
Theorem (Hell & Nešeťril 1990)

Let H be a fixed graph. The H-Coloring problem in in P, if H either
has a loop (self-loop) or is bipartite.
Otherwise, H-Coloring is NP-complete.

Easy cases:
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The problem of counting graph homomorphisms

Theorem (Dyer & Greenhill 2000)

Let H be a fixed graph. The #H-Colorings problem is in FP, if every
connected component of H is

1 either a complete graph with all loops present

2 or a complete bipartite graph with no loops present.

Otherwise, #H-Colorings is #P-complete.

Easy cases:
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Suppose that H is a complete graph with all loops present, or a complete
bipartite graph with no loops. Then, #H-Colorings can be solved in
polynomial time.

Proof.

1 If H is an isolated vertex without a loop, then ZH(G ) = 0, unless G is
a collection of isolated vertices, in which case ZH(G ) = 1.

2 If H is the complete graph on k vertices with all loops present, then if
G has n vertices, it holds that ZH(G ) = kn.

3 Suppose H is the complete bipartite graph with vertex bipartition
C1 ∪ C2, |Ci | = ki , i = 1, 2, and with no loops.

▶ If G is not bipartite, then ZH(G ) = 0.
▶ If G is bipartite with vertex bipartition V1 ∪V2, |Vi | = ni , i = 1, 2, then

ZH(G ) = kn1
1 · k

n2
2 + kn2

1 · k
n1
2 .

□
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Generalization to non-negative weights

Theorem (Bulatov & Grohe 2005)

Let H be a fixed weighted graph and A the corresponding adjacency
matrix with non-negative real entries. On input G , computing ZA(G ) is in
FP if every connected component of H is

1 either not bipartite and the rank of A is at most 1

2 or bipartite and A is in block form

[
0 B
B⊤ 0

]
, where B is of rank at

most 1.

Otherwise, computing ZA(G ) is #P-hard.
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Examples of #P-hard counting problems

HIsing

0 1
1

λλ

Adjacency matrix

A =

[
λ 1
1 λ

]

HBIS

1

2

3

4

Adjacency matrix

A =


0 0 1 1
0 0 1 0
1 1 0 0
1 0 0 0
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What about real weights?

0 1
1

-11 Adjacency matrix

A =

[
1 1
1 −1

]

Every assignment σ from V (G ) to V (H) corresponds to the subgraph
induced by the nodes of G assigned to node 1 of H.

Let an assignment σ. Then σ contributes either a +1 to the sum
ZA(G ) if an even number of edges have both their endpoints assigned
to node 1 of H, or a -1, otherwise.

X = 2n+ZA(G)
2 is the number of induced subgraphs of G with even

number of edges.
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What about real weights?

0 1
1

-11 Adjacency matrix

A =

[
1 1
1 −1

]

A has rank 2, but the problem is in FP.

Consider the quadratic form over F2 defined by

Q(X ) =
∑

{u,v}∈E(G)

xuxv .

Then Q(X ) = 0 if an even number of edges have both their endpoints
assigned to 1, and Q(X ) = 1, otherwise.

Computing the number of solutions to Q(X ) = 0 can be done in
polynomial time.
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Dichotomy theorems for #CSP(F): the Boolean case

Creignou and Hermann (1996) proved a dichotomy theorem for the
case of F being a finite set of {0, 1}-valued functions.

Dyer, Goldberg and Jerrum (2009) a similar dichotomy when F is a
finite set of non-negative real-valued functions.

Bulatov, Dyer, Goldberg, Jalsenius and Richerby (2009) extended the
Boolean #CSP dichotomy to arbitrary real weights.

Cai, Lu and Xia (2014) proved the dichotomy theorem for
complex-valued functions.
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The dichotomy theorem for Boolean CSPs

Theorem (Schaefer 1978)

Let Γ be a finite set of relations on the domain {0, 1}. The problem
CSP(Γ) is in P if every relation in Γ satisfies one of the conditions below.

1 It is 0-valid (it is satisfied when all variables are 0).

2 It is 1-valid (it is satisfied when all variables are 1).

3 It is Horn (it is equivalent to a conjunction of clauses that contain at
most one positive literal).

4 It is dual Horn.

5 It is bijunctive (it is equivalent to a conjunction of clauses with at
most two literals).

6 It is affine (it is the solution set to a system of linear equations over
F2, i.e. the two-element field).

Otherwise, CSP(Γ) is NP-complete.
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Easy cases

MonSat: Every instance is satisfied when all variables are 1.

2Sat: An instance can be transformed into a directed graph. The
satisfiability of the input formula is equivalent to an easy-to-check
condition in this graph.

HornSat: There is a polynomial-time algorithm that starts with all
variables set to 0 and builds the minimum model of the input Horn
formula step by step.

XORSat: The satisfiability of an input formula can be formulated as
a system of linear equations over Z2. For example,
ϕ = (x1 ⊕ x3) ∧ (¬x1 ⊕ x2) ∧ (x1 ⊕ x2 ⊕ ¬x3) corresponds to

x1 + x3 = 1

1 + x1 +x2 = 1

x1 +x2 + 1 + x3 = 1
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Hard cases

3-Sat: Every constraint corresponds to a clause with exactly three
variables, where at least one literal is true. For example, constraint
C = {0, 1}3 \ (1, 0, 0) corresponds to ¬x1 ∨ x2 ∨ x3.

3-NAE-Sat: Every constraint corresponds to a clause with exactly
three variables, where at least one literal is true and not all literals are
the same. For example, constraint C = {0, 1}3 \ {(1, 0, 0), (0, 1, 1)}
corresponds to ¬x1 ∨ x2 ∨ x3.

3-Exactly-One: Every constraint corresponds to a clause with
exactly three variables, where exactly one literal is true. For example,
constraint C = {(0, 0, 0), (1, 1, 0), (1, 0, 1)} corresponds to
¬x1 ∨ x2 ∨ x3.
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Counting CSPs: {0, 1}-valued functions over the Boolean
domain

Theorem (Creignou & Hermann 1996)

Let Γ be a finite set of relations on the domain {0, 1}. The problem
#CSP(Γ) is in FP if Γ is affine. Otherwise, #CSP(Γ) is #P-complete.

Equivalently, this is a dichotomy result for #CSP(F), where F
consists of {0, 1}-valued functions on Boolean variables.

Instead of a relation, we consider its characteristic function.

A function f is affine if its support is an affine relation, where

supp(f ) = {(x1, ..., xk) | f (x1, ..., xk) ̸= 0}.
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Easy cases

Every relation in Γ must be affine.

A relation R is affine if the set of tuples x ∈ R is the set of solutions
to a system of linear equations over F2.

These equations are of the form x1⊕ ...⊕ xn = 0 and x1⊕ ...⊕ xn = 1.

A relation is affine iff a, b, c ∈ R implies d = a⊕ b ⊕ c ∈ R.

There is an algorithm for determining whether a finite set of relations
is affine, so for determining whether #CSP(Γ) is in FP or
#P-complete.
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An example of a #P-complete problem

The relation IMP = {(0, 0), (0, 1), (1, 1)} is bijunctive, 0-valid,
1-valid, Horn, dual Horn, but not affine. So, #CSP({IMP}) is
#P-complete.

#CSP({IMP}) is equivalent to #2HornSat. For example an
instance of this problem is (¬x1 ∨ x2) ∧ (¬x3 ∨ x1) ∧ (¬x2 ∨ x4).

It can also be expressed as a counting homomorphism problem with

H 0 1 and adjacancy matrix A =

[
1 1
0 1

]
.

Given an acyclic directed graph G , which defines a partial order,
Hom(G ,H) is equal to the number of downsets of the partial order
(i.e. downward closed sets w.r.t. the partial order) (Exercise).
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Generalization to non-negative real weights

Definition 1

A function has product type if it can be expressed as a product of unary
functions, binary Equality functions (=2), and binary Disequality functions
( ̸=2), on not necessarily disjoint subsets of variables.
We denote by P the set of all functions of product type.

Definition 2

A function is pure affine if its support is an affine relation and its range is
a subset of {0, b} for some b ∈ R≥0.
We denote by A the set of all pure affine functions.
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Counting CSPs: non-negative real-valued functions over
the Boolean domain

Theorem (Dyer, Goldberg & Jerrum 2009)

For every finite F consisting of non-negative-valued functions, #CSP(F)
is in FP if one of the following conditions holds.

1 Every function in F is of product type.

2 Every function in F is a pure affine function.

Otherwise, #CSP(F) is #P-hard.
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Dichotomy theorems for #CSP(F): the case of arbitrary
finite domain

Bulatov (2008) gave a dichotomy for exact counting in the whole of
unweighted #CSP.
(general domain, {0, 1}-valued)

Dyer and Richerby (2011) have given an easier proof of this theorem.
They established a new criterion for the #CSP dichotomy and proved
that this property is decidable.
(general domain, {0, 1}-valued and decidable)

Cai, Chen and Lu (2011) gave an effective complexity dichotomy for
non-negative real-valued functions.
(general domain, non-negative-valued)

Cai and Chen (2011) gave a dichotomy result for complex-valued
functions. Decidability is an open question.
(general domain, complex-valued, not known to be decidable)
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Gödel prize 2021

Bulatov (2008) gave a dichotomy for exact counting in the
whole of unweighted #CSP.

Dyer and Richerby (2011) have given an easier proof of this
theorem. They established a new criterion for the #CSP
dichotomy and proved that this property is decidable.

Cai, Chen and Lu (2011) gave a dichotomy result for non-negative
real-valued functions.

Cai and Chen (2011) gave a dichotomy result for
complex-valued functions. Decidability is an open question.
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Dichotomy theorems for Holant Problems
Cai, Lu, Xia (2009): Symmetric complex-valued Holant∗ on Boolean
domain. (Holant∗(F) = Holant(F ∪ U))
Huang and Lu (2012): Symmetric real-valued Holant on Boolean
domain.

Cai, Guo and Williams (2013): Symmetric complex-valued Holant on
Boolean domain.

Backens (2017): Complex-valued Holantc on Boolean domain.
(Holantc(F) = Holant(F ∪ {∆0,∆1}))
Lin and Wang (2017): Non-negative-valued Holant on Boolean
domain.

Cai, Luo, Xia (2013): Holant∗ with domain of size 3 and a single
complex-valued ternary symmetric constraint.

Cai, Guo, Williams (2014): Edge k-Colorings is #P-hard over
planar r -regular graphs for k ≥ r ≥ 3 (r ≤ 5). It is polynomial-time
computable for all other values of k and r .
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Exact counting

Exact counting is rare:

#2-Colorings.

#Perfect Matchings in planar graphs.

#Spanning trees in general graphs.

Counting Complexity 168 / 201



Approximate counting

Definition

A fully polynomial randomized approximation scheme (fpras) for a
counting problem f : Σ∗ → N is a randomized algorithm that takes as
input an instance x ∈ Σ∗, an error tolerance 0 < ε < 1, and 0 < δ < 1,

and outputs a number f̂ (x) ∈ N such that

Pr[(1− ε)f (x) ≤ f̂ (x) ≤ (1 + ε)f (x)] ≥ 1− δ.

The algorithm must run in time polynomial in |x |, 1/ε and log(1/δ).
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Alternatively we could define the fpras so that on input (x , ε) outputs f̂ (x)
satisfying

Pr[(1− ε)f (x) ≤ f̂ (x) ≤ (1 + ε)f (x)] ≥ 3

4
or

Pr[e−εf (x) ≤ f̂ (x) ≤ eεf (x)] ≥ 3

4

The probability 3
4 can be boosted to 1− δ for any desired δ > 0 using

O(log δ−1) repeated trials.
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Boost the success probability to 1− δ

Chernoff bound
Let X1, ...,Xm be independent, identically distibuted {0, 1} random variables, where
p = E[Xi ]. For all ε ≤ 3/2,

Pr[|
n∑

i=1

Xi − pn| > εpn] ≤ 2 exp(−ε2pn/3).

Let an fpras for f (x) such that

Pr[(1− ε)f (x) ≤ f̂ (x) ≤ (1 + ε)f (x)] =
3

4
.

Then run this algorithm for k = 36 log(2/δ) times, obtaining outputs
y1, ..., yk . Output the median of these outputs, let’s say ym.

Let Xi =

{
1, if yi ∈ (1± ε)f (x)

0, otherwise
.

E[Xi ] =
3
4 and E[

∑
Xi ] =

3

4
k .

Counting Complexity 171 / 201



Boost the success probability to 1− δ

Chernoff bound
Let X1, ...,Xm be independent, identically distibuted {0, 1} random variables, where
p = E[Xi ]. For all ε ≤ 3/2,

Pr[|
n∑

i=1

Xi − pn| > εpn] ≤ 2 exp(−ε2pn/3).

Let an fpras for f (x) such that

Pr[(1− ε)f (x) ≤ f̂ (x) ≤ (1 + ε)f (x)] =
3

4
.

Then run this algorithm for k = 36 log(2/δ) times, obtaining outputs
y1, ..., yk . Output the median of these outputs, let’s say ym.

Let Xi =

{
1, if yi ∈ (1± ε)f (x)

0, otherwise
.

E[Xi ] =
3
4 and E[

∑
Xi ] =

3

4
k .

Counting Complexity 171 / 201



Boost the success probability to 1− δ

Chernoff bound
Let X1, ...,Xm be independent, identically distibuted {0, 1} random variables, where
p = E[Xi ]. For all ε ≤ 3/2,

Pr[|
n∑

i=1

Xi − pn| > εpn] ≤ 2 exp(−ε2pn/3).

Let an fpras for f (x) such that

Pr[(1− ε)f (x) ≤ f̂ (x) ≤ (1 + ε)f (x)] =
3

4
.

Then run this algorithm for k = 36 log(2/δ) times, obtaining outputs
y1, ..., yk . Output the median of these outputs, let’s say ym.

Let Xi =

{
1, if yi ∈ (1± ε)f (x)

0, otherwise
.

E[Xi ] =
3
4 and E[

∑
Xi ] =

3

4
k .

Counting Complexity 171 / 201



Boost the success probability to 1− δ

Chernoff bound
Let X1, ...,Xm be independent, identically distibuted {0, 1} random variables, where
p = E[Xi ]. For all ε ≤ 3/2,

Pr[|
n∑

i=1

Xi − pn| > εpn] ≤ 2 exp(−ε2pn/3).

Let an fpras for f (x) such that

Pr[(1− ε)f (x) ≤ f̂ (x) ≤ (1 + ε)f (x)] =
3

4
.

Then run this algorithm for k = 36 log(2/δ) times, obtaining outputs
y1, ..., yk . Output the median of these outputs, let’s say ym.

Let Xi =

{
1, if yi ∈ (1± ε)f (x)

0, otherwise
.

E[Xi ] =
3
4 and E[

∑
Xi ] =

3

4
k .

Counting Complexity 171 / 201



Boost the success probability to 1− δ

Chernoff
Let X1, ...,Xm be independent, identically distibuted {0, 1} random variables, where
p = E[Xi ]. For all ε ≤ 3/2,

Pr[|
n∑

i=1

Xi − pn| > εpn] ≤ 2 exp(−ε2pn/3).

Pr[ym ̸∈ (1± ε)f (x)] ≤ Pr[
k∑

i=1

Xi <
k

2
]

≤ Pr[|
∑

Xi − E[
∑

Xi ]| >
k

4
]

≤ Pr[|
∑

Xi −
3

4
k | > 1

3
· 3
4
· k]

≤ 2 exp
(
−

(
1
3

)2 3
4k

3

)
= 2 exp(−k/36) = δ.
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Uniform sampling

A sampling problem is specified by a relation R ⊆ Σ∗ × Σ∗ between
problem instances and solutions, i.e. (x ,w) ∈ R iff w is a solution for
the problem instance x .

We denote the solution set {w | (x ,w) ∈ R} by R(x).

A uniform sampler for a solution set R ∈ Σ∗ × Σ∗ is a randomized
algorithm that takes as input an instance x ∈ Σ∗ and outputs a
solution W ∈ R(x) uniformly at random.
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Total variation distance

To define approximate sampling we first need to define the following
notion of distance between two probability distributions.

Definition

For two probability distributions µ and ν on a countable set Ω, define the
total variation distance between π and π′ to be

||µ− ν||TV =
1

2

∑
ω∈Ω
|µ(ω)− ν(ω)|.

Claim

For two probability distributions µ and ν,

||µ− ν||TV = max
A⊆Ω
|µ(A)− ν(A)|.
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For two probability distributions µ and ν,

||µ− ν||TV = max
A⊆Ω
|µ(A)− ν(A)|.

Proof.

Let A = {x | µ(x) ≥ ν(x)}.
Since µ, ν are probability distributions∑
x∈A

µ(x)− ν(x) =
∑
x ̸∈A

ν(x)− µ(x) =

1

2
||µ− ν||1 = ||µ− ν||TV .

For any set B ̸= A,∑
x∈B

µ(x)− ν(x) ≤
∑
x∈A

µ(x)− ν(x).

□
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