
Exact counting

Exact counting is rare:

#2-Colorings.

#Perfect Matchings in planar graphs.

#Spanning trees in general graphs.
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Approximate counting

Definition

A fully polynomial randomized approximation scheme (fpras) for a
counting problem f : Σ∗ → N is a randomized algorithm that takes as
input an instance x ∈ Σ∗, an error tolerance 0 < ε < 1, and 0 < δ < 1,

and outputs a number f̂ (x) ∈ N such that

Pr[(1− ε)f (x) ≤ f̂ (x) ≤ (1 + ε)f (x)] ≥ 1− δ.

The algorithm must run in time polynomial in |x |, 1/ε and log(1/δ).
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For example, given ε = 0.1, we would have

0.9 ≤ f̂ (x)

f (x)
≤ 1.1

with high probability.

Given |x |, ε can be an inverse polynomial of |x |, and δ can be
inversely exponential in |x |.

Counting Complexity 170 / 215



Alternatively we could define the fpras so that on input (x , ε) outputs f̂ (x)
satisfying

Pr[(1− ε)f (x) ≤ f̂ (x) ≤ (1 + ε)f (x)] ≥ 3

4
or

Pr[e−εf (x) ≤ f̂ (x) ≤ eεf (x)] ≥ 3

4

The probability 3
4 can be boosted to 1− δ for any desired δ > 0 using

O(log δ−1) repeated trials.
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Boost the success probability to 1− δ

Chernoff bound
Let X1, ...,Xm be independent, identically distibuted {0, 1} random variables, where
p = E[Xi ]. For all ε ≤ 3/2,

Pr[|
n∑

i=1

Xi − pn| > εpn] ≤ 2 exp(−ε2pn/3).

Let an fpras for f (x) such that

Pr[(1− ε)f (x) ≤ f̂ (x) ≤ (1 + ε)f (x)] =
3

4
.

Then run this algorithm for k = 36 log(2/δ) times, obtaining outputs
y1, ..., yk . Output the median of these outputs, let’s say ym.

Let Xi =

{
1, if yi ∈ (1± ε)f (x)

0, otherwise
.

E[Xi ] =
3
4 and E[

∑
Xi ] =

3

4
k .
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Boost the success probability to 1− δ

Chernoff
Let X1, ...,Xm be independent, identically distibuted {0, 1} random variables, where
p = E[Xi ]. For all ε ≤ 3/2,

Pr[|
n∑

i=1

Xi − pn| > εpn] ≤ 2 exp(−ε2pn/3).

Pr[ym ̸∈ (1± ε)f (x)] ≤ Pr[
k∑

i=1

Xi <
k

2
]

≤ Pr[|
∑

Xi − E[
∑

Xi ]| >
k

4
]

≤ Pr[|
∑

Xi −
3

4
k | > 1

3
· 3
4
· k]

≤ 2 exp
(
−

(
1
3

)2 3
4k

3

)
= 2 exp(−k/36) = δ.
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Uniform sampling

A sampling problem is specified by a relation R ⊆ Σ∗ × Σ∗ between
problem instances and solutions, i.e. (x ,w) ∈ R iff w is a solution for
the problem instance x .

We denote the solution set {w | (x ,w) ∈ R} by R(x).

A uniform sampler for a solution set R ∈ Σ∗ × Σ∗ is a randomized
algorithm that takes as input an instance x ∈ Σ∗ and outputs a
solution W ∈ R(x) uniformly at random.
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Total variation distance

To define approximate sampling we first need to define the following
notion of distance between two probability distributions.

Definition

For two probability distributions µ and ν on a countable set Ω, define the
total variation distance between π and π′ to be

||µ− ν||TV =
1

2

∑
ω∈Ω
|µ(ω)− ν(ω)|.

Claim

For two probability distributions µ and ν,

||µ− ν||TV = max
A⊆Ω
|µ(A)− ν(A)|.
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For two probability distributions µ and ν,

||µ− ν||TV =
1

2

∑
x∈Ω
|µ(x)− ν(x)| = max

A⊆Ω
|µ(A)− ν(A)|.

Proof.

Let S = {x | µ(x) ≥ ν(x)}.
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Proof cont.

Since µ, ν are probability distributions
∑
x∈Ω

µ(x) =
∑
x∈Ω

ν(x) = 1. So,

∑
x∈S

µ(x)− ν(x) =
∑
x ̸∈S

ν(x)− µ(x) =

Also,
∑
x∈S

µ(x)− ν(x) +
∑
x ̸∈S

ν(x)− µ(x) =
∑
x∈Ω
|µ(x)− ν(x)|. So,

=
1

2

∑
x∈Ω
|µ(x)− ν(x)| = ||µ− ν||TV .

For any set S ′ ̸= S ,
∑
x∈S ′

µ(x)− ν(x) ≤
∑
x∈S

µ(x)− ν(x). So,

∑
x∈S

µ(x)− ν(x) = max
A⊆Ω
|µ(A)− ν(A)|.

□
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Almost uniform sampler

Let π denote the uniform distribution on a solution set R(x), that is for
any w ∈ R(x), π(x) = 1

|S(x)| .

Definition

A fully polynomial almost uniform sampler (fpaus) for a solution set
R ∈ Σ∗ × Σ∗ is a randomized algorithm that takes as input an instance
x ∈ Σ∗ and a sampling tolerance δ > 0 and outputs a solution W ∈ R(x)
sampled from a distribution π′, such that

||π − π′||TV ≤ δ.

The algorithm must run in time polynomial in |x | and log(1/δ).
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The Monte Carlo method (examples)

Example 1: An estimation of π

Choose u.a.r. a point (x , y) in the unit square
centered at (0,0) (choose x , y u.a.r. from the
continuous distribution on [−1, 1]).

Let Z =

{
1, if (x , y) ∈ unit circle

0, otherwise

Pr[Z = 1] = area of the circle
area of the square = π

4 , and so E[Z ] = Pr[Z = 1] = π
4 .

We run N times and let W =
∑N

i=1 Zi .

E[W ] =
∑N

i=1 E[Zi ] =
Nπ
4 and W ′ = 4

NW is our estimate of π.

By Chernoff bound Pr[|X − µ| ≥ δµ] ≤ 2e−µδ2/3, we have

Pr[|W − Nπ

4
| ≥ ε

Nπ

4
] ≤ 2e−Nπε2/12.
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Estimating π
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Example 2: An estimation of #DNF

Let S denote the set of satisfying assignments.

Choose N truth assignments A1, ...,AN u.a.r.

Let Yi =

{
1, if Ai is satisfying

0, otherwise
. Then, E[Yi ] =

|S |
2n .

Let Y =
∑N

i=1 Yi .

Then, E[Y ] = N · |S |2n , and Y ′ = 2n

N · Y is our estimate of |S |.
By Chernoff bound Pr[|X − µ| ≥ δµ] ≤ 2e−µδ2/3, we have

Pr[|Y − N
|S |
2n
| ≥ εN

|S |
2n

] ≤ 2e−Nε2|S|/(3·2n).

If we want probability ≤ 2e−1/3, then N ≈ 2n

ε2·|S| .
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Example 3: An estimation of the volume of a convex body

Given K , shrink a box C around K as
tightly as possible.

Sample points x1, ..., xN u.a.r. from C .

In a similar way, estimate the volume of K
based on the number of points that belong
to K (an oracle for the membership in K is
needed here).

Let K = Bn(0, 1) be the unit ball and C = [−1, 1]n be the smallest
enclosing cube.

volnK

volnC
=

2πn/2

2nnΓ(n/2)
, which decays rapidly in n.

In high dimensions, exponentially many points are required.
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Monte Carlo method

Theorem

Let X1, ...,Xm be independent and identically distributed indicator
variables and µ = E[Xi ]. Then if m ≥ 3 log(2/δ)

ε2µ
, we have

Pr
[
| 1
m

m∑
i=1

Xi − µ| ≥ εµ
]
≤ δ.

So for this m, sampling gives an (ε, δ)-approximation of µ.

Note that if 1
µ is polynomial in the input size, then this theorem gives an

fpras for µ.
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An fpras for #DNF

The following technique is due to Karp, Luby and Madras (1989).

Suppose we have m sets S1, ...,Sm and we want to estimate |
m⋃
i=1

Si |.

1 |
m⋃
i=1

Si | ≤
m∑
i=1

|Si |.

2

m∑
i=1

|Si | ≤ m · max
1≤i≤m

|Si | ≤ m · |
m⋃
i=1

Si |.

By 1 and 2, we have that

1

m
≤
|
⋃m

i=1 Si |∑m
i=1 |Si |

≤ 1.
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Create a new universe U with |U| =
m∑
i=1

|Si |.

▶ For each Si and each a ∈ Si , add (a, i) to U.

For every a ∈
m⋃
i=1

Si , mark (a, j) as special, where j is the minimum

index among all i ’s such that (a, i) ∈ U (or a ∈ Si ).
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Requirements for having an fpras for |
m⋃
i=1

Si |.

1 Sample an element efficiently from U.

2 Determine efficiently if any (a, i) ∈ U is marked.

3 Calculate efficiently |U|.

Then, the following steps describe the fpras for |
m⋃
i=1

Si |.

1 Sample elements e1, ..., eN from U.

2 Let Xi =

{
1, if ei is marked

0, otherwise
.

▶ Let X =
N∑
i=1

Xi . Then, E[X ] = N ·
|
⋃m

i=1 Si |
|U|

.

3 X ′ = |U|
N · X is our estimate of |

⋃m
i=1 Si |.

4 For an (ε, δ) approximation of µ, N ≥ 3m log(2/δ)
ε2

, since 1
µ ≤ m.
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Application to #DNF

Si is the set of satisfying assignments of the i-th clause. So, m is
polynomial in the input size (step 4).

|Si | = #(satisfying assignments of the i th clause), and |U| =
m∑
i=1

|Si |

(requirement 3).

Given an element (a, i) ∈ U, we can determine in polynomial time
whether the i-th clause is the first one satisfied by truth assignment a
(requirement 2).
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Application to #DNF

We can sample an (a, i) u.a.r. from U as follows (requirement 1).

1 Calculate |Si |, for every 1 ≤ i ≤ m.

2 Choose i with probability
|Si |∑m
i=1 |Si |

.

3 Choose a satisfying assignment a of the i-th clause u.a.r.
In other words, with probability 1

|Si | .

Then, (a, i) has been chosen with probability
1∑m

i=1 |Si |
=

1

|U|
. □

Counting Complexity 188 / 215



Counting versus Sampling

For any self-reducible problem,

counting and sampling are closely related as shown below.

if there exists a polynomial-time randomized algorithm for counting
within a polynomial factor, then there exists an fpras.
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Self-reducible problems

Example: Consider Sat and let ϕ be a CNF fomrula. Then,

S(ϕ) = S(ϕ ↾x1=0) ∪ S(ϕ ↾x1=1)

where ϕ ↾x1=0 (resp. ϕ ↾x1=1) is ϕ after setting the variable x1 to false
(resp. true).

Definition

An NP problem is self-reducible if the set of solutions can be partitioned
into polynomially many sets each of which is the set of solutions of a
smaller instance of the problem.
Also, these smaller instances are efficiently computable.
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Approximate sampler ⇒ Approximate counting

We prove that an fpaus implies an fpras in the context of a specific
combinatorial structure, namely matchings in a graph.

LetM(G ) denote the set of matchings of all sizes in a graph G .

Let G be a graph with n vertices and m edges, where m ≥ 1 (to avoid
trivialities).

Proposition

If there is an almost uniform sampler forM(G ) with run-time bounded by
T (n,m, ε), then there is a randomized approximation scheme for |M(G )|
with run-time bounded by cm2ε−2T (n,m, ε/6m) for some constant c .
In particular,

fpaus forM(G )⇒ fpras for |M(G )|.
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Proof.

Let S denote the almost uniform sampler.

Given G with E (G ) = {e1, ..., em}, we consider the graphs

Gi := (V (G ), {e1, ..., ei}), 0 ≤ i ≤ m.

In particular, G0 has no edge and Gm = G .

Then,

|M(G )| =
( |M(G0)|
|M(G1)|

· |M(G1)|
|M(G2)|

· · · |M(Gm−1)|
|M(Gm)|

)−1
.

where we consider |M(G0)| = 1.

Let ρi denote the i-th ratio
|M(Gi−1)|
|M(Gi )|

.
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Proof cont.

1 M(Gi ) contains all matchings inM(Gi−1).

2 Also, the size ofM(Gi ) is at most twice the size ofM(Gi−1).
▶ It holds |M(Gi )| = 2 · |M(Gi−1)| if every M ∈M(Gi ) can be extended

to an M ′ = M ∪ {ei} inM(Gi ).

By 1 and 2,
1

2
≤ |M(Gi−1)|
|M(Gi )|

≤ 1.
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Proof cont.

We want to have an ε-approximation of |M(G )| with prob. ≥ 3
4 .

The idea is to use the sampler S to approximate every ratio ρi .

We run our sampler S on Gi with δ = ε
6m and obtain a matching

Mi ∈M(Gi ) sampled from µ.

Let π denote the uniform distribution onM(Gi ).

Let Zi =

{
1, if Mi ∈M(Gi−1)

0, otherwise
, and set µi = E(Zi ) = Pr[Zi = 1].

How close is µi to
|M(Gi−1)|
|M(Gi )|

(or how close is µi to ρi )?
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Proof cont.

Let A = {M | M ∈M(Gi−1)}.
By definition of the TV distance ||µ− ν||TV = maxA⊆Ω |µ(A)− ν(A)|:

|µ(A)− π(A)| ≤ ε

6m
⇔ |

∑
M∈A

µ(M)−
∑
M∈A

π(M)| ≤ ε

6m
⇔

| Pr
M∼µ

[M ∈ A]− Pr
M∼π

[M ∈ A]| ≤ ε

6m
⇔ |µi − ρi | ≤

ε

6m
⇔

ρi −
ε

6m
≤ µi ≤ ρi +

ε

6m
⇔ 1

2
≤ ρi ≤ 1

ρi −
ε · 12
3m
≤ µi ≤ ρi +

ε · 12
3m
⇔(

1− ε

3m

)
ρi ≤ µi ≤

(
1− ε

3m

)
ρi

So, µi is an
ε
3m -approximation of ρi .
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Proof cont.

So we need a good estimate of µi .

µi ≥
(
1− ε

3m

)
ρi ≥

(
1− ε

3m

)
1
2≥

1
3 (using ε ≤ m) (which also implies

that 1
µi
≤ 3).

Var(Zi ) = E[(Zi − µi )
2] = Pr[Zi = 1](1− µi )

2 + Pr[Zi = 0]µ2
i =

µi (1− µi ).

Var(Zi )
µ2
i

= µi (1−µi )
µ2
i

=
µi−µ2

i

µ2
i

= 1
µi
− 1≤ 2.

If we take the outputs Z
(1)
i , ...,Z

(s)
i of s independent runs of S on Gi ,

and set Z i :=

∑s
j=1 Z

(j)
i

s
, then E[Z i ] = µi and

Var(Z i )

µ2
i

=
1
s2
∑s

j=1 Var(Z
(j)
i )

µ2
i

≤ 2

s
.
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Proof cont.

E[Z i ] = µi and
Var(Z i )

µ2
i
≤ 2

s .

Let s := ⌈74ε−2m⌉.

Then, Var(Z i )
µ2
i
≤ 2

s ≤
ε2

37m .

Our estimator for |M(G )| is the random variable

N :=
( m∏

i=1

Z i

)−1
.

E[Z 1 · · · Zm] = µ1 · · · µm.
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Proof cont.

Var(Z 1 · · · Zm)

(µ1 · · · µm)2
=

E[Z 2
1 · · · Z

2
m]

µ2
1 · · · µ2

m

− 1 since Var(X ) = E[X 2]− E[X ]2

=
m∏
i=1

E[Z 2
i ]

µ2
i

− 1 since Z i are independent

=
m∏
i=1

(
1 +

var(Z i )

µ2
i

)
− 1 since E[X 2] = Var(Z i ) + E[X ]2

≤
(
1 +

ε2

37m

)m
− 1 since

Var(Z i )

µ2
i

≤ ε2

37m

≤ exp(
ε2

37
)− 1 since (1 +

x

k
)k ≤ ex

≤ ε2

36
since ex/(k+1) ≤ 1 + x/k for 0 ≤ x ≤ 1
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Proof cont.

By Chebychev’s inequality Pr[|X − E(X )| ≤ a) ≥ 1− Var(X )
a2

, we have that

Pr[|Z 1 · · · Zm − µ1 · · · µm| ≤
ε

3
µ1 · · · µm] ≥ 1−

ε2

36(µ1 · · · µm)
2

ε2

9 (µ1 · · · µm)2
⇔

Pr[|Z 1 · · · Zm − µ1 · · · µm| ≤
ε

3
µ1 · · · µm] ≥

3

4
⇔(

1− ε

3

)
µ1 · · · µm ≤ Z 1 · · · Zm ≤

(
1 +

ε

3

)
µ1 · · · µm with prob. ≥ 3

4
⇔

e−ε/2µ1 · · · µm ≤ Z 1 · · · Zm ≤ eε/2µ1 · · · µm with prob. ≥ 3

4
(1)

using 1 + x ≤ ex and e−x/k ≤ 1− x/(k + 1) for 0 ≤ x ≤ 1.
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Proof cont.

By
(
1− ε

3m

)
ρi ≤ µi ≤

(
1− ε

3m

)
ρi and similar calculations, we obtain that

e−ε/2ρ1 · · · ρm ≤ µ1 · · · µm ≤ eε/2ρ1 · · · ρm (2)

By (1) and (2), we have that

e−ερ1 · · · ρm ≤ Z 1 · · · Zm ≤ eερ1 · · · ρm with prob. ≥ 3

4
⇔

e−ε(ρ1 · · · ρm)−1 ≤ (Z 1 · · · Zm)
−1 ≤ eε(ρ1 · · · ρm)−1 with prob. ≥ 3

4

e−ε|M(G )| ≤ output ≤ eε|M(G )| with prob. ≥ 3

4
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Proof cont.

The run-time of the algorithm is bounded by

(number of samples) · (time per sample) =

sm · T (n,m,
ε

6m
) ≤

75ε−2m2 · T (n,m,
ε

6m
)

□
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Overview

1 Introduction to Counting Complexity
The class #P
Three classes of counting problems
Holographic transformations

2 Matchgates and Holographic Algorithms
Kasteleyn’s algorithm
Matchgates
Holographic algorithms

3 Polynomial Interpolation

4 Dichotomy Theorems for counting problems

5 Approximation of counting problems
Sampling and counting
Markov chains

6 Appendix
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We deal with discrete-time Markov chains on a finite state space Ω.

A sequence {Xt ∈ Ω}∞t=0 of random variables is a Markov chain
(MC), with state space Ω, if

Pr[Xt+1 = y | Xt = xt , ...,X0 = x0] = Pr[Xt+1 = y | Xt = xt ]

for all t ∈ N and all x0, ..., xt ∈ Ω.

This is called the Markovian property.

Time-homogeneous MCs are the ones for which the probability
Pr[Xt+1 = y | Xt = x ] does not depend on t. In this case we write

P(x , y) = Pr[Xt+1 = y | Xt = x ]

where P is the transition matrix of the MC.
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Example 1

P =

a b c d


a 0 1/3 1/3 1/3
b 1/3 0 1/3 1/3
c 1/3 1/3 0 1/3
d 1/3 1/3 1/3 0

X0 = a,X1 = b,X2 = d ,X3 = b, ...
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Example 2

P =

a b( )
a 0 1
b 1/2 1/2

X0 = a,X1 = b,X2 = b,X3 = b,X4 = a,X5 = b, ...
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Transition matrix
Each row of the transition matrix P is a distribution.

P describes single-step transition probabilities.
The t-step transition probabilities are given inductively by

Pt(x , y) :=

{
I (x , y), if t = 0∑

y ′∈Ω Pt−1(x , y ′)P(y ′, y), if t > 0
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Example 3

Start distribution: σ0 = (1, 0, 0) (start in a)
After one step: σ1 = σ0P = (0, 0.4, 0.6)
After two steps: σ2 = σ1P = σ0P

2 = (0.34, 0.3, 0.36)
After t steps: σt = σt−1P = σ0P

t
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Stationary distribution
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Stationary distribution

A stationary distribution of an MC with transition matrix P is a
distribution π : Ω→ [0, 1] such that

π(y) =
∑
x∈Ω

π(x)P(x , y)

In other words, π · P = π.
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Definition of irreducibility

Definition

An MC is irreducible if for all x , y ∈ Ω, there exists a t > 0, such that
Pt(x , y) > 0 (there exists a path in the transition graph from every state
to every other state).
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Example 4

Not irreducible

Stationary distributions: π1 = (0, 1, 0, 0), π2 = (0, 0, 0, 1), π3 = (0, 0.5, 0, 0.5), ...
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Definition of aperiodicity

Definition

An MC is aperiodic if gcd{t | Pt(x , x) > 0} = 1 for all x ∈ Ω (for each
state x , the gcd of all walk lengths from x to x is 1).

In the case of an irreducible MC, it is sufficient to verify the condition
gcd{t | Pt(x , x) > 0} = 1 for just one state x ∈ Ω.
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Example 5
Not aperiodic

Lazy MC (a self-loop at every state)
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Overview

1 Introduction to Counting Complexity
The class #P
Three classes of counting problems
Holographic transformations

2 Matchgates and Holographic Algorithms
Kasteleyn’s algorithm
Matchgates
Holographic algorithms

3 Polynomial Interpolation

4 Dichotomy Theorems for counting problems

5 Approximation of counting problems
Sampling and counting
Markov chains

6 Appendix
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Useful elements of probability theory

E[X ] =
∑
i

xi · P(X = xi ).

Var(X ) = E[(X − E[X ])2] = E[X 2]− E[X ]2.

Chebychev’s Inequality: Pr[|X − E(X )| ≥ a] ≤ Var(X )
a2

.

▶ In particular, Pr[|X − E(X )| ≥ aE(X )] ≤ Var(X )
a2E(X )2 .

Chernoff bound: Pr[|X − µ| ≥ δµ] ≤ 2e−µδ2/3 for all 0 < δ < 1,

where X =
∑n

i=1 Xi , Xi =

{
1, with prob. pi

0, with prob. 1− pi
, all Xi are

independent and µ = E[X ] =
∑n

i=1 pi .
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Useful inequalities

1 1 + x ≤ ex .

2 (1 + x
k )

k ≤ ex .

3 ex/(k+1) ≤ 1 + x/k for 0 ≤ x ≤ 1 and k ∈ N+.

4 e−x/k ≤ 1− x/(k + 1) for 0 ≤ x ≤ 1 and k ∈ N+.

5 e−
x
k ≤

(
1− x

(k+1)n

)n
for 0 ≤ x ≤ 1 and k ∈ N+.
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