Theorem (Hell \& Nešetril 1990)
Let $H$ be a fixed graph. The H-Coloring problem in in $P$, if $H$ either has a loop (self-loop) or is bipartite. Otherwise, H-Coloring is NP-complete.

Easy cases:


The problem of counting graph homomorphisms

Theorem (Dyer \& Greenhill 2000)
Let $H$ be a fixed graph. The \#H-Colorings problem is in FP, if every connected component of $H$ is
(1) either a complete graph with all loops present
(2) or a complete bipartite graph with no loops present.

Otherwise, \#H-Colorings is \#P-complete.

Easy cases:


Suppose that $H$ is a complete graph with all loops present, or a complete bipartite graph with no loops. Then, \#H-Colorings can be solved in polynomial time.

Proof.
(1) If $H$ is an isolated vertex without a loop, then $Z_{H}(G)=0$, unless $G$ is a collection of isolated vertices, in which case $Z_{H}(G)=1$.

Suppose that $H$ is a complete graph with all loops present, or a complete bipartite graph with no loops. Then, \#H-Colorings can be solved in polynomial time.

Proof.
(1) If $H$ is an isolated vertex without a loop, then $Z_{H}(G)=0$, unless $G$ is a collection of isolated vertices, in which case $Z_{H}(G)=1$.
(2) If $H$ is the complete graph on $k$ vertices with all loops present, then if $G$ has $n$ vertices, it holds that $Z_{H}(G)=k^{n}$.

Suppose that $H$ is a complete graph with all loops present, or a complete bipartite graph with no loops. Then, \#H-Colorings can be solved in polynomial time.

## Proof.

(1) If $H$ is an isolated vertex without a loop, then $Z_{H}(G)=0$, unless $G$ is a collection of isolated vertices, in which case $Z_{H}(G)=1$.
(2) If $H$ is the complete graph on $k$ vertices with all loops present, then if $G$ has $n$ vertices, it holds that $Z_{H}(G)=k^{n}$.
(3) Suppose $H$ is the complete bipartite graph with vertex bipartition $C_{1} \cup C_{2},\left|C_{i}\right|=k_{i}, i=1,2$, and with no loops.

- If $G$ is not bipartite, then $Z_{H}(G)=0$.
- If $G$ is bipartite with vertex bipartition $V_{1} \cup V_{2},\left|V_{i}\right|=n_{i}, i=1$, 2, then

$$
Z_{H}(G)=k_{1}^{n_{1}} \cdot k_{2}^{n_{2}}+k_{1}^{n_{2}} \cdot k_{2}^{n_{1}} .
$$

## Generalization to non-negative weights

## Theorem (Bulatov \& Grohe 2005)

Let $H$ be a fixed weighted graph and A the corresponding adjacency matrix with non-negative real entries. On input $G$, computing $Z_{A}(G)$ is in FP if every connected component of $H$ is
(1) either not bipartite and the rank of $A$ is at most 1
(2) or bipartite and $A$ is in block form $\left[\begin{array}{cc}0 & B \\ B^{\top} & 0\end{array}\right]$, where $B$ is of rank at most 1.

Otherwise, computing $Z_{A}(G)$ is \#P-hard.

## Examples of \#P-hard counting problems



## $\mathrm{H}_{\mathrm{BIS}}$



Adjacency matrix
Adjacency matrix

$$
A=\left[\begin{array}{ll}
\lambda & 1 \\
1 & \lambda
\end{array}\right]
$$

$$
A=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

## What about real weights?



## Adjacency matrix

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

- Every assignment $\sigma$ from $V(G)$ to $V(H)$ corresponds to the subgraph induced by the nodes of $G$ assigned to node 1 of $H$.
- Let an assignment $\sigma$. Then $\sigma$ contributes either a +1 to the sum $Z_{A}(G)$ if an even number of edges have both their endpoints assigned to node 1 of $H$, or a -1 , otherwise.
- $X=\frac{2^{n}+Z_{A}(G)}{2}$ is the number of induced subgraphs of $G$ with even number of edges.


## What about real weights?



## Adjacency matrix

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right]
$$

- A has rank 2, but the problem is in FP.
- Consider the quadratic form over $\mathbb{F}_{2}$ defined by

$$
Q(X)=\sum_{\{u, v\} \in E(G)} x_{u} x_{v} .
$$

- Then $Q(X)=0$ if an even number of edges have both their endpoints assigned to 1 , and $Q(X)=1$, otherwise.
- Computing the number of solutions to $Q(X)=0$ can be done in polynomial time.


## Dichotomy theorems for $\# \operatorname{CSP}(\mathcal{F})$ : the Boolean case

- Creignou and Hermann (1996) proved a dichotomy theorem for the case of $\mathcal{F}$ being a finite set of $\{0,1\}$-valued functions.


## Dichotomy theorems for $\# \operatorname{CSP}(\mathcal{F})$ : the Boolean case

- Creignou and Hermann (1996) proved a dichotomy theorem for the case of $\mathcal{F}$ being a finite set of $\{0,1\}$-valued functions.
- Dyer, Goldberg and Jerrum (2009) a similar dichotomy when $\mathcal{F}$ is a finite set of non-negative real-valued functions.


## Dichotomy theorems for $\# \operatorname{CSP}(\mathcal{F})$ : the Boolean case

- Creignou and Hermann (1996) proved a dichotomy theorem for the case of $\mathcal{F}$ being a finite set of $\{0,1\}$-valued functions.
- Dyer, Goldberg and Jerrum (2009) a similar dichotomy when $\mathcal{F}$ is a finite set of non-negative real-valued functions.
- Bulatov, Dyer, Goldberg, Jalsenius and Richerby (2009) extended the Boolean \#CSP dichotomy to arbitrary real weights.


## Dichotomy theorems for $\# \operatorname{CSP}(\mathcal{F})$ : the Boolean case

- Creignou and Hermann (1996) proved a dichotomy theorem for the case of $\mathcal{F}$ being a finite set of $\{0,1\}$-valued functions.
- Dyer, Goldberg and Jerrum (2009) a similar dichotomy when $\mathcal{F}$ is a finite set of non-negative real-valued functions.
- Bulatov, Dyer, Goldberg, Jalsenius and Richerby (2009) extended the Boolean \#CSP dichotomy to arbitrary real weights.
- Cai, Lu and Xia (2014) proved the dichotomy theorem for complex-valued functions.


## The dichotomy theorem for Boolean CSPs

Theorem (Schaefer 1978)
Let $\Gamma$ be a finite set of relations on the domain $\{0,1\}$. The problem $\operatorname{CSP}(\Gamma)$ is in $P$ if every relation in $\Gamma$ satisfies one of the conditions below.

## The dichotomy theorem for Boolean CSPs

Theorem (Schaefer 1978)
Let $\Gamma$ be a finite set of relations on the domain $\{0,1\}$. The problem $\operatorname{CSP}(\Gamma)$ is in $P$ if every relation in $\Gamma$ satisfies one of the conditions below.
(1) It is 0 -valid (it is satisfied when all variables are 0 ).

## The dichotomy theorem for Boolean CSPs

Theorem (Schaefer 1978)
Let $\Gamma$ be a finite set of relations on the domain $\{0,1\}$. The problem $\operatorname{CSP}(\Gamma)$ is in $P$ if every relation in $\Gamma$ satisfies one of the conditions below.
(1) It is 0 -valid (it is satisfied when all variables are 0 ).
(2) It is 1-valid (it is satisfied when all variables are 1).

## The dichotomy theorem for Boolean CSPs

Theorem (Schaefer 1978)
Let $\Gamma$ be a finite set of relations on the domain $\{0,1\}$. The problem $\operatorname{CSP}(\Gamma)$ is in $P$ if every relation in $\Gamma$ satisfies one of the conditions below.
(1) It is 0 -valid (it is satisfied when all variables are 0 ).
(2) It is 1-valid (it is satisfied when all variables are 1).
(3) It is Horn (it is equivalent to a conjunction of clauses that contain at most one positive literal).

## The dichotomy theorem for Boolean CSPs

Theorem (Schaefer 1978)
Let $\Gamma$ be a finite set of relations on the domain $\{0,1\}$. The problem $\operatorname{CSP}(\Gamma)$ is in $P$ if every relation in $\Gamma$ satisfies one of the conditions below.
(1) It is 0 -valid (it is satisfied when all variables are 0 ).
(2) It is 1-valid (it is satisfied when all variables are 1).
(3) It is Horn (it is equivalent to a conjunction of clauses that contain at most one positive literal).
(9) It is dual Horn.

## The dichotomy theorem for Boolean CSPs

## Theorem (Schaefer 1978)

Let $\Gamma$ be a finite set of relations on the domain $\{0,1\}$. The problem $\operatorname{CSP}(\Gamma)$ is in $P$ if every relation in $\Gamma$ satisfies one of the conditions below.
(1) It is 0 -valid (it is satisfied when all variables are 0 ).
(2) It is 1-valid (it is satisfied when all variables are 1).
(3) It is Horn (it is equivalent to a conjunction of clauses that contain at most one positive literal).
(9) It is dual Horn.
(6) It is bijunctive (it is equivalent to a conjunction of clauses with at most two literals).

## The dichotomy theorem for Boolean CSPs

## Theorem (Schaefer 1978)

Let $\Gamma$ be a finite set of relations on the domain $\{0,1\}$. The problem $\operatorname{CSP}(\Gamma)$ is in $P$ if every relation in $\Gamma$ satisfies one of the conditions below.
(1) It is 0 -valid (it is satisfied when all variables are 0 ).
(2) It is 1-valid (it is satisfied when all variables are 1).
(3) It is Horn (it is equivalent to a conjunction of clauses that contain at most one positive literal).
(4) It is dual Horn.
(5) It is bijunctive (it is equivalent to a conjunction of clauses with at most two literals).
(0) It is affine (it is the solution set to a system of linear equations over $\mathbb{F}_{2}$, i.e. the two-element field).

## The dichotomy theorem for Boolean CSPs

## Theorem (Schaefer 1978)

Let $\Gamma$ be a finite set of relations on the domain $\{0,1\}$. The problem $\operatorname{CSP}(\Gamma)$ is in $P$ if every relation in $\Gamma$ satisfies one of the conditions below.
(1) It is 0 -valid (it is satisfied when all variables are 0 ).
(2) It is 1-valid (it is satisfied when all variables are 1).
(3) It is Horn (it is equivalent to a conjunction of clauses that contain at most one positive literal).
(4) It is dual Horn.
(5) It is bijunctive (it is equivalent to a conjunction of clauses with at most two literals).
(0) It is affine (it is the solution set to a system of linear equations over $\mathbb{F}_{2}$, i.e. the two-element field).
Otherwise, $\operatorname{CSP}(\Gamma)$ is NP-complete.

## Easy cases

- MonSat: Every instance is satisfied when all variables are 1.


## Easy cases

- MonSat: Every instance is satisfied when all variables are 1.
- 2Sat: An instance can be transformed into a directed graph. The satisfiability of the input formula is equivalent to an easy-to-check condition in this graph.


## Easy cases

- MonSat: Every instance is satisfied when all variables are 1.
- 2Sat: An instance can be transformed into a directed graph. The satisfiability of the input formula is equivalent to an easy-to-check condition in this graph.
- HornSat: There is a polynomial-time algorithm that starts with all variables set to 0 and builds the minimum model of the input Horn formula step by step.


## Easy cases

- MonSat: Every instance is satisfied when all variables are 1.
- 2Sat: An instance can be transformed into a directed graph. The satisfiability of the input formula is equivalent to an easy-to-check condition in this graph.
- HornSat: There is a polynomial-time algorithm that starts with all variables set to 0 and builds the minimum model of the input Horn formula step by step.
- XORSat: The satisfiability of an input formula can be formulated as a system of linear equations over $\mathbb{Z}_{2}$. For example, $\phi=\left(x_{1} \oplus x_{3}\right) \wedge\left(\neg x_{1} \oplus x_{2}\right) \wedge\left(x_{1} \oplus x_{2} \oplus \neg x_{3}\right)$ corresponds to

$$
\begin{array}{lll}
x_{1} & +x_{3} & =1 \\
1+x_{1} & +x_{2} & =1 \\
x_{1} & +x_{2}+1+x_{3} & =1
\end{array}
$$

## Easy cases

- MonSat: Every instance is satisfied when all variables are 1.
- 2Sat: An instance can be transformed into a directed graph. The satisfiability of the input formula is equivalent to an easy-to-check condition in the graph.
- HornSat: There is a polynomial-time algorithm that starts with all variables set to 0 and builds the minimum model of the input Horn formula step by step.
- XORSat: The satisfiability of an input formula can be formulated as a system of linear equations over $\mathbb{Z}_{2}$. For example, $\phi=\left(x_{1} \oplus x_{3}\right) \wedge\left(\neg x_{1} \oplus x_{2}\right) \wedge\left(x_{1} \oplus x_{2} \oplus \neg x_{3}\right)$ corresponds to

$$
\begin{array}{ll}
x_{1} \quad+x_{3} & =1 \\
x_{1}+x_{2} & =0 \\
x_{1}+x_{2}+x_{3} & =0
\end{array}
$$

## Hard cases

- 3-SAT: Every constraint corresponds to a clause with exactly three variables, where at least one literal is true. For example, constraint $C=\{0,1\}^{3} \backslash(1,0,0)$ corresponds to $\neg x_{1} \vee x_{2} \vee x_{3}$.
- 3-NAE-SAT: Every constraint corresponds to a clause with exactly three variables, where at least one literal is true and not all literals are the same. For example, constraint $C=\{0,1\}^{3} \backslash\{(1,0,0),(0,1,1)\}$ corresponds to $\neg x_{1} \vee x_{2} \vee x_{3}$.
- 3-Exactly-One: Every constraint corresponds to a clause with exactly three variables, where exactly one literal is true. For example, constraint $C=\{(0,0,0),(1,1,0),(1,0,1)\}$ corresponds to $\neg x_{1} \vee x_{2} \vee x_{3}$.


## Counting CSPs: $\{0,1\}$-valued functions over the Boolean domain

## Theorem (Creignou \& Hermann 1996)

Let $\Gamma$ be a finite set of relations on the domain $\{0,1\}$. The problem $\# \operatorname{CSP}(\Gamma)$ is in FP if $\Gamma$ is affine. Otherwise, $\# \operatorname{CSP}(\Gamma)$ is \#P-complete.

- Equivalently, this is a dichotomy result for $\# \operatorname{CSP}(\mathcal{F})$, where $\mathcal{F}$ consists of $\{0,1\}$-valued functions on Boolean variables.
- Instead of a relation, we consider its characteristic function.
- A function $f$ is affine if its support is an affine relation, where

$$
\operatorname{supp}(f)=\left\{\left(x_{1}, \ldots, x_{k}\right) \mid f\left(x_{1}, \ldots, x_{k}\right) \neq 0\right\}
$$

## Easy cases

- Every relation in 「 must be affine.
- A relation $R$ is affine if the set of tuples $x \in R$ is the set of solutions to a system of linear equations over $\mathbb{F}_{2}$.
- These equations are of the form $x_{1} \oplus \ldots \oplus x_{n}=0$ and $x_{1} \oplus \ldots \oplus x_{n}=1$.


## Easy cases

- Every relation in 「 must be affine.
- A relation $R$ is affine if the set of tuples $x \in R$ is the set of solutions to a system of linear equations over $\mathbb{F}_{2}$.
- These equations are of the form $x_{1} \oplus \ldots \oplus x_{n}=0$ and $x_{1} \oplus \ldots \oplus x_{n}=1$.
- A relation is affine iff $a, b, c \in R$ implies $d=a \oplus b \oplus c \in R$.
- There is an algorithm for determining whether a finite set of relations is affine, so for determining whether \#CSP(Г) is in FP or \#P-complete.


## An example of a \#P-complete problem

- The relation $I M P=\{(0,0),(0,1),(1,1)\}$ is bijunctive, 0 -valid, 1-valid, Horn, dual Horn, but not affine. So, \#CSP (\{IMP\}) is \#P-complete.


## An example of a \#P-complete problem

- The relation IMP $=\{(0,0),(0,1),(1,1)\}$ is bijunctive, 0 -valid, 1 -valid, Horn, dual Horn, but not affine. So, \#CSP (\{IMP\}) is \#P-complete.
- \#CSP $(\{I M P\})$ is equivalent to $\# 2$ HornSat. For example an instance of this problem is $\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{3} \vee x_{1}\right) \wedge\left(\neg x_{2} \vee x_{4}\right)$.


## An example of a \#P-complete problem

- The relation $I M P=\{(0,0),(0,1),(1,1)\}$ is bijunctive, 0 -valid, 1 -valid, Horn, dual Horn, but not affine. So, \#CSP (\{IMP\}) is \#P-complete.
- \#CSP $(\{I M P\})$ is equivalent to $\# 2$ HornSat. For example an instance of this problem is $\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{3} \vee x_{1}\right) \wedge\left(\neg x_{2} \vee x_{4}\right)$.
- It can also be expressed as a counting homomorphism problem with
$H \bigcap_{0} \longrightarrow \bigcap_{1}$ and adjacancy matrix $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.


## An example of a \#P-complete problem

- The relation $I M P=\{(0,0),(0,1),(1,1)\}$ is bijunctive, 0 -valid, 1 -valid, Horn, dual Horn, but not affine. So, \#CSP $(\{I M P\})$ is \#P-complete.
- \#CSP $(\{I M P\})$ is equivalent to \#2HornSat. For example an instance of this problem is $\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{3} \vee x_{1}\right) \wedge\left(\neg x_{2} \vee x_{4}\right)$.
- It can also be expressed as a counting homomorphism problem with
 and adjacancy matrix $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
- Given an acyclic directed graph $G$, which defines a partial order, $\operatorname{Hom}(G, H)$ is equal to the number of downsets of the partial order (i.e. downward closed sets w.r.t. the partial order) (Exercise).


## Generalization to non-negative real weights

## Definition 1

A function has product type if it can be expressed as a product of unary functions, binary Equality functions $(=2)$, and binary Disequality functions $(\neq 2)$, on not necessarily disjoint subsets of variables. We denote by $\mathcal{P}$ the set of all functions of product type.

## Definition 2

A function is pure affine if its support is an affine relation and its range is a subset of $\{0, b\}$ for some $b \in \mathbb{R}_{\geq 0}$.
We denote by $\mathcal{A}$ the set of all pure affine functions.

## Counting CSPs: non-negative real-valued functions over the Boolean domain

## Theorem (Dyer, Goldberg \& Jerrum 2009)

For every finite $\mathcal{F}$ consisting of non-negative-valued functions, \#CSP $(\mathcal{F})$ is in FP if one of the following conditions holds.
(1) Every function in $\mathcal{F}$ is of product type.
(2) Every function in $\mathcal{F}$ is a pure affine function.

Otherwise, $\# \operatorname{CSP}(\mathcal{F})$ is \#P-hard.

Dichotomy theorems for $\# \operatorname{CSP}(\mathcal{F})$ : the case of arbitrary finite domain

- Bulatov (2008) gave a dichotomy for exact counting in the whole of unweighted \#CSP.
(general domain, $\{0,1\}$-valued)

Dichotomy theorems for $\# \operatorname{CSP}(\mathcal{F})$ : the case of arbitrary finite domain

- Bulatov (2008) gave a dichotomy for exact counting in the whole of unweighted \#CSP.
(general domain, $\{0,1\}$-valued)
- Dyer and Richerby (2011) have given an easier proof of this theorem. They established a new criterion for the \#CSP dichotomy and proved that this property is decidable.
(general domain, $\{0,1\}$-valued and decidable)

Dichotomy theorems for $\# \operatorname{CSP}(\mathcal{F})$ : the case of arbitrary finite domain

- Bulatov (2008) gave a dichotomy for exact counting in the whole of unweighted \#CSP.
(general domain, $\{0,1\}$-valued)
- Dyer and Richerby (2011) have given an easier proof of this theorem. They established a new criterion for the \#CSP dichotomy and proved that this property is decidable. (general domain, $\{0,1\}$-valued and decidable)
- Cai, Chen and Lu (2011) gave an effective complexity dichotomy for non-negative real-valued functions.
(general domain, non-negative-valued)

Dichotomy theorems for $\# \operatorname{CSP}(\mathcal{F})$ : the case of arbitrary finite domain

- Bulatov (2008) gave a dichotomy for exact counting in the whole of unweighted \#CSP.
(general domain, $\{0,1\}$-valued)
- Dyer and Richerby (2011) have given an easier proof of this theorem. They established a new criterion for the \#CSP dichotomy and proved that this property is decidable. (general domain, $\{0,1\}$-valued and decidable)
- Cai, Chen and Lu (2011) gave an effective complexity dichotomy for non-negative real-valued functions.
(general domain, non-negative-valued)
- Cai and Chen (2011) gave a dichotomy result for complex-valued functions. Decidability is an open question.
(general domain, complex-valued, not known to be decidable)


## Gödel prize 2021

- Bulatov (2008) gave a dichotomy for exact counting in the whole of unweighted \#CSP.
- Dyer and Richerby (2011) have given an easier proof of this theorem. They established a new criterion for the \#CSP dichotomy and proved that this property is decidable.
- Cai, Chen and Lu (2011) gave a dichotomy result for non-negative real-valued functions.
- Cai and Chen (2011) gave a dichotomy result for complex-valued functions. Decidability is an open question.


## Dichotomy theorems for Holant Problems

- Cai, Lu, Xia (2009): Symmetric complex-valued Holant* on Boolean domain. $\left(\operatorname{Holant}^{*}(\mathcal{F})=\operatorname{Holant}(\mathcal{F} \cup \mathcal{U})\right)$
- Huang and Lu (2012): Symmetric real-valued Holant on Boolean domain.
- Cai, Guo and Williams (2013): Symmetric complex-valued Holant on Boolean domain.
- Backens (2017): Complex-valued Holant ${ }^{c}$ on Boolean domain. $\left(\operatorname{Holant}^{c}(\mathcal{F})=\operatorname{Holant}\left(\mathcal{F} \cup\left\{\Delta_{0}, \Delta_{1}\right\}\right)\right)$
- Lin and Wang (2017): Non-negative-valued Holant on Boolean domain.


## Dichotomy theorems for Holant Problems

- Cai, Lu, Xia (2009): Symmetric complex-valued Holant* on Boolean domain. $\left(\operatorname{Holant}^{*}(\mathcal{F})=\operatorname{Holant}(\mathcal{F} \cup \mathcal{U})\right)$
- Huang and Lu (2012): Symmetric real-valued Holant on Boolean domain.
- Cai, Guo and Williams (2013): Symmetric complex-valued Holant on Boolean domain.
- Backens (2017): Complex-valued Holant ${ }^{c}$ on Boolean domain. $\left(\operatorname{Holant}^{c}(\mathcal{F})=\operatorname{Holant}\left(\mathcal{F} \cup\left\{\Delta_{0}, \Delta_{1}\right\}\right)\right)$
- Lin and Wang (2017): Non-negative-valued Holant on Boolean domain.
- Cai, Luo, Xia (2013): Holant* with domain of size 3 and a single complex-valued ternary symmetric constraint.
- Cai, Guo, Williams (2014): Edge $k$-Colorings is \#P-hard over planar $r$-regular graphs for $k \geq r \geq 3(r \leq 5)$. It is polynomial-time computable for all other values of $k$ and $r$.


## Overview

(1) Introduction to Counting Complexity

- The class \#P
- Three classes of counting problems
- Holographic transformations
(2) Matchgates and Holographic Algorithms
- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
(3) Polynomial Interpolation
(4) Dichotomy Theorems for counting problems
(5) Approximation of counting problems
- Sampling and counting


## Overview

(1) Introduction to Counting Complexity

- The class \#P
- Three classes of counting problems
- Holographic transformations
(2) Matchgates and Holographic Algorithms
- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
(3) Polynomial Interpolation
(4) Dichotomy Theorems for counting problems
(5) Approximation of counting problems
- Sampling and counting


## Exact counting

Exact counting is rare:

- \#2-Colorings.
- \#Perfect Matchings in planar graphs.
- \#Spanning trees in general graphs.


## Approximate counting

## Definition

A fully polynomial randomized approximation scheme (fpras) for a counting problem $f: \Sigma^{*} \rightarrow \mathbb{N}$ is a randomized algorithm that takes as input an instance $x \in \Sigma^{*}$, an error tolerance $0<\varepsilon<1$, and $0<\delta<1$, and outputs a number $\widehat{f(x)} \in \mathbb{N}$ such that

$$
\operatorname{Pr}[(1-\varepsilon) f(x) \leq \widehat{f(x)} \leq(1+\varepsilon) f(x)] \geq 1-\delta
$$

The algorithm must run in time polynomial in $|x|, 1 / \varepsilon$ and $\log (1 / \delta)$.

Alternatively we could define the fpras so that on input $(x, \varepsilon)$ outputs $\widehat{f(x)}$ satisfying

$$
\begin{gathered}
\operatorname{Pr}[(1-\varepsilon) f(x) \leq \widehat{f(x)} \leq(1+\varepsilon) f(x)] \geq \frac{3}{4} \quad \text { or } \\
\operatorname{Pr}\left[e^{-\varepsilon} f(x) \leq \widehat{f(x)} \leq e^{\varepsilon} f(x)\right] \geq \frac{3}{4}
\end{gathered}
$$

The probability $\frac{3}{4}$ can be boosted to $1-\delta$ for any desired $\delta>0$ using $\mathcal{O}\left(\log \delta^{-1}\right)$ repeated trials.

## Boost the success probability to $1-\delta$

## Chernoff bound

Let $X_{1}, \ldots, X_{m}$ be independent, identically distibuted $\{0,1\}$ random variables, where $p=\mathbb{E}\left[X_{i}\right]$. For all $\varepsilon \leq 3 / 2$,

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} X_{i}-p n\right|>\varepsilon p n\right] \leq 2 \exp \left(-\varepsilon^{2} p n / 3\right)
$$

- Let an fpras for $f(x)$ such that

$$
\operatorname{Pr}[(1-\varepsilon) f(x) \leq \widehat{f(x)} \leq(1+\varepsilon) f(x)]=\frac{3}{4} .
$$

## Boost the success probability to $1-\delta$

## Chernoff bound

Let $X_{1}, \ldots, X_{m}$ be independent, identically distibuted $\{0,1\}$ random variables, where $p=\mathbb{E}\left[X_{i}\right]$. For all $\varepsilon \leq 3 / 2$,

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} X_{i}-p n\right|>\varepsilon p n\right] \leq 2 \exp \left(-\varepsilon^{2} p n / 3\right)
$$

- Let an fpras for $f(x)$ such that

$$
\operatorname{Pr}[(1-\varepsilon) f(x) \leq \widehat{f(x)} \leq(1+\varepsilon) f(x)]=\frac{3}{4}
$$

- Then run this algorithm for $k=36 \log (2 / \delta)$ times, obtaining outputs $y_{1}, \ldots, y_{k}$. Output the median of these outputs, let's say $y_{m}$.


## Boost the success probability to $1-\delta$

## Chernoff bound

Let $X_{1}, \ldots, X_{m}$ be independent, identically distibuted $\{0,1\}$ random variables, where $p=\mathbb{E}\left[X_{i}\right]$. For all $\varepsilon \leq 3 / 2$,

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} X_{i}-p n\right|>\varepsilon p n\right] \leq 2 \exp \left(-\varepsilon^{2} p n / 3\right)
$$

- Let an fpras for $f(x)$ such that

$$
\operatorname{Pr}[(1-\varepsilon) f(x) \leq \widehat{f(x)} \leq(1+\varepsilon) f(x)]=\frac{3}{4} .
$$

- Then run this algorithm for $k=36 \log (2 / \delta)$ times, obtaining outputs $y_{1}, \ldots, y_{k}$. Output the median of these outputs, let's say $y_{m}$.
- Let $X_{i}=\left\{\begin{array}{ll}1, & \text { if } y_{i} \in(1 \pm \varepsilon) f(x) \\ 0, & \text { otherwise }\end{array}\right.$.


## Boost the success probability to $1-\delta$

## Chernoff bound

Let $X_{1}, \ldots, X_{m}$ be independent, identically distibuted $\{0,1\}$ random variables, where $p=\mathbb{E}\left[X_{i}\right]$. For all $\varepsilon \leq 3 / 2$,

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} X_{i}-p n\right|>\varepsilon p n\right] \leq 2 \exp \left(-\varepsilon^{2} p n / 3\right)
$$

- Let an fpras for $f(x)$ such that

$$
\operatorname{Pr}[(1-\varepsilon) f(x) \leq \widehat{f(x)} \leq(1+\varepsilon) f(x)]=\frac{3}{4} .
$$

- Then run this algorithm for $k=36 \log (2 / \delta)$ times, obtaining outputs $y_{1}, \ldots, y_{k}$. Output the median of these outputs, let's say $y_{m}$.
- Let $X_{i}=\left\{\begin{array}{ll}1, & \text { if } y_{i} \in(1 \pm \varepsilon) f(x) \\ 0, & \text { otherwise }\end{array}\right.$.
- $\mathbb{E}\left[X_{i}\right]=\frac{3}{4}$ and $\mathbb{E}\left[\sum X_{i}\right]=\frac{3}{4} k$.


## Boost the success probability to $1-\delta$

## Chernoff

Let $X_{1}, \ldots, X_{m}$ be independent, identically distibuted $\{0,1\}$ random variables, where $p=\mathbb{E}\left[X_{i}\right]$. For all $\varepsilon \leq 3 / 2$,

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} X_{i}-p n\right|>\varepsilon p n\right] \leq 2 \exp \left(-\varepsilon^{2} p n / 3\right)
$$

$$
\begin{aligned}
\operatorname{Pr}\left[y_{m} \notin(1 \pm \varepsilon) f(x)\right] & \leq \operatorname{Pr}\left[\sum_{i=1}^{k} X_{i}<\frac{k}{2}\right] \\
& \leq \operatorname{Pr}\left[\left|\sum X_{i}-\mathbb{E}\left[\sum X_{i}\right]\right|>\frac{k}{4}\right] \\
& \leq \operatorname{Pr}\left[\left|\sum X_{i}-\frac{3}{4} k\right|>\frac{1}{3} \cdot \frac{3}{4} \cdot k\right] \\
& \leq 2 \exp \left(-\frac{\left(\frac{1}{3}\right)^{2} \frac{3}{4} k}{3}\right)=2 \exp (-k / 36)=\delta .
\end{aligned}
$$

## Uniform sampling

- A sampling problem is specified by a relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$ between problem instances and solutions, i.e. $(x, w) \in R$ iff $w$ is a solution for the problem instance $x$.
- We denote the solution set $\{w \mid(x, w) \in R\}$ by $R(x)$.
- A uniform sampler for a solution set $R \in \Sigma^{*} \times \Sigma^{*}$ is a randomized algorithm that takes as input an instance $x \in \Sigma^{*}$ and outputs a solution $W \in R(x)$ uniformly at random.


## Total variation distance

To define approximate sampling we first need to define the following notion of distance between two probability distributions.

## Definition

For two probability distributions $\mu$ and $\nu$ on a countable set $\Omega$, define the total variation distance between $\pi$ and $\pi^{\prime}$ to be

$$
\|\mu-\nu\|_{T V}=\frac{1}{2} \sum_{\omega \in \Omega}|\mu(\omega)-\nu(\omega)| .
$$

## Claim

For two probability distributions $\mu$ and $\nu$,

$$
\|\mu-\nu\|_{T V}=\max _{A \subseteq \Omega}|\mu(A)-\nu(A)| .
$$

For two probability distributions $\mu$ and $\nu$,

$$
\|\mu-\nu\|_{T V}=\max _{A \subseteq \Omega}|\mu(A)-\nu(A)| .
$$

Proof.
Let $A=\{x \mid \mu(x) \geq \nu(x)\}$.
Since $\mu, \nu$ are probability distributions
$\sum_{x \in A} \mu(x)-\nu(x)=\sum_{x \notin A} \nu(x)-\mu(x)=$

$$
\frac{1}{2}\|\mu-\nu\|_{1}=\|\mu-\nu\|_{T V} .
$$

For any set $B \neq A$,

$\sum_{x \in B} \mu(x)-\nu(x) \leq \sum_{x \in A} \mu(x)-\nu(x)$.

