Theorem (Hell & Nešetřil 1990)

Let H be a fixed graph. The H-COLORING problem in in P, if H either has a loop (self-loop) or is bipartite. Otherwise, H-COLORING is NP-complete.

The problem of counting graph homomorphisms

Theorem (Dyer & Greenhill 2000)

Let H be a fixed graph. The #H-COLORINGS problem is in FP, if every connected component of H is

- either a complete graph with all loops present
- 2 or a complete bipartite graph with no loops present.

Otherwise, #H-COLORINGS is #P-complete.

Suppose that H is a complete graph with all loops present, or a complete bipartite graph with no loops. Then, #H-COLORINGS can be solved in polynomial time.

Proof.

If H is an isolated vertex without a loop, then $Z_H(G) = 0$, unless G is a collection of isolated vertices, in which case $Z_H(G) = 1$.

Suppose that H is a complete graph with all loops present, or a complete bipartite graph with no loops. Then, #H-COLORINGS can be solved in polynomial time.

Proof.

- If H is an isolated vertex without a loop, then $Z_H(G) = 0$, unless G is a collection of isolated vertices, in which case $Z_H(G) = 1$.
- If H is the complete graph on k vertices with all loops present, then if G has n vertices, it holds that Z_H(G) = kⁿ.

Suppose that H is a complete graph with all loops present, or a complete bipartite graph with no loops. Then, #H-COLORINGS can be solved in polynomial time.

Proof.

- If H is an isolated vertex without a loop, then $Z_H(G) = 0$, unless G is a collection of isolated vertices, in which case $Z_H(G) = 1$.
- If H is the complete graph on k vertices with all loops present, then if G has n vertices, it holds that Z_H(G) = kⁿ.
- Suppose *H* is the complete bipartite graph with vertex bipartition $C_1 \cup C_2$, $|C_i| = k_i$, i = 1, 2, and with no loops.
 - If G is not bipartite, then $Z_H(G) = 0$.
 - If G is bipartite with vertex bipartition $V_1 \cup V_2$, $|V_i| = n_i$, i = 1, 2, then

$$Z_H(G) = k_1^{n_1} \cdot k_2^{n_2} + k_1^{n_2} \cdot k_2^{n_1}.$$

Generalization to non-negative weights

Theorem (Bulatov & Grohe 2005)

Let H be a fixed weighted graph and A the corresponding adjacency matrix with non-negative real entries. On input G, computing $Z_A(G)$ is in FP if every connected component of H is

- either not bipartite and the rank of A is at most 1
- or bipartite and A is in block form $\begin{bmatrix} 0 & B \\ B^{\top} & 0 \end{bmatrix}$, where B is of rank at most 1.

Otherwise, computing $Z_A(G)$ is #P-hard.

Examples of #P-hard counting problems

Adjacency matrix

$$A = \begin{bmatrix} \lambda & 1 \\ 1 & \lambda \end{bmatrix}$$

Adjacency matrix

A =	Γ0	0	1	1
	0	0	1	0
	1	1	0	0
	1	0	0	0

What about real weights?

- Every assignment σ from V(G) to V(H) corresponds to the subgraph induced by the nodes of G assigned to node 1 of H.
- Let an assignment σ . Then σ contributes either a +1 to the sum $Z_A(G)$ if an even number of edges have both their endpoints assigned to node 1 of H, or a -1, otherwise.
- $X = \frac{2^n + Z_A(G)}{2}$ is the number of induced subgraphs of G with even number of edges.

What about real weights?

- A has rank 2, but the problem is in FP.
- Consider the quadratic form over \mathbb{F}_2 defined by

$$Q(X) = \sum_{\{u,v\}\in E(G)} x_u x_v.$$

- Then Q(X) = 0 if an even number of edges have both their endpoints assigned to 1, and Q(X) = 1, otherwise.
- Computing the number of solutions to Q(X) = 0 can be done in polynomial time.

• Creignou and Hermann (1996) proved a dichotomy theorem for the case of \mathcal{F} being a finite set of $\{0,1\}$ -valued functions.

- Creignou and Hermann (1996) proved a dichotomy theorem for the case of \mathcal{F} being a finite set of $\{0,1\}$ -valued functions.
- Dyer, Goldberg and Jerrum (2009) a similar dichotomy when \mathcal{F} is a finite set of non-negative real-valued functions.

- Creignou and Hermann (1996) proved a dichotomy theorem for the case of \mathcal{F} being a finite set of $\{0,1\}$ -valued functions.
- Dyer, Goldberg and Jerrum (2009) a similar dichotomy when \mathcal{F} is a finite set of non-negative real-valued functions.
- Bulatov, Dyer, Goldberg, Jalsenius and Richerby (2009) extended the Boolean #CSP dichotomy to arbitrary real weights.

- Creignou and Hermann (1996) proved a dichotomy theorem for the case of \mathcal{F} being a finite set of $\{0,1\}$ -valued functions.
- Dyer, Goldberg and Jerrum (2009) a similar dichotomy when \mathcal{F} is a finite set of non-negative real-valued functions.
- Bulatov, Dyer, Goldberg, Jalsenius and Richerby (2009) extended the Boolean #CSP dichotomy to arbitrary real weights.
- Cai, Lu and Xia (2014) proved the dichotomy theorem for complex-valued functions.

Theorem (Schaefer 1978)

Theorem (Schaefer 1978)

Let Γ be a finite set of relations on the domain $\{0,1\}$. The problem $CSP(\Gamma)$ is in P if every relation in Γ satisfies one of the conditions below.

It is 0-valid (it is satisfied when all variables are 0).

Theorem (Schaefer 1978)

Let Γ be a finite set of relations on the domain $\{0,1\}$. The problem $CSP(\Gamma)$ is in P if every relation in Γ satisfies one of the conditions below.

It is 0-valid (it is satisfied when all variables are 0).

It is 1-valid (it is satisfied when all variables are 1).

Theorem (Schaefer 1978)

- It is 0-valid (it is satisfied when all variables are 0).
- It is 1-valid (it is satisfied when all variables are 1).
- It is Horn (it is equivalent to a conjunction of clauses that contain at most one positive literal).

Theorem (Schaefer 1978)

- It is 0-valid (it is satisfied when all variables are 0).
- It is 1-valid (it is satisfied when all variables are 1).
- It is Horn (it is equivalent to a conjunction of clauses that contain at most one positive literal).
- It is dual Horn.

Theorem (Schaefer 1978)

- It is 0-valid (it is satisfied when all variables are 0).
- It is 1-valid (it is satisfied when all variables are 1).
- It is Horn (it is equivalent to a conjunction of clauses that contain at most one positive literal).
- It is dual Horn.
- It is bijunctive (it is equivalent to a conjunction of clauses with at most two literals).

Theorem (Schaefer 1978)

- It is 0-valid (it is satisfied when all variables are 0).
- It is 1-valid (it is satisfied when all variables are 1).
- It is Horn (it is equivalent to a conjunction of clauses that contain at most one positive literal).
- It is dual Horn.
- It is bijunctive (it is equivalent to a conjunction of clauses with at most two literals).
- It is affine (it is the solution set to a system of linear equations over F₂, i.e. the two-element field).

Theorem (Schaefer 1978)

Let Γ be a finite set of relations on the domain $\{0,1\}$. The problem $CSP(\Gamma)$ is in P if every relation in Γ satisfies one of the conditions below.

- It is 0-valid (it is satisfied when all variables are 0).
- It is 1-valid (it is satisfied when all variables are 1).
- It is Horn (it is equivalent to a conjunction of clauses that contain at most one positive literal).
- It is dual Horn.
- It is bijunctive (it is equivalent to a conjunction of clauses with at most two literals).
- It is affine (it is the solution set to a system of linear equations over F₂, i.e. the two-element field).

Otherwise, $CSP(\Gamma)$ is NP-complete.

• MONSAT: Every instance is satisfied when all variables are 1.

- MONSAT: Every instance is satisfied when all variables are 1.
- 2SAT: An instance can be transformed into a directed graph. The satisfiability of the input formula is equivalent to an easy-to-check condition in this graph.

- MONSAT: Every instance is satisfied when all variables are 1.
- 2SAT: An instance can be transformed into a directed graph. The satisfiability of the input formula is equivalent to an easy-to-check condition in this graph.
- HORNSAT: There is a polynomial-time algorithm that starts with all variables set to 0 and builds the minimum model of the input Horn formula step by step.

- MONSAT: Every instance is satisfied when all variables are 1.
- 2SAT: An instance can be transformed into a directed graph. The satisfiability of the input formula is equivalent to an easy-to-check condition in this graph.
- HORNSAT: There is a polynomial-time algorithm that starts with all variables set to 0 and builds the minimum model of the input Horn formula step by step.
- XORSAT: The satisfiability of an input formula can be formulated as a system of linear equations over \mathbb{Z}_2 . For example, $\phi = (x_1 \oplus x_3) \land (\neg x_1 \oplus x_2) \land (x_1 \oplus x_2 \oplus \neg x_3)$ corresponds to

- MONSAT: Every instance is satisfied when all variables are 1.
- 2SAT: An instance can be transformed into a directed graph. The satisfiability of the input formula is equivalent to an easy-to-check condition in the graph.
- HORNSAT: There is a polynomial-time algorithm that starts with all variables set to 0 and builds the minimum model of the input Horn formula step by step.
- XORSAT: The satisfiability of an input formula can be formulated as a system of linear equations over Z₂. For example, φ = (x₁ ⊕ x₃) ∧ (¬x₁ ⊕ x₂) ∧ (x₁ ⊕ x₂ ⊕ ¬x₃) corresponds to

Hard cases

- 3-SAT: Every constraint corresponds to a clause with exactly three variables, where at least one literal is true. For example, constraint C = {0,1}³ \ (1,0,0) corresponds to ¬x₁ ∨ x₂ ∨ x₃.
- 3-NAE-SAT: Every constraint corresponds to a clause with exactly three variables, where at least one literal is true and not all literals are the same. For example, constraint $C = \{0,1\}^3 \setminus \{(1,0,0), (0,1,1)\}$ corresponds to $\neg x_1 \lor x_2 \lor x_3$.
- 3-EXACTLY-ONE: Every constraint corresponds to a clause with exactly three variables, where exactly one literal is true. For example, constraint C = {(0,0,0), (1,1,0), (1,0,1)} corresponds to ¬x₁ ∨ x₂ ∨ x₃.

Counting CSPs: $\{0,1\}$ -valued functions over the Boolean domain

Theorem (Creignou & Hermann 1996)

Let Γ be a finite set of relations on the domain $\{0,1\}$. The problem $\#CSP(\Gamma)$ is in FP if Γ is affine. Otherwise, $\#CSP(\Gamma)$ is #P-complete.

- Equivalently, this is a dichotomy result for $\#CSP(\mathcal{F})$, where \mathcal{F} consists of $\{0,1\}$ -valued functions on Boolean variables.
- Instead of a relation, we consider its characteristic function.
- A function f is affine if its support is an affine relation, where

$$supp(f) = \{(x_1, ..., x_k) \mid f(x_1, ..., x_k) \neq 0\}.$$

- Every relation in Γ must be affine.
- A relation R is affine if the set of tuples x ∈ R is the set of solutions to a system of linear equations over F₂.
- These equations are of the form $x_1 \oplus ... \oplus x_n = 0$ and $x_1 \oplus ... \oplus x_n = 1$.

- Every relation in Γ must be affine.
- A relation R is affine if the set of tuples x ∈ R is the set of solutions to a system of linear equations over F₂.
- These equations are of the form $x_1 \oplus ... \oplus x_n = 0$ and $x_1 \oplus ... \oplus x_n = 1$.
- A relation is affine iff $a, b, c \in R$ implies $d = a \oplus b \oplus c \in R$.
- There is an algorithm for determining whether a finite set of relations is affine, so for determining whether #CSP(Γ) is in FP or #P-complete.

An example of a #P-complete problem

 The relation IMP = {(0,0), (0,1), (1,1)} is bijunctive, 0-valid, 1-valid, Horn, dual Horn, but not affine. So, #CSP({IMP}) is #P-complete.

An example of a #P-complete problem

- The relation IMP = {(0,0), (0,1), (1,1)} is bijunctive, 0-valid, 1-valid, Horn, dual Horn, but not affine. So, #CSP({IMP}) is #P-complete.
- #CSP({*IMP*}) is equivalent to #2HORNSAT. For example an instance of this problem is (¬x₁ ∨ x₂) ∧ (¬x₃ ∨ x₁) ∧ (¬x₂ ∨ x₄).

An example of a #P-complete problem

- The relation IMP = {(0,0), (0,1), (1,1)} is bijunctive, 0-valid, 1-valid, Horn, dual Horn, but not affine. So, #CSP({IMP}) is #P-complete.
- #CSP({*IMP*}) is equivalent to #2HORNSAT. For example an instance of this problem is (¬x₁ ∨ x₂) ∧ (¬x₃ ∨ x₁) ∧ (¬x₂ ∨ x₄).
- It can also be expressed as a counting homomorphism problem with $H \stackrel{\bigcirc}{\overset{\bigcirc}{_{0}}} \stackrel{\bigcirc}{_{----}} \stackrel{\bigcirc}{_{1}}$ and adjacancy matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

An example of a #P-complete problem

- The relation IMP = {(0,0), (0,1), (1,1)} is bijunctive, 0-valid, 1-valid, Horn, dual Horn, but not affine. So, #CSP({IMP}) is #P-complete.
- #CSP({*IMP*}) is equivalent to #2HORNSAT. For example an instance of this problem is (¬x₁ ∨ x₂) ∧ (¬x₃ ∨ x₁) ∧ (¬x₂ ∨ x₄).
- It can also be expressed as a counting homomorphism problem with $H \stackrel{\bigcirc}{\overset{\bigcirc}{_{0}}} \stackrel{\bigcirc}{\underset{_{1}}{_{1}}}$ and adjacancy matrix $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.
- Given an acyclic directed graph G, which defines a partial order, Hom(G, H) is equal to the number of downsets of the partial order (i.e. downward closed sets w.r.t. the partial order) (Exercise).

Generalization to non-negative real weights

Definition 1

A function has product type if it can be expressed as a product of unary functions, binary *Equality* functions $(=_2)$, and binary *Disequality* functions (\neq_2) , on not necessarily disjoint subsets of variables. We denote by \mathcal{P} the set of all functions of product type.

Definition 2

A function is pure affine if its support is an affine relation and its range is a subset of $\{0, b\}$ for some $b \in \mathbb{R}_{\geq 0}$. We denote by \mathcal{A} the set of all pure affine functions. Counting CSPs: non-negative real-valued functions over the Boolean domain

Theorem (Dyer, Goldberg & Jerrum 2009)

For every finite \mathcal{F} consisting of non-negative-valued functions, $\#CSP(\mathcal{F})$ is in FP if one of the following conditions holds.

- Every function in \mathcal{F} is of product type.
- **2** Every function in \mathcal{F} is a pure affine function.

Otherwise, $\#CSP(\mathcal{F})$ is #P-hard.

• Bulatov (2008) gave a dichotomy for exact counting in the whole of unweighted #CSP.

(general domain, $\{0,1\}$ -valued)

- Bulatov (2008) gave a dichotomy for exact counting in the whole of unweighted #CSP.
 (general domain, {0,1}-valued)
- Dyer and Richerby (2011) have given an easier proof of this theorem. They established a new criterion for the #CSP dichotomy and proved that this property is decidable.

(general domain, $\{0,1\}$ -valued and decidable)

- Bulatov (2008) gave a dichotomy for exact counting in the whole of unweighted #CSP.
 (general domain, {0,1}-valued)
- Dyer and Richerby (2011) have given an easier proof of this theorem. They established a new criterion for the #CSP dichotomy and proved that this property is decidable. (general domain, {0,1}-valued and decidable)
- Cai, Chen and Lu (2011) gave an effective complexity dichotomy for non-negative real-valued functions.

(general domain, non-negative-valued)

- Bulatov (2008) gave a dichotomy for exact counting in the whole of unweighted #CSP.
 (general domain, {0,1}-valued)
- Dyer and Richerby (2011) have given an easier proof of this theorem. They established a new criterion for the #CSP dichotomy and proved that this property is decidable. (general domain, {0,1}-valued and decidable)
- Cai, Chen and Lu (2011) gave an effective complexity dichotomy for non-negative real-valued functions.

(general domain, non-negative-valued)

 Cai and Chen (2011) gave a dichotomy result for complex-valued functions. Decidability is an open question.
 (general domain, complex-valued, not known to be decidable)

Gödel prize 2021

- Bulatov (2008) gave a dichotomy for exact counting in the whole of unweighted #CSP.
- Dyer and Richerby (2011) have given an easier proof of this theorem. They established a new criterion for the #CSP dichotomy and proved that this property is decidable.
- Cai, Chen and Lu (2011) gave a dichotomy result for non-negative real-valued functions.
- Cai and Chen (2011) gave a dichotomy result for complex-valued functions. Decidability is an open question.

Dichotomy theorems for Holant Problems

- Cai, Lu, Xia (2009): Symmetric complex-valued Holant^{*} on Boolean domain. (Holant^{*}(F) = Holant(F ∪ U))
- Huang and Lu (2012): Symmetric real-valued Holant on Boolean domain.
- Cai, Guo and Williams (2013): Symmetric complex-valued Holant on Boolean domain.
- Backens (2017): Complex-valued Holant^c on Boolean domain. (Holant^c(\mathcal{F}) = Holant($\mathcal{F} \cup {\Delta_0, \Delta_1}$))
- Lin and Wang (2017): Non-negative-valued Holant on Boolean domain.

Dichotomy theorems for Holant Problems

- Cai, Lu, Xia (2009): Symmetric complex-valued Holant^{*} on Boolean domain. (Holant^{*}(F) = Holant(F ∪ U))
- Huang and Lu (2012): Symmetric real-valued Holant on Boolean domain.
- Cai, Guo and Williams (2013): Symmetric complex-valued Holant on Boolean domain.
- Backens (2017): Complex-valued Holant^c on Boolean domain. (Holant^c(\mathcal{F}) = Holant($\mathcal{F} \cup {\Delta_0, \Delta_1}$))
- Lin and Wang (2017): Non-negative-valued Holant on Boolean domain.
- Cai, Luo, Xia (2013): Holant* with domain of size 3 and a single complex-valued ternary symmetric constraint.
- Cai, Guo, Williams (2014): EDGE k-COLORINGS is #P-hard over planar r-regular graphs for k ≥ r ≥ 3 (r ≤ 5). It is polynomial-time computable for all other values of k and r.

Overview

Introduction to Counting Complexity

- The class #P
- Three classes of counting problems
- Holographic transformations

2 Matchgates and Holographic Algorithms

- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
- 3 Polynomial Interpolation
- Dichotomy Theorems for counting problems
- Approximation of counting problems
 Sampling and counting

Overview

Introduction to Counting Complexity

- The class #P
- Three classes of counting problems
- Holographic transformations

2 Matchgates and Holographic Algorithms

- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
- 3 Polynomial Interpolation
- Dichotomy Theorems for counting problems
- Approximation of counting problems
 Sampling and counting

Exact counting

Exact counting is rare:

- #2-Colorings.
- #Perfect Matchings in planar graphs.
- #Spanning trees in general graphs.

Approximate counting

Definition

A fully polynomial randomized approximation scheme (fpras) for a counting problem $f: \Sigma^* \to \mathbb{N}$ is a randomized algorithm that takes as input an instance $x \in \Sigma^*$, an error tolerance $0 < \varepsilon < 1$, and $0 < \delta < 1$, and outputs a number $\widehat{f(x)} \in \mathbb{N}$ such that

$$\Pr[(1-\varepsilon)f(x) \le \widehat{f(x)} \le (1+\varepsilon)f(x)] \ge 1-\delta.$$

The algorithm must run in time polynomial in |x|, $1/\varepsilon$ and $\log(1/\delta)$.

Alternatively we could define the fpras so that on input (x, ε) outputs f(x) satisfying

$$\Pr[(1-\varepsilon)f(x) \le \widehat{f(x)} \le (1+\varepsilon)f(x)] \ge \frac{3}{4}$$
 or
 $\Pr[e^{-\varepsilon}f(x) \le \widehat{f(x)} \le e^{\varepsilon}f(x)] \ge \frac{3}{4}$

The probability $\frac{3}{4}$ can be boosted to $1 - \delta$ for any desired $\delta > 0$ using $\mathcal{O}(\log \delta^{-1})$ repeated trials.

Chernoff bound

Let $X_1, ..., X_m$ be independent, identically distibuted $\{0, 1\}$ random variables, where $p = \mathbb{E}[X_i]$. For all $\varepsilon \leq 3/2$,

$$\Pr[|\sum_{i=1}^{n} X_i - pn| > \varepsilon pn] \le 2 \exp(-\varepsilon^2 pn/3).$$

• Let an fpras for f(x) such that

$$\Pr[(1-\varepsilon)f(x) \le \widehat{f(x)} \le (1+\varepsilon)f(x)] = \frac{3}{4}.$$

Chernoff bound

Let $X_1, ..., X_m$ be independent, identically distibuted $\{0, 1\}$ random variables, where $p = \mathbb{E}[X_i]$. For all $\varepsilon \leq 3/2$,

$$\Pr[|\sum_{i=1}^{n} X_i - pn| > \varepsilon pn] \le 2 \exp(-\varepsilon^2 pn/3).$$

• Let an fpras for f(x) such that

$$\Pr[(1-\varepsilon)f(x) \le \widehat{f(x)} \le (1+\varepsilon)f(x)] = \frac{3}{4}.$$

• Then run this algorithm for $k = 36 \log(2/\delta)$ times, obtaining outputs $y_1, ..., y_k$. Output the median of these outputs, let's say y_m .

Chernoff bound

Let $X_1, ..., X_m$ be independent, identically distibuted $\{0, 1\}$ random variables, where $p = \mathbb{E}[X_i]$. For all $\varepsilon \leq 3/2$,

$$\Pr[|\sum_{i=1}^{n} X_i - pn| > \varepsilon pn] \le 2 \exp(-\varepsilon^2 pn/3).$$

• Let an fpras for f(x) such that

$$\Pr[(1-\varepsilon)f(x) \le \widehat{f(x)} \le (1+\varepsilon)f(x)] = \frac{3}{4}.$$

Chernoff bound

Let $X_1, ..., X_m$ be independent, identically distibuted $\{0, 1\}$ random variables, where $p = \mathbb{E}[X_i]$. For all $\varepsilon \leq 3/2$,

$$\Pr[|\sum_{i=1}^{n} X_i - pn| > \varepsilon pn] \le 2 \exp(-\varepsilon^2 pn/3).$$

• Let an fpras for f(x) such that

$$\Pr[(1-\varepsilon)f(x) \le \widehat{f(x)} \le (1+\varepsilon)f(x)] = \frac{3}{4}.$$

Then run this algorithm for k = 36 log(2/δ) times, obtaining outputs y₁,..., y_k. Output the median of these outputs, let's say y_m.
Let X_i = {1, if y_i ∈ (1 ± ε)f(x) 0, otherwise
E[X_i] = ³/₄ and E[∑X_i] = ³/₄k.

Chernoff

Let $X_1, ..., X_m$ be independent, identically distibuted $\{0, 1\}$ random variables, where $p = \mathbb{E}[X_i]$. For all $\varepsilon \leq 3/2$,

$$\Pr[|\sum_{i=1}^{n} X_i - pn| > \varepsilon pn] \le 2 \exp(-\varepsilon^2 pn/3).$$

$$\Pr[y_m \notin (1 \pm \varepsilon)f(x)] \le \Pr[\sum_{i=1}^k X_i < \frac{k}{2}]$$

$$\le \Pr[|\sum X_i - \mathbb{E}[\sum X_i]| > \frac{k}{4}]$$

$$\le \Pr[|\sum X_i - \frac{3}{4}k| > \frac{1}{3} \cdot \frac{3}{4} \cdot k]$$

$$\le 2\exp\left(-\frac{\left(\frac{1}{3}\right)^2 \frac{3}{4}k}{3}\right) = 2\exp(-k/36) = \delta.$$

Uniform sampling

- A sampling problem is specified by a relation R ⊆ Σ* × Σ* between problem instances and solutions, i.e. (x, w) ∈ R iff w is a solution for the problem instance x.
- We denote the solution set $\{w \mid (x, w) \in R\}$ by R(x).
- A uniform sampler for a solution set R ∈ Σ* × Σ* is a randomized algorithm that takes as input an instance x ∈ Σ* and outputs a solution W ∈ R(x) uniformly at random.

Total variation distance

To define *approximate sampling* we first need to define the following notion of distance between two probability distributions.

Definition

For two probability distributions μ and ν on a countable set Ω , define the total variation distance between π and π' to be

$$||\mu - \nu||_{TV} = \frac{1}{2} \sum_{\omega \in \Omega} |\mu(\omega) - \nu(\omega)|.$$

Claim

For two probability distributions μ and ν ,

$$||\mu - \nu||_{TV} = \max_{A \subseteq \Omega} |\mu(A) - \nu(A)|.$$

For two probability distributions μ and ν ,

$$||\mu - \nu||_{TV} = \max_{A \subseteq \Omega} |\mu(A) - \nu(A)|.$$

Proof.

Let $A = \{x \mid \mu(x) \ge \nu(x)\}$. Since μ , ν are probability distributions

$$\sum_{x \in A} \mu(x) - \nu(x) = \sum_{x \notin A} \nu(x) - \mu(x) =$$
$$\frac{1}{2} ||\mu - \nu||_1 = ||\mu - \nu||_{TV}.$$
For any set $B \neq A$,

$$\sum_{x\in B}\mu(x)-\nu(x)\leq \sum_{x\in A}\mu(x)-\nu(x).$$

