Exact counting

Exact counting is rare:
o #2-COLORINGS.

@ #PERFECT MATCHINGS in planar graphs.

@ #SPANNING TREES in general graphs.
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Approximate counting

Definition

A fully polynomial randomized approximation scheme (fpras) for a
counting problem f : ¥* — N is a randomized algorithm that takes as
input an instance x € £*, an error tolerance 0 < e < 1,and 0 < 4§ < 1,

—

and outputs a number f(x) € N such that

Pr{(1 — e)f(x) < F(x) < (1 +€)f(x)] > 1—4.

The algorithm must run in time polynomial in |x|, 1/¢ and log(1/9).
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@ For example, given € = 0.1, we would have

0.9 < f(x) <11
X

(

~— | —

with high probability.

e Given |x|, € can be an inverse polynomial of |x|, and ¢ can be
inversely exponential in |x|.
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—_

Alternatively we could define the fpras so that on input (x, ) outputs f(x)
satisfying

Pr{(1 — &)f(x) < F(x) < (1 +¢)f(x)] > % or

Prle *f(x) < f/(\x) <ef(x)] > -

The probability % can be boosted to 1 — § for any desired § > 0 using
O(log 671) repeated trials.
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Boost the success probability to 1 — 9
Chernoff bound

Let Xi, ..., Xm be independent, identically distibuted {0,1} random variables, where
p = E[Xj]. Forall e <3/2,

Pr(| ZX; — pn| > epn] < 2exp(—&>pn/3).
i=1

@ Let an fpras for f(x) such that

PH(1— &)f(x) < F(x) < (1 + £)F(x)] = %
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Boost the success probability to 1 — ¢
Chernoff bound

Let Xi, ..., Xm be independent, identically distibuted {0,1} random variables, where
p = E[Xj]. Forall e <3/2,

Pr(| ZX; — pn| > epn] < 2exp(—&>pn/3).
=1

@ Let an fpras for f(x) such that

—_

PH(1— &)f(x) < F(x) < (1 + £)F(x)] = %

@ Then run this algorithm for k = 36log(2/d) times, obtaining outputs
Y1, ..., Yk Output the median of these outputs, let's say y,.
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Boost the success probability to 1 — ¢
Chernoff bound

Let Xi, ..., Xm be independent, identically distibuted {0,1} random variables, where
p = E[Xj]. Forall e <3/2,

Pr(| ZX; — pn| > epn] < 2exp(—&>pn/3).
=1

@ Let an fpras for f(x) such that

—_

PH(1— &)f(x) < F(x) < (1 + £)F(x)] = %

@ Then run this algorithm for k = 36log(2/d) times, obtaining outputs
Y1, ..., Yk Output the median of these outputs, let's say y,.

o Let X, — 1, ifye .(1:|:5)f(x).
0, otherwise
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Boost the success probability to 1 — ¢
Chernoff bound

Let Xi, ..., Xm be independent, identically distibuted {0,1} random variables, where
p = E[Xj]. Forall e <3/2,

Pr(| ZX; — pn| > epn] < 2exp(—&>pn/3).
=1

@ Let an fpras for f(x) such that

—_

PH(1— &)f(x) < F(x) < (1 + £)F(x)] = %

@ Then run this algorithm for k = 36log(2/d) times, obtaining outputs
Y1, ..., Yk Output the median of these outputs, let's say y,.

o Let X, — 1, ifye .(1:|:5)f(x).
0, otherwise

o E[X]=2and E[>_Xj]= %k.
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Boost the success probability to 1 — 9

Chernoff

Let Xi, ..., Xm be independent, identically distibuted {0,1} random variables, where
p = E[Xj]. Forall e <3/2,

Pr{| ZX; — pn| > epn] < 2exp(—<=>pn/3).

k
Priym & (1L £)f(x)] < Pr[>_ X < g]

i=1

<P X - E[ZX-H > 5

<P Y X - k\>f %k]

2
< 2exp ( - %) = 2exp(—k/36) = 0.
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Uniform sampling

@ A sampling problem is specified by a relation R C £* x ¥* between
problem instances and solutions, i.e. (x,w) € R iff w is a solution for
the problem instance x.

@ We denote the solution set {w | (x,w) € R} by R(x).

@ A uniform sampler for a solution set R € X* x X* is a randomized
algorithm that takes as input an instance x € ¥* and outputs a
solution W € R(x) uniformly at random.
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Total variation distance

To define approximate sampling we first need to define the following
notion of distance between two probability distributions.

Definition

For two probability distributions 1 and v on a countable set €2, define the
total variation distance between 7 and 7’ to be

= vllrv = 5 3 () ~ o).

weN

Claim
For two probability distributions p and v,

| —vll7v = max [1(A) — v(A)].
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For two probability distributions © and v,
1
e =vllTv =3 26;2 [1(x) = v(x) = max|u(A) — v(A)].
Proof.
Let S = {x | pu(x) > v(x)}.
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Proof cont.

Since p, v are probability distributions Z p(x) = Z v(x) = 1. So,

xeQ x€eQ
donl) —vlx) =Y w(x) —u(x) =
xes xés
Also, 7 u(x) = v(x) + 3" w(x) — u(x) = 7 lu(x) — v(x)]. So,
x€ES x¢S x€N
=5 Zlu —v(x)| = llp = vll7v.
xeQ
For any set S’ # S, Z u(x) —v(x) < Zu(x) —v(x). So
xe§’ xeS
D ) = v(x) = max |u(A) = v(A).

x€S
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Almost uniform sampler

Let m denote the uniform distribution on a solution set R(x), that is for

any w € R(x), n(x) = |S(1x)|'

Definition

A fully polynomial almost uniform sampler (fpaus) for a solution set

R € ¥* x ¥* is a randomized algorithm that takes as input an instance
x € X* and a sampling tolerance 6 > 0 and outputs a solution W € R(x)
sampled from a distribution 7/, such that

||7T—7T/||T\/ < 4.

The algorithm must run in time polynomial in |x| and log(1/6).
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The Monte Carlo method (examples)

Example 1: An estimation of &

i - @ Choose u.a.r. a point (x, y) in the unit square
centered at (0,0) (choose x, y u.a.r. from the
CW) continuous distribution on [—1,1]).
1
o Lot 7 — 1, if (x,y? € unit circle
0, otherwise

[ Vgl {d-1)
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The Monte Carlo method (examples)

Example 1: An estimation of =
@ Choose u.a.r. a point (x, y) in the unit square
centered at (0,0) (choose x, y u.a.r. from the

C)% continuous distribution on [—1,1]).
1 H . .
o Let Z = {17 if (x,y) € unit circle

-1-1) . .
‘ = 0, otherwise

-11) (L1)

o Pr[Z =1] = 2reacfthecirde _ 7 5nq 50 E[Z] =Pr[Z=1] = 7.

area of the square
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The Monte Carlo method (examples)

Example 1: An estimation of =
i - @ Choose u.a.r. a point (x, y) in the unit square

centered at (0,0) (choose x,y u.a.r. from the
C)% continuous distribution on [—1,1]).
1 H . .
oletz—Jb ff (X,y_) € unit circle
0, otherwise

[ Vgl {d-1)
_ __ area of thecircle __ = _ _ _ T
o Pr[Z— 1] = m =7 and SO ]E[Z] = Pr[Z = 1] =7

@ We run N times and let W = Z,’\Izl Z;.
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The Monte Carlo method (examples)

Example 1: An estimation of =

@ Choose u.a.r. a point (x, y) in the unit square
centered at (0,0) (choose x, y u.a.r. from the

C)% continuous distribution on [—1,1]).
1 H . .
o Let Z = {17 if (x,y) € unit circle

-1-1) . .
‘ = 0, otherwise

-11) (L1)

o Pr[Z =1] = 2reacfthecirde _ 7 3nq 50 E[Z] =Pr[Z=1] = T.

area of the square
@ We run N times and let W = Z,’\Izl Z;.
o E[W] =N E[Z] = Nz and W’ = £ W is our estimate of .
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The Monte Carlo method (examples)

Example 1: An estimation of =
i - @ Choose u.a.r. a point (x, y) in the unit square

centered at (0,0) (choose x,y u.a.r. from the
G% continuous distribution on [—1,1]).
1 H . .
oletz—Jb ff (X,y_) € unit circle
0, otherwise

[ Vgl a,-1)

o Pr[Z =1] = 2reacfthecirde _ 7 3nq 50 E[Z] =Pr[Z=1] = T.

area of the square

@ We run N times and let W = ZlNzl Z;.
o E[W] =N E[Z] = Nz and W’ = £ W is our estimate of .
e By Chernoff bound Pr[|X — i| > 4] < 2e /3, we have

W - 5|2 <] < 202
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Estimating m

Estimate of pl: 3.116

Estimate of pi: 3.13872 Estimate of pi: 3.141932
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Example 2: An estimation of #DNF

@ Let S denote the set of satisfying assignments.

@ Choose N truth assignments Al, ..., AN u.a.r.

Counting Complexity 181 /215



Example 2: An estimation of #DNF

@ Let S denote the set of satisfying assignments.

@ Choose N truth assignments Al, ..., AN u.a.r.

1, if A’ is satisfyi
oletY, =4 [ |s.sa Istying Then, E[Y;] = |2£n|
0, otherwise

olet Y =N v,
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Example 2: An estimation of #DNF

@ Let S denote the set of satisfying assignments.
@ Choose N truth assignments Al, ..., AN u.a.r.

1, if A’ is satisfyi
oletY =4 [ |s.sa Istying Then, E[Y;] = |2£n|
0, otherwise

olet Y =N v,

Then, E[Y] =N - |2£,,‘ and Y/ = 2; .Y is our estimate of |S].

Counting Complexity 181 /215



Example 2: An estimation of #DNF

@ Let S denote the set of satisfying assignments.
@ Choose N truth assignments Al, ..., AN u

1 if A/ f
o Let Y, — y o is satisfying . Then, E[Y] = |2£n|
0, otherwise

o let Y = z{vzl Y;.
Then, E[Y] =N - |2,,‘, and Y’ = £ - Y is our estimate of |S|.
By Chernoff bound Pr[| X — p| > 5#] < 2 1°/3 we have

P[|Y N| ||> N|5|]<2 N€2|S|/(32")
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Example 2: An estimation of #DNF

@ Let S denote the set of satisfying assignments.
@ Choose N truth assignments Al, ..., AN u

1 if A/ f
o Let Y, — y o is satisfying . Then, E[Y] = |2£n|
0, otherwise

o let Y = z{vzl Y;.
Then, E[Y] =N - |2,,‘, and Y’ = £ - Y is our estimate of |S|.
By Chernoff bound Pr[| X — p| > cm] < 2 1°/3 we have

P[|Y N| ||> N|5|]<2 N€2|S|/(32")

If we want probability < 2e=1/3, then N ~ gg%
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Example 3: An estimation of the volume of a convex body

@ Given K, shrink a box C around K as
C tightly as possible.

@ Sample points x, ..., xy u.a.r. from C.

based on the number of points that belong
to K (an oracle for the membership in K is
needed here).

%f @ In a similar way, estimate the volume of K
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Example 3: An estimation of the volume of a convex body

@ Given K, shrink a box C around K as
C tightly as possible.

/ @ Sample points x, ..., xy u.a.r. from C.
. @ In a similar way, estimate the volume of K
%fi based on the number of points that belong
to K (an oracle for the membership in K is
needed here).
o Let K = B,(0,1) be the unit ball and C = [—1,1]" be the smallest
enclosing cube.
vol, K 27n/2
) —
vol,C  27nl(n/2)
@ In high dimensions, exponentially many points are required.

, which decays rapidly in n.
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Monte Carlo method

Theorem

Let Xi, ..., Xim be independent and identically distributed indicator
variables and p = E[Xj]. Then if m > 3I°€g2—(i/5), we have

1 m
Pr “E ZX,- —p| >ep] <6
i=1

So for this m, sampling gives an (&, §)-approximation of p.

Note that if % is polynomial in the input size, then this theorem gives an
fpras for p.
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An fpras for #DNF

The following technique is due to Karp, Luby and Madras (1989).

m
@ Suppose we have m sets Si, ..., Sp, and we want to estimate | U Sil.
i=1
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An fpras for #DNF

The following technique is due to Karp, Luby and Madras (1989).

m
@ Suppose we have m sets Si, ..., Sp, and we want to estimate | U Sil.
i=1

@ |[Jsil<) ISl
i=1 i—1

m m
@ YISl <m- max |s|<m-|[JSi|

i=1 i=1
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An fpras for #DNF

The following technique is due to Karp, Luby and Madras (1989).

m
@ Suppose we have m sets Si, ..., Sp, and we want to estimate | U Sil.
i=1

m m
@ [JsiI<> sl
i=1 i=1
m m
(2] z; |Si| < m-lrSnianm|S,-| <m-| LJ15;|.
1= =

@ By 1 and 2, we have that
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m
o Create a new universe U with |U| = Z |Si|.
i=1

» For each S; and each a € §;, add (a, /) to U.

m

@ For every a € U Si, mark (a,j) as special, where j is the minimum
i=1

index among all i's such that (a,i) € U (or a € S;).

S S S ... 8.
dp % *

as * *

as *
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m
Requirements for having an fpras for | U Sil.
i=1
© Sample an element efficiently from U.
@ Determine efficiently if any (a, i) € U is marked.

© Calculate efficiently |U|.
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m
Requirements for having an fpras for | U Sil.
i=1
© Sample an element efficiently from U.
@ Determine efficiently if any (a, i) € U is marked.

© Calculate efficiently |U|.

m
Then, the following steps describe the fpras for | U Sil.
i=1
@ Sample elements ey, ..., ey from U.
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m
Requirements for having an fpras for | U Sil.
i=1
© Sample an element efficiently from U.
@ Determine efficiently if any (a, i) € U is marked.

© Calculate efficiently |U|.

m
Then, the following steps describe the fpras for | U Sil.
i=1
@ Sample elements ey, ..., ey from U.
1, if & is marked

0, otherwise

(2] LetX,-:{

N
T U
et X = g X;. Then, E[X]=N- T
i=1
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m
Requirements for having an fpras for | U Sil.
i=1
© Sample an element efficiently from U.
@ Determine efficiently if any (a, i) € U is marked.

© Calculate efficiently |U|.

m
Then, the following steps describe the fpras for | U Sil.
i=1
@ Sample elements ey, ..., ey from U.
1, if & is marked

0, otherwise

(2] LetX,-:{

N
T U
et X = g X;. Then, E[X]=N- T
i=1

Q X = |—,l\J,‘ - X is our estimate of |[Ji_; Sil.
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Requirements for having an fpras for | U Sil.
i=1
© Sample an element efficiently from U.
@ Determine efficiently if any (a, i) € U is marked.

© Calculate efficiently |U|.

m
Then, the following steps describe the fpras for | U Sil.
i=1
@ Sample elements ey, ..., ey from U.
1, if & is marked

0, otherwise

(2] LetX,-:{

- U2, Si
> Let X = X;. Then, E[X] = Nﬁ
i=1
Q X' = N‘ X is our estimate of ||J; Sjl.

3mlog(2/4)
22

@ For an (g, ) approximation of p, N > , since /lt < m.
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Application to #DNF

@ S; is the set of satisfying assignments of the i-th clause. So, m is
polynomial in the input size (step 4).

m
o |S;| = #(satisfying assignments of the i" clause), and |U| = Z |Si]
i=1
(requirement 3).

e Given an element (a,/) € U, we can determine in polynomial time
whether the i-th clause is the first one satisfied by truth assignment a
(requirement 2).
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Application to #DNF

We can sample an (a, i) u.a.r. from U as follows (requirement 1).
O Calculate |S;|, for every 1 < < m.

|Si] _
>ty ISil

© Choose a satisfying assignment a of the i-th clause u.a.r.

In other words, with probability |5L

@ Choose i with probability

1 1
Then, (a,7) has been chosen with probability —=7—— = —. O

Yt Sl Ul
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Counting versus Sampling

For any self-reducible problem,

@ counting and sampling are closely related as shown below.

Exact Counter = Exact Sampler

4 4

Approximate Counter <  Approximate Sampler
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Counting versus Sampling

For any self-reducible problem,

@ counting and sampling are closely related as shown below.

Exact Counter = Exact Sampler

4 4

Approximate Counter <  Approximate Sampler

o if there exists a polynomial-time randomized algorithm for counting
within a polynomial factor, then there exists an fpras.
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Self-reducible problems

Example: Consider SAT and let ¢ be a CNF fomrula. Then,

S(¢) = 5(¢ rx1=0) U S(d) rX1=1)

where ¢ [,,—o (resp. ¢ [x,=1) is ¢ after setting the variable x; to false
(resp. true).
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Self-reducible problems

Example: Consider SAT and let ¢ be a CNF fomrula. Then,

S(¢) = 5(¢ rx1=0) U S(d) rX1=1)

where ¢ [,,—o (resp. ¢ [x,=1) is ¢ after setting the variable x; to false
(resp. true).

Definition

An NP problem is self-reducible if the set of solutions can be partitioned
into polynomially many sets each of which is the set of solutions of a
smaller instance of the problem.

Also, these smaller instances are efficiently computable.
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Approximate sampler = Approximate counting

@ We prove that an fpaus implies an fpras in the context of a specific
combinatorial structure, namely matchings in a graph.
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Approximate sampler = Approximate counting

@ We prove that an fpaus implies an fpras in the context of a specific
combinatorial structure, namely matchings in a graph.

@ Let M(G) denote the set of matchings of all sizes in a graph G.
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Approximate sampler = Approximate counting

@ We prove that an fpaus implies an fpras in the context of a specific
combinatorial structure, namely matchings in a graph.

@ Let M(G) denote the set of matchings of all sizes in a graph G.

@ Let G be a graph with n vertices and m edges, where m > 1 (to avoid
trivialities).
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Approximate sampler = Approximate counting

@ We prove that an fpaus implies an fpras in the context of a specific
combinatorial structure, namely matchings in a graph.

@ Let M(G) denote the set of matchings of all sizes in a graph G.

@ Let G be a graph with n vertices and m edges, where m > 1 (to avoid
trivialities).

Proposition

If there is an almost uniform sampler for M(G) with run-time bounded by
T(n, m,e), then there is a randomized approximation scheme for |[M(G)|
with run-time bounded by cm?s=2T(n, m,/6m) for some constant c.

In particular,

fpaus for M(G) = fpras for |M(G)|.
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Proof.

@ Let S denote the almost uniform sampler.
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Proof.

@ Let S denote the almost uniform sampler.
e Given G with E(G) = {ey, ..., em}, we consider the graphs
G = (V(G),{e1,...,e}),0<i<m.

In particular, Gy has no edge and G, = G.
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Proof.

@ Let S denote the almost uniform sampler.
e Given G with E(G) = {ey, ..., em}, we consider the graphs
G = (V(G),{e1,...,e}),0<i<m.
In particular, Gg has no edge and G,, = G.

@ Then,

M(Go)|  IM(G1)| !M(Gm_1)|)—1
IM(Gy)| [M(G)| MG )

where we consider |[M(Gp)| = 1.

M(6)l = (
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Proof.

@ Let S denote the almost uniform sampler.
e Given G with E(G) = {ey, ..., em}, we consider the graphs
G = (V(G),{e1,...,e}),0<i<m.
In particular, Gg has no edge and G,, = G.

@ Then,

M(Go)|  IM(G1)| !M(Gm_l)\)—l
IM(Gy)| [M(G)| MG )

M(6)l = (

where we consider |[M(Gp)| = 1.
IM(Gi1)|

o Let p; denote the i-th ratio ————~——.

IM(G))]
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Proof cont.
@ M(G;) contains all matchings in M(Gj_1).
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Proof cont.
@ M(G;) contains all matchings in M(G;j_1).

@ Also, the size of M(G;) is at most twice the size of M(Gj_1).
> It holds |M(G;)| = 2 |[M(G;—1)] if every M € M(G;) can be extended
toan M = MU {e} in M(G)).
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Proof cont.
@ M(G;) contains all matchings in M(G;j_1).

@ Also, the size of M(G;) is at most twice the size of M(Gj_1).
> It holds |M(G;)| = 2 |[M(G;—1)] if every M € M(G;) can be extended
toan M = MU {e} in M(G)).

By 1 and 2,

Lo MGGy

27 IM(G)]
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Proof cont.

o We want to have an e-approximation of |M(G)| with prob. > 3.
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Proof cont.

o We want to have an e-approximation of |M(G)| with prob. > 3.

@ The idea is to use the sampler S to approximate every ratio p;.

Counting Complexity 194 /215



Proof cont.

o We want to have an e-approximation of |M(G)| with prob. > 3.
@ The idea is to use the sampler S to approximate every ratio p;.

@ We run our sampler S on G; with § = & and obtain a matching
M; € M(G;) sampled from p.
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Proof cont.

o We want to have an e-approximation of |M(G)| with prob. > 3.
@ The idea is to use the sampler S to approximate every ratio p;.

@ We run our sampler S on G; with § = & and obtain a matching
M; € M(G;) sampled from p.

@ Let 7 denote the uniform distribution on M(G;).
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Proof cont.

o We want to have an e-approximation of |M(G)| with prob. > 3.
@ The idea is to use the sampler S to approximate every ratio p;.

@ We run our sampler S on G; with § = & and obtain a matching
M; € M(G;) sampled from p.

@ Let 7 denote the uniform distribution on M(G;).

1, ifM; Gi—
o letZj=q" | €. M( 1), and set p; = E(Z;) = Pr[Z; =1].
0, otherwise
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Proof cont.

o We want to have an e-approximation of |M(G)| with prob. > 3.
@ The idea is to use the sampler S to approximate every ratio p;.

@ We run our sampler S on G; with § = & and obtain a matching
M; € M(G;) sampled from p.

Let 7 denote the uniform distribution on M(G;).

1, ifM; Gi—
Let Z; = { ! € M( 1), and set u; = E(Z;) = Pr[Z; =1].

0, otherwise
IM(Gi-1)|

How close is u; to —————=> (or how close is p; to p;)?

IM(G)|
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Proof cont.

Let A={M | M e M(Gj_1)}.
By definition of the TV distance ||/t — v|| 7y = maxacq [(A) — v(A)]:

(A = m(A) < & | 3 uM) = Y w(M) < o &

MeA MeA

€ e
PrMeAl— PrMecAll<— & |u—pi| < -—
[ prIMeAl = PrIMeA <o < lu—pl< g
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Proof cont.

Let A={M | M e M(Gj_1)}.
By definition of the TV distance ||/t — v|| 7y = maxacq [(A) — v(A)]:

(A = m(A) < & | 3 uM) = Y w(M) < o &
MeA MeA

€ e
PriMeA — PriMeA]| < — & |u—pil < —
[ PriMeAl— PriMeAl< e < lui—pl<g e

PP em =P =P em o =Pi=
1 1
E'i €'§
12y < g2
Pi 3m_u'_’0'+3m
3m Pi= Hi = 3m pi

So, i is an 3--approximation of p;.
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Proof cont.
@ So we need a good estimate of ;.
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Proof cont.
@ So we need a good estimate of ;.

° i > (1 - %)p; > (1 - %)%2 1 (using = < m) (which also implies
that .1 < 3).
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Proof cont.

@ So we need a good estimate of ;.

@ i > (1 - L) (1 - —>%> % (using = < m) (which also implies
that - <3).

o Var(Z)) = E[(Z — pi)?] = Pr(Zi = 1)(1 — p;)? + Pr[Z; = 0|u? =

pi(1 — pi).
o YorlZ) _ millom) _ pimpf 1 g g
I Hi Hi Hi
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Proof cont.

@ So we need a good estimate of ;.

@ i > (1 - L) (1 - —>%> % (using = < m) (which also implies
that 1 o <3).

o Var(Z)) = E[(Z — pi)?] = Pr(Zi = 1)(1 — p;)? + Pr[Z; = 0|u? =

pi(1 — pi).
o Var(ZZ,') _ lii(l?ui) — “"_2“'? = l —1< 2.
i Hi Hi Hi

@ If we take the outputs Z,-(l), - Z,-(s) of s independent runs of S on G;,

_ s ZY _
and set Z; := Zf+ then E[Z;] = p; and
Var(Z;) _ 7 21 Var(ZiU)) < g
I w7 T s
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Proof cont.

) E[?,] = pj and ML%Z—’Q < %
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Proof cont.

) E[?,] = pj and ML%Z—’) < %

o Lets:= [74c72m].
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Proof cont.

o E[Z)] = pij and YD < 2.

o Let s:= [74c72m)].

@ Our estimator for |M(G)| is the random variable

- (112)
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Proof cont.

o E[Z;] = u; and V‘BL(I?Z") <2

o Let s:= [74c72m)].

@ Our estimator for |M(G)| is the random variable

Wi (ljlz.)*.
° E[fl“'fm]I,ul'“Mm-
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Proof cont.

. N
Var(Zy -+ - Z E[Z...Z
ar(Zy ;”) _El ! 2'“] “ 1 since Var(X) = E[X?] — E[X]?
m —2
E[Z° _
= H [ 2'] —1 since Z; are independent
=1 Hi
m _
Zi _
-TI (1 n "ar(z ’)> —1 since E[X?] = Var(Z;) + E[X]?
i=1 Hi
2 > 2
gc\m Var(Z;) €
< (1 —) 1 <
- ( + 37Tm e p? = 37m
2
< exp(§—7) 1 since (14 %)k < &
2
S;— sinceex/(k+1)Sl—&—x/kforogxgl
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Proof cont.

By Chebychev's inequality Pr[|[X —E(X)| <a) >1— \A%g) we have that

N

~Z — £ E_Ml"',ufm2
PT[IZ]_Zm—'u,lum|§§‘u/1“m]zl_‘z(—)2
S (1 pom)

N|OY

54
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Proof cont.

€epychev s Inequa It r — S a Z _ , we have that
By Chebychev's i lity Pr{[X — E(X)| < a) > 1 %) we have th
27 e Sl )
S (1 pom)

_ _ 3
Pr{lZy-- Zm—pa-- Mm|< Ml ‘Mm]zz(:*

-le

(1—§)u1---um§21---2m§(1+§)u1---um with prob. >
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Proof cont.

€epychev s Inequa It r — S a Z _ , we have that
By Chebychev's i lity Pr{[X — E(X)| < a) > 1 %) we have th
27 e Sl )
S (1 pom)

_ — 3
Prl|Zy - Zm—p1-- Mm|< Ml ‘Mm]zz(:*

=

W

(1—5)u1---umszl---7ms(1+§)u1---um with prob. >

_ _ 3
e—e/Qm---ungl---zmge€/2m---um with prob. ZZ (1)

using 1+ x < e“and e /K <1 x/(k 1) for 0 < x < 1.
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Proof cont.

By (1 - —)p, < < <1 — ﬁ)p; and similar calculations, we obtain that

e Pp1-pm <y pm < &Ppi-pm (2)

By (1) and (2), we have that

Z1- - Zm<€p1---pm with prob. >

o)

s

=

RS

3

IN
-hlw

e “(p1--- pm)_l < (71 o '7m)_1 <e(p1--- pm)_l with prob. >

W

e “IM(G)| < output < e°|M(G)| with prob. 2%
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Proof cont.
The run-time of the algorithm is bounded by

(number of samples) - (time per sample) =

€
sm- T(n, m, 6m) <

5
75 °m? - T —
e °m (n,m,6m)
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Overview

© Approximation of counting problems

@ Markov chains
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@ We deal with discrete-time Markov chains on a finite state space Q.
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@ We deal with discrete-time Markov chains on a finite state space Q.

o A sequence {X; € Q}7°, of random variables is a Markov chain
(MC), with state space Q, if

PriXey1 =y | Xt = Xty ..., Xo = x0] = Pr[Xey1 =y | Xt = x¢]

for all t € N and all xg, ..., x¢ € Q.
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@ We deal with discrete-time Markov chains on a finite state space Q.

o A sequence {X; € Q}7°, of random variables is a Markov chain
(MC), with state space Q, if

PriXey1 =y | Xt = Xty ..., Xo = x0] = Pr[Xey1 =y | Xt = x¢]

for all t € N and all xg, ..., x¢ € Q.
@ This is called the Markovian property.
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@ We deal with discrete-time Markov chains on a finite state space Q.

o A sequence {X; € Q}7°, of random variables is a Markov chain
(MC), with state space Q, if

PriXey1 =y | Xt = Xty ..., Xo = x0] = Pr[Xey1 =y | Xt = x¢]

for all t € N and all xg, ..., x¢ € Q.
@ This is called the Markovian property.

@ Time-homogeneous MCs are the ones for which the probability
Pr[Xe+1 = y | Xt = x| does not depend on t. In this case we write

P(x,y) = Pr[Xey1 =y | Xi = X]

where P is the transition matrix of the MC.
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Example 1

e 3 ab
1) % L)s
d I3 C

a b c d

a, 0 1/3 1/3 1/3

_ b|1/3 0 1/3 173
1/3 1/3 0 1/3

c
d\1/3 1/3 1/3 0

Xo:a,X1 = b,XQZd,X3 = b,...
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Example 2
1 1%1
X o
ifa

a b
= Z(l(/)2 1}2)

XO:a,X1 = b7X2: b,X3:b,X4=a,X5 = b,...
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Transition matrix
@ Each row of the transition matrix P is a distribution.
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Transition matrix

@ Each row of the transition matrix P is a distribution.
@ P describes single-step transition probabilities.
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Transition matrix

@ Each row of the transition matrix P is a distribution.
@ P describes single-step transition probabilities.
@ The t-step transition probabilities are given inductively by

I(x,y), ift=0
Pt(X,y) = t—1 / / .
Zy’EQP (va)P(yvy)v ift>0
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Transition matrix

@ Each row of the transition matrix P is a distribution.
@ P describes single-step transition probabilities.
@ The t-step transition probabilities are given inductively by

I(x,y), ift=0
Pt(X,y) = t—1 / / .
Zy’EQP (va)P(yvy)v ift>0
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Transition matrix

Each row of the transition matrix P is a distribution.

P describes single-step transition probabilities.

The t-step transition probabilities are given inductively by

I(X7y)a |ff:0
Pt(x,y) = 1 / , .
Zy’efz P2 (x, ¥y )P(y',y), ift>0

So P! describes t-step transition probabilities.
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Example 3

ad b cC
21 O 04 06

P- L,loL O 03
c|los DS O

Start distribution: o¢ = (1,0, 0) (start in a)

After one step: 01 = ooP = (0,0.4,0.6)

After two steps: 0o = 1P = 0oP? = (0.34,0.3,0.36)
After t steps: 0y = 0:_1P = ogP*
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Stationary distribution

1) i) n(e) M)

Ploa)\ Plajoy Plac) Plad)
Ploo) | P15 0 o) Plo) _
Pa) Py Pled Pled)
P(day P PEO o)

ROROIRIGIIG]

il (@) = T (a) P(iﬂ&)ﬂ‘ﬂ[bﬁ Plo ,a)+ﬂ[c)9[c,®g +n(d) P[d)q)
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Stationary distribution

@ A stationary distribution of an MC with transition matrix P is a
distribution 7 : Q — [0, 1] such that

m(y) =Y w(x)P(x,y)

xeN

@ In other words, - P = .
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Definition of irreducibility

Definition
An MC is irreducible if for all x,y € €, there exists a t > 0, such that
P*(x,y) > 0 (there exists a path in the transition graph from every state

to every other state).
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Example 4

Not irreducible

o0 1 0
13 1”r o
O O o
L

@]

(o i3 45 4)3]

143

4

Counting Complexity
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Example 4

Not irreducible

(o i3 45 43
P’ O 1 0 O

13 1B o 13
LO o o 1

Stationary distributions: 7 = (0,1,0,0), m = (0,0,0,1), 73 = (0,0.5,0,0.5), ...
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Definition of aperiodicity

Definition
An MC is aperiodic if gcd{t | P*(x,x) > 0} =1 for all x € Q (for each
state x, the gcd of all walk lengths from x to x is 1).

In the case of an irreducible MC, it is sufficient to verify the condition
ged{t | P*(x,x) > 0} =1 for just one state x € Q.

Counting Complexity 211 /215



Example 5

Not aperiodic

o)

o1
7
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Example 5

Not aperiodic
{ o 1
/ P:(i Ol
5

Lazy MC (a self-loop at every state)
/g

lia g
119
P :KM 4/il

Ay
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Overview

@ Appendix
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Useful elements of probability theory

o E[X] = Zx, = x;).

o Var(X) = E[(X — E[X])?] = E[X?] — E[X]?.

@ Chebychev's Inequality: Pr[|X — E(X)| > a] < Va’(X)_
> In particular, Pr[|X — E(X)| > aE(X)] < %7)%

o Chernoff bound: Pr[|X — u| > du] < 2 #%/3 forall 0 < § < 1,

1, with prob. p;

where X =37, X, Xi = , all X; are

0, with prob. 1 — p;
independent and p = E[X] =7, pi.
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Useful inequalities

QO 1+x<e~

Q@ (1+5)k<e

Q@ /(K1) <14 x/k for 0 < x <1 and k € N*.

Q@ e*/k<1-x/(k+1)for0<x<1and ke Nt.

(5 e—fg(1—@)"for0§x§landk€N+.
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