete.
- Bulatov and Grohe (2005) gave a classification for the problem of computing the weighted sum of homomorphisms to a graph H with non-negative real weights.
- Goldberg, Grohe, Jerrum and Thurley (2010) gave a dichotomy result for weighted graphs H, where the weights are real numbers.
- Cai, Chen and Lu (2010) extended the dichotomy to complex weights.

Dichotomy theorems for counting graph homomorphisms

- Dyer and Greenhill (2000) proved that, for any undirected unweighted graph H, the corresponding \#H-COLORING is either in FP or \#P-complete.
- Bulatov and Grohe (2005) gave a classification for the problem of computing the weighted sum of homomorphisms to a graph H with non-negative real weights.
- Goldberg, Grohe, Jerrum and Thurley (2010) gave a dichotomy result for weighted graphs H, where the weights are real numbers.
- Cai, Chen and Lu (2010) extended the dichotomy to complex weights.

The dichotomy criterion is explicit: Given H, we can decide whether $Z_{H}(G)$ is in FP or \#P-hard.

The problem of deciding whether a homomorphism exists

- Given graphs G and H, a homomorphism from G to H is a function $f: V(G) \rightarrow V(H)$ such that every edge $(u, v) \in E(G)$ is mapped to an edge $(f(u), f(v)) \in E(H)$.
- Decision problem: Given G as input, is there a homomorphism from G to H ?
- We call this problem the Graph Homomorphism problem or the H-Coloring problem.
- G is the input graph, whereas H is fixed, so part of the description of the problem.

Theorem (Hell \& Nešetril 1990)
Let H be a fixed graph. The H-Coloring problem in in P, if H either has a loop (self-loop) or is bipartite. Otherwise, H-Coloring is NP-complete.

Easy cases:

The problem of counting graph homomorphisms

Theorem (Dyer \& Greenhill 2000)
Let H be a fixed graph. The \#H-Colorings problem is in FP, if every connected component of H is
(1) either a complete graph with all loops present
(2) or a complete bipartite graph with no loops present.

Otherwise, \#H-Colorings is \#P-complete.

Easy cases:

Suppose that H is a complete graph with all loops present, or a complete bipartite graph with no loops. Then, \#H-Colorings can be solved in polynomial time.

Proof.
(1) If H is an isolated vertex without a loop, then $Z_{H}(G)=0$, unless G is a collection of isolated vertices, in which case $Z_{H}(G)=1$.

Suppose that H is a complete graph with all loops present, or a complete bipartite graph with no loops. Then, \#H-Colorings can be solved in polynomial time.

Proof.
(1) If H is an isolated vertex without a loop, then $Z_{H}(G)=0$, unless G is a collection of isolated vertices, in which case $Z_{H}(G)=1$.
(2) If H is the complete graph on k vertices with all loops present, then if G has n vertices, it holds that $Z_{H}(G)=k^{n}$.

Suppose that H is a complete graph with all loops present, or a complete bipartite graph with no loops. Then, \#H-Colorings can be solved in polynomial time.

Proof.

(1) If H is an isolated vertex without a loop, then $Z_{H}(G)=0$, unless G is a collection of isolated vertices, in which case $Z_{H}(G)=1$.
(2) If H is the complete graph on k vertices with all loops present, then if G has n vertices, it holds that $Z_{H}(G)=k^{n}$.
(3) Suppose H is the complete bipartite graph with vertex bipartition $C_{1} \cup C_{2},\left|C_{i}\right|=k_{i}, i=1,2$, and with no loops.

- If G is not bipartite, then $Z_{H}(G)=0$.
- If G is bipartite with vertex bipartition $V_{1} \cup V_{2},\left|V_{i}\right|=n_{i}, i=1$, 2, then

$$
Z_{H}(G)=k_{1}^{n_{1}} \cdot k_{2}^{n_{2}}+k_{1}^{n_{2}} \cdot k_{2}^{n_{1}} .
$$

