Exact counting

Exact counting is rare:

- \#2-Colorings.
- \#Perfect Matchings in planar graphs.
- \#Spanning trees in general graphs.

Approximate counting

Definition

A fully polynomial randomized approximation scheme (fpras) for a counting problem $f: \Sigma^{*} \rightarrow \mathbb{N}$ is a randomized algorithm that takes as input an instance $x \in \Sigma^{*}$, an error tolerance $0<\varepsilon<1$, and $0<\delta<1$, and outputs a number $\widehat{f(x)} \in \mathbb{N}$ such that

$$
\operatorname{Pr}[(1-\varepsilon) f(x) \leq \widehat{f(x)} \leq(1+\varepsilon) f(x)] \geq 1-\delta
$$

The algorithm must run in time polynomial in $|x|, 1 / \varepsilon$ and $\log (1 / \delta)$.

- For example, given $\varepsilon=0.1$, we would have

$$
0.9 \leq \frac{\widehat{f(x)}}{f(x)} \leq 1.1
$$

with high probability.

- Given $|x|, \varepsilon$ can be an inverse polynomial of $|x|$, and δ can be inversely exponential in $|x|$.

Alternatively we could define the fpras so that on input (x, ε) outputs $\widehat{f(x)}$ satisfying

$$
\begin{gathered}
\operatorname{Pr}[(1-\varepsilon) f(x) \leq \widehat{f(x)} \leq(1+\varepsilon) f(x)] \geq \frac{3}{4} \quad \text { or } \\
\operatorname{Pr}\left[e^{-\varepsilon} f(x) \leq \widehat{f(x)} \leq e^{\varepsilon} f(x)\right] \geq \frac{3}{4}
\end{gathered}
$$

The probability $\frac{3}{4}$ can be boosted to $1-\delta$ for any desired $\delta>0$ using $\mathcal{O}\left(\log \delta^{-1}\right)$ repeated trials.

Boost the success probability to $1-\delta$

Chernoff bound

Let X_{1}, \ldots, X_{m} be independent, identically distibuted $\{0,1\}$ random variables, where $p=\mathbb{E}\left[X_{i}\right]$. For all $\varepsilon \leq 3 / 2$,

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} X_{i}-p n\right|>\varepsilon p n\right] \leq 2 \exp \left(-\varepsilon^{2} p n / 3\right)
$$

- Let an fpras for $f(x)$ such that

$$
\operatorname{Pr}[(1-\varepsilon) f(x) \leq \widehat{f(x)} \leq(1+\varepsilon) f(x)]=\frac{3}{4} .
$$

Boost the success probability to $1-\delta$

Chernoff bound

Let X_{1}, \ldots, X_{m} be independent, identically distibuted $\{0,1\}$ random variables, where $p=\mathbb{E}\left[X_{i}\right]$. For all $\varepsilon \leq 3 / 2$,

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} X_{i}-p n\right|>\varepsilon p n\right] \leq 2 \exp \left(-\varepsilon^{2} p n / 3\right)
$$

- Let an fpras for $f(x)$ such that

$$
\operatorname{Pr}[(1-\varepsilon) f(x) \leq \widehat{f(x)} \leq(1+\varepsilon) f(x)]=\frac{3}{4}
$$

- Then run this algorithm for $k=36 \log (2 / \delta)$ times, obtaining outputs y_{1}, \ldots, y_{k}. Output the median of these outputs, let's say y_{m}.

Boost the success probability to $1-\delta$

Chernoff bound

Let X_{1}, \ldots, X_{m} be independent, identically distibuted $\{0,1\}$ random variables, where $p=\mathbb{E}\left[X_{i}\right]$. For all $\varepsilon \leq 3 / 2$,

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} X_{i}-p n\right|>\varepsilon p n\right] \leq 2 \exp \left(-\varepsilon^{2} p n / 3\right)
$$

- Let an fpras for $f(x)$ such that

$$
\operatorname{Pr}[(1-\varepsilon) f(x) \leq \widehat{f(x)} \leq(1+\varepsilon) f(x)]=\frac{3}{4} .
$$

- Then run this algorithm for $k=36 \log (2 / \delta)$ times, obtaining outputs y_{1}, \ldots, y_{k}. Output the median of these outputs, let's say y_{m}.
- Let $X_{i}=\left\{\begin{array}{ll}1, & \text { if } y_{i} \in(1 \pm \varepsilon) f(x) \\ 0, & \text { otherwise }\end{array}\right.$.

Boost the success probability to $1-\delta$

Chernoff bound

Let X_{1}, \ldots, X_{m} be independent, identically distibuted $\{0,1\}$ random variables, where $p=\mathbb{E}\left[X_{i}\right]$. For all $\varepsilon \leq 3 / 2$,

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} X_{i}-p n\right|>\varepsilon p n\right] \leq 2 \exp \left(-\varepsilon^{2} p n / 3\right)
$$

- Let an fpras for $f(x)$ such that

$$
\operatorname{Pr}[(1-\varepsilon) f(x) \leq \widehat{f(x)} \leq(1+\varepsilon) f(x)]=\frac{3}{4} .
$$

- Then run this algorithm for $k=36 \log (2 / \delta)$ times, obtaining outputs y_{1}, \ldots, y_{k}. Output the median of these outputs, let's say y_{m}.
- Let $X_{i}=\left\{\begin{array}{ll}1, & \text { if } y_{i} \in(1 \pm \varepsilon) f(x) \\ 0, & \text { otherwise }\end{array}\right.$.
- $\mathbb{E}\left[X_{i}\right]=\frac{3}{4}$ and $\mathbb{E}\left[\sum X_{i}\right]=\frac{3}{4} k$.

Boost the success probability to $1-\delta$

Chernoff

Let X_{1}, \ldots, X_{m} be independent, identically distibuted $\{0,1\}$ random variables, where $p=\mathbb{E}\left[X_{i}\right]$. For all $\varepsilon \leq 3 / 2$,

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} X_{i}-p n\right|>\varepsilon p n\right] \leq 2 \exp \left(-\varepsilon^{2} p n / 3\right)
$$

$$
\begin{aligned}
\operatorname{Pr}\left[y_{m} \notin(1 \pm \varepsilon) f(x)\right] & \leq \operatorname{Pr}\left[\sum_{i=1}^{k} X_{i}<\frac{k}{2}\right] \\
& \leq \operatorname{Pr}\left[\left|\sum X_{i}-\mathbb{E}\left[\sum X_{i}\right]\right|>\frac{k}{4}\right] \\
& \leq \operatorname{Pr}\left[\left|\sum X_{i}-\frac{3}{4} k\right|>\frac{1}{3} \cdot \frac{3}{4} \cdot k\right] \\
& \leq 2 \exp \left(-\frac{\left(\frac{1}{3}\right)^{2} \frac{3}{4} k}{3}\right)=2 \exp (-k / 36)=\delta .
\end{aligned}
$$

Uniform sampling

- A sampling problem is specified by a relation $R \subseteq \Sigma^{*} \times \Sigma^{*}$ between problem instances and solutions, i.e. $(x, w) \in R$ iff w is a solution for the problem instance x.
- We denote the solution set $\{w \mid(x, w) \in R\}$ by $R(x)$.
- A uniform sampler for a solution set $R \in \Sigma^{*} \times \Sigma^{*}$ is a randomized algorithm that takes as input an instance $x \in \Sigma^{*}$ and outputs a solution $W \in R(x)$ uniformly at random.

Total variation distance

To define approximate sampling we first need to define the following notion of distance between two probability distributions.

Definition

For two probability distributions μ and ν on a countable set Ω, define the total variation distance between π and π^{\prime} to be

$$
\|\mu-\nu\|_{T V}=\frac{1}{2} \sum_{\omega \in \Omega}|\mu(\omega)-\nu(\omega)| .
$$

Claim

For two probability distributions μ and ν,

$$
\|\mu-\nu\|_{T V}=\max _{A \subseteq \Omega}|\mu(A)-\nu(A)| .
$$

For two probability distributions μ and ν,

$$
\|\mu-\nu\|_{T V}=\frac{1}{2} \sum_{x \in \Omega}|\mu(x)-\nu(x)|=\max _{A \subseteq \Omega}|\mu(A)-\nu(A)| .
$$

Proof.
Let $S=\{x \mid \mu(x) \geq \nu(x)\}$.

Proof cont.

Since μ, ν are probability distributions $\sum_{x \in \Omega} \mu(x)=\sum_{x \in \Omega} \nu(x)=1$. So,

$$
\sum_{x \in S} \mu(x)-\nu(x)=\sum_{x \notin S} \nu(x)-\mu(x)=
$$

Also, $\sum_{x \in S} \mu(x)-\nu(x)+\sum_{x \notin S} \nu(x)-\mu(x)=\sum_{x \in \Omega}|\mu(x)-\nu(x)|$. So,

$$
=\frac{1}{2} \sum_{x \in \Omega}|\mu(x)-\nu(x)|=\|\mu-\nu\|_{T V} .
$$

For any set $S^{\prime} \neq S, \sum_{x \in S^{\prime}} \mu(x)-\nu(x) \leq \sum_{x \in S} \mu(x)-\nu(x)$. So,

$$
\sum_{x \in S} \mu(x)-\nu(x)=\max _{A \subseteq \Omega}|\mu(A)-\nu(A)| .
$$

Almost uniform sampler

Let π denote the uniform distribution on a solution set $R(x)$, that is for any $w \in R(x), \pi(x)=\frac{1}{|S(x)|}$.

Definition

A fully polynomial almost uniform sampler (fpaus) for a solution set $R \in \Sigma^{*} \times \Sigma^{*}$ is a randomized algorithm that takes as input an instance $x \in \Sigma^{*}$ and a sampling tolerance $\delta>0$ and outputs a solution $W \in R(x)$ sampled from a distribution π^{\prime}, such that

$$
\left\|\pi-\pi^{\prime}\right\|_{T V} \leq \delta
$$

The algorithm must run in time polynomial in $|x|$ and $\log (1 / \delta)$.

The Monte Carlo method (examples)

Example 1: An estimation of $\boldsymbol{\pi}$

- Choose u.a.r. a point (x, y) in the unit square centered at $(0,0)$ (choose x, y u.a.r. from the continuous distribution on $[-1,1]$).
- Let $Z= \begin{cases}1, & \text { if }(x, y) \in \text { unit circle } \\ 0, & \text { otherwise }\end{cases}$

The Monte Carlo method (examples)

Example 1: An estimation of π

- Choose u.a.r. a point (x, y) in the unit square centered at $(0,0)$ (choose x, y u.a.r. from the continuous distribution on $[-1,1]$).
- Let $Z= \begin{cases}1, & \text { if }(x, y) \in \text { unit circle } \\ 0, & \text { otherwise }\end{cases}$
- $\operatorname{Pr}[Z=1]=\frac{\text { area of the circle }}{\text { area of the square }}=\frac{\pi}{4}$, and so $\mathbb{E}[Z]=\operatorname{Pr}[Z=1]=\frac{\pi}{4}$.

The Monte Carlo method (examples)

Example 1: An estimation of π

- Choose u.a.r. a point (x, y) in the unit square centered at $(0,0)$ (choose x, y u.a.r. from the continuous distribution on $[-1,1]$).
- Let $Z= \begin{cases}1, & \text { if }(x, y) \in \text { unit circle } \\ 0, & \text { otherwise }\end{cases}$
- $\operatorname{Pr}[Z=1]=\frac{\text { area of the circle }}{\text { area of the square }}=\frac{\pi}{4}$, and so $\mathbb{E}[Z]=\operatorname{Pr}[Z=1]=\frac{\pi}{4}$.
- We run N times and let $W=\sum_{i=1}^{N} Z_{i}$.

The Monte Carlo method (examples)

Example 1: An estimation of π

- Choose u.a.r. a point (x, y) in the unit square centered at $(0,0)$ (choose x, y u.a.r. from the continuous distribution on $[-1,1]$).
- Let $Z= \begin{cases}1, & \text { if }(x, y) \in \text { unit circle } \\ 0, & \text { otherwise }\end{cases}$
- $\operatorname{Pr}[Z=1]=\frac{\text { area of the circle }}{\text { area of the square }}=\frac{\pi}{4}$, and so $\mathbb{E}[Z]=\operatorname{Pr}[Z=1]=\frac{\pi}{4}$.
- We run N times and let $W=\sum_{i=1}^{N} Z_{i}$.
- $\mathbb{E}[W]=\sum_{i=1}^{N} \mathbb{E}\left[Z_{i}\right]=\frac{N \pi}{4}$ and $W^{\prime}=\frac{4}{N} W$ is our estimate of π.

The Monte Carlo method (examples)

Example 1: An estimation of π

- Choose u.a.r. a point (x, y) in the unit square centered at $(0,0)$ (choose x, y u.a.r. from the continuous distribution on $[-1,1]$).
- Let $Z= \begin{cases}1, & \text { if }(x, y) \in \text { unit circle } \\ 0, & \text { otherwise }\end{cases}$
- $\operatorname{Pr}[Z=1]=\frac{\text { area of the circle }}{\text { area of the square }}=\frac{\pi}{4}$, and so $\mathbb{E}[Z]=\operatorname{Pr}[Z=1]=\frac{\pi}{4}$.
- We run N times and let $W=\sum_{i=1}^{N} Z_{i}$.
- $\mathbb{E}[W]=\sum_{i=1}^{N} \mathbb{E}\left[Z_{i}\right]=\frac{N \pi}{4}$ and $W^{\prime}=\frac{4}{N} W$ is our estimate of π.
- By Chernoff bound $\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 e^{-\mu \delta^{2} / 3}$, we have

$$
\operatorname{Pr}\left[\left|W-\frac{N \pi}{4}\right| \geq \varepsilon \frac{N \pi}{4}\right] \leq 2 e^{-N \pi \varepsilon^{2} / 12}
$$

Estimating π

Estimate of pil 3.116

Estimate of pi: 3.13872

Estimate of pil 3.142

Estimate of pi: 3.141932

Example 2: An estimation of \#DNF

- Let S denote the set of satisfying assignments.
- Choose N truth assignments A^{1}, \ldots, A^{N} u.a.r.

Example 2: An estimation of \#DNF

- Let S denote the set of satisfying assignments.
- Choose N truth assignments A^{1}, \ldots, A^{N} u.a.r.
- Let $Y_{i}=\left\{\begin{array}{ll}1, & \text { if } A^{i} \text { is satisfying } \\ 0, & \text { otherwise }\end{array}\right.$. Then, $\mathbb{E}\left[Y_{i}\right]=\frac{|S|}{2^{n}}$.
- Let $Y=\sum_{i=1}^{N} Y_{i}$.

Example 2: An estimation of \#DNF

- Let S denote the set of satisfying assignments.
- Choose N truth assignments A^{1}, \ldots, A^{N} u.a.r.
- Let $Y_{i}=\left\{\begin{array}{ll}1, & \text { if } A^{i} \text { is satisfying } \\ 0, & \text { otherwise }\end{array}\right.$. Then, $\mathbb{E}\left[Y_{i}\right]=\frac{|S|}{2^{n}}$.
- Let $Y=\sum_{i=1}^{N} Y_{i}$.
- Then, $\mathbb{E}[Y]=N \cdot \frac{|S|}{2^{n}}$, and $Y^{\prime}=\frac{2^{n}}{N} \cdot Y$ is our estimate of $|S|$.

Example 2: An estimation of \#DNF

- Let S denote the set of satisfying assignments.
- Choose N truth assignments A^{1}, \ldots, A^{N} u.a.r.
- Let $Y_{i}=\left\{\begin{array}{ll}1, & \text { if } A^{i} \text { is satisfying } \\ 0, & \text { otherwise }\end{array}\right.$. Then, $\mathbb{E}\left[Y_{i}\right]=\frac{|S|}{2^{n}}$.
- Let $Y=\sum_{i=1}^{N} Y_{i}$.
- Then, $\mathbb{E}[Y]=N \cdot \frac{|S|}{2^{n}}$, and $Y^{\prime}=\frac{2^{n}}{N} \cdot Y$ is our estimate of $|S|$.
- By Chernoff bound $\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 e^{-\mu \delta^{2} / 3}$, we have

$$
\operatorname{Pr}\left[\left|Y-N \frac{|S|}{2^{n}}\right| \geq \varepsilon N \frac{|S|}{2^{n}}\right] \leq 2 e^{-N \varepsilon^{2}|S| /\left(3 \cdot 2^{n}\right)}
$$

Example 2: An estimation of \#DNF

- Let S denote the set of satisfying assignments.
- Choose N truth assignments A^{1}, \ldots, A^{N} u.a.r.
- Let $Y_{i}=\left\{\begin{array}{ll}1, & \text { if } A^{i} \text { is satisfying } \\ 0, & \text { otherwise }\end{array}\right.$. Then, $\mathbb{E}\left[Y_{i}\right]=\frac{|S|}{2^{n}}$.
- Let $Y=\sum_{i=1}^{N} Y_{i}$.
- Then, $\mathbb{E}[Y]=N \cdot \frac{|S|}{2^{n}}$, and $Y^{\prime}=\frac{2^{n}}{N} \cdot Y$ is our estimate of $|S|$.
- By Chernoff bound $\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 e^{-\mu \delta^{2} / 3}$, we have

$$
\operatorname{Pr}\left[\left|Y-N \frac{|S|}{2^{n}}\right| \geq \varepsilon N \frac{|S|}{2^{n}}\right] \leq 2 e^{-N \varepsilon^{2}|S| /\left(3 \cdot 2^{n}\right)}
$$

- If we want probability $\leq 2 e^{-1 / 3}$, then $N \approx \frac{2^{n}}{\varepsilon^{2} \cdot|S|}$.

Example 3: An estimation of the volume of a convex body

- Given K, shrink a box C around K as
 tightly as possible.
- Sample points x_{1}, \ldots, x_{N} u.a.r. from C.
- In a similar way, estimate the volume of K based on the number of points that belong to K (an oracle for the membership in K is needed here).

Example 3: An estimation of the volume of a convex body

- Given K, shrink a box C around K as
 tightly as possible.
- Sample points x_{1}, \ldots, x_{N} u.a.r. from C.
- In a similar way, estimate the volume of K based on the number of points that belong to K (an oracle for the membership in K is needed here).
- Let $K=B_{n}(0,1)$ be the unit ball and $C=[-1,1]^{n}$ be the smallest enclosing cube.
- $\frac{\mathrm{vol}_{n} K}{v o I_{n} C}=\frac{2 \pi^{n / 2}}{2^{n} \Gamma \Gamma(n / 2)}$, which decays rapidly in n.
- In high dimensions, exponentially many points are required.

Monte Carlo method

Theorem

Let X_{1}, \ldots, X_{m} be independent and identically distributed indicator variables and $\mu=\mathbb{E}\left[X_{i}\right]$. Then if $m \geq \frac{3 \log (2 / \delta)}{\varepsilon^{2} \mu}$, we have

$$
\operatorname{Pr}\left[\left|\frac{1}{m} \sum_{i=1}^{m} X_{i}-\mu\right| \geq \varepsilon \mu\right] \leq \delta
$$

So for this m, sampling gives an (ε, δ)-approximation of μ.

Note that if $\frac{1}{\mu}$ is polynomial in the input size, then this theorem gives an fpras for μ.

An fpras for \#DNF

The following technique is due to Karp, Luby and Madras (1989).

- Suppose we have m sets S_{1}, \ldots, S_{m} and we want to estimate $\left|\bigcup_{i=1} S_{i}\right|$.

An fpras for \#DNF

The following technique is due to Karp, Luby and Madras (1989).

- Suppose we have m sets S_{1}, \ldots, S_{m} and we want to estimate $\left|\bigcup_{i=1}^{m} S_{i}\right|$.
(1) $\left|\bigcup_{i=1}^{m} S_{i}\right| \leq \sum_{i=1}^{m}\left|S_{i}\right|$.
(2) $\sum_{i=1}^{m}\left|S_{i}\right| \leq m \cdot \max _{1 \leq i \leq m}\left|S_{i}\right| \leq m \cdot\left|\bigcup_{i=1}^{m} S_{i}\right|$.

An fpras for \#DNF

The following technique is due to Karp, Luby and Madras (1989).
(1) $\left|\bigcup_{i=1}^{m} S_{i}\right| \leq \sum_{i=1}^{m}\left|S_{i}\right|$.
(2) $\sum_{i=1}^{m}\left|S_{i}\right| \leq m \cdot \max _{1 \leq i \leq m}\left|S_{i}\right| \leq m \cdot\left|\bigcup_{i=1}^{m} S_{i}\right|$.

- By 1 and 2, we have that

$$
\frac{1}{m} \leq \frac{\left|\bigcup_{i=1}^{m} S_{i}\right|}{\sum_{i=1}^{m}\left|S_{i}\right|} \leq 1
$$

- Create a new universe U with $|U|=\sum_{i=1}^{m}\left|S_{i}\right|$.
- For each S_{i} and each $a \in S_{i}$, add (a, i) to U.
- For every $a \in \bigcup_{i=1}^{m} S_{i}$, mark (a, j) as special, where j is the minimum index among all i 's such that $(a, i) \in U\left(\right.$ or $\left.a \in S_{i}\right)$.

	S_{1}	S_{2}	S_{3}	\ldots	S_{m}
a_{1}	$\bar{*}$		$*$		
a_{2}	$\bar{*}$	$*$			
a_{3}			\neq		

Requirements for having an fpras for $\left|\bigcup_{i=1}^{m} S_{i}\right|$.
(1) Sample an element efficiently from U.
(2) Determine efficiently if any $(a, i) \in U$ is marked.
(3) Calculate efficiently $|U|$.

Requirements for having an fpras for $\left|\bigcup_{i=1}^{m} S_{i}\right|$.
(1) Sample an element efficiently from U.
(2) Determine efficiently if any $(a, i) \in U$ is marked.
(3) Calculate efficiently $|U|$.

Then, the following steps describe the fpras for $\left|\bigcup_{i=1} S_{i}\right|$.
(1) Sample elements e_{1}, \ldots, e_{N} from U.

Requirements for having an fpras for $\left|\bigcup_{i=1}^{m} S_{i}\right|$.
(1) Sample an element efficiently from U.
(2) Determine efficiently if any $(a, i) \in U$ is marked.
(3) Calculate efficiently $|U|$.

Then, the following steps describe the fpras for $\left|\bigcup_{i=1} S_{i}\right|$.
(1) Sample elements e_{1}, \ldots, e_{N} from U.
(2) Let $X_{i}=\left\{\begin{array}{ll}1, & \text { if } e_{i} \text { is marked } \\ 0, & \text { otherwise }\end{array}\right.$.

- Let $X=\sum_{i=1}^{N} X_{i}$. Then, $\mathbb{E}[X]=N \cdot \frac{\left|\bigcup_{i=1}^{m} S_{i}\right|}{|U|}$.

Requirements for having an fpras for $\left|\bigcup_{i=1}^{m} S_{i}\right|$.
(1) Sample an element efficiently from U.
(2) Determine efficiently if any $(a, i) \in U$ is marked.
(3) Calculate efficiently $|U|$.

Then, the following steps describe the fpras for $\left|\bigcup_{i=1} S_{i}\right|$.
(1) Sample elements e_{1}, \ldots, e_{N} from U.
(2) Let $X_{i}=\left\{\begin{array}{ll}1, & \text { if } e_{i} \text { is marked } \\ 0, & \text { otherwise }\end{array}\right.$.

- Let $X=\sum_{i=1}^{N} X_{i}$. Then, $\mathbb{E}[X]=N \cdot \frac{\left|\bigcup_{i=1}^{m} S_{i}\right|}{|U|}$.
(3) $X^{\prime}=\frac{|U|}{N} \cdot X$ is our estimate of $\left|\bigcup_{i=1}^{m} S_{i}\right|$.

Requirements for having an fpras for $\left|\bigcup_{i=1}^{m} S_{i}\right|$.
(1) Sample an element efficiently from U.
(2) Determine efficiently if any $(a, i) \in U$ is marked.
(3) Calculate efficiently $|U|$.

Then, the following steps describe the fpras for $\left|\bigcup_{i=1} S_{i}\right|$.
(1) Sample elements e_{1}, \ldots, e_{N} from U.
(2) Let $X_{i}=\left\{\begin{array}{ll}1, & \text { if } e_{i} \text { is marked } \\ 0, & \text { otherwise }\end{array}\right.$.

- Let $X=\sum_{i=1}^{N} X_{i}$. Then, $\mathbb{E}[X]=N \cdot \frac{\left|\bigcup_{i=1}^{m} S_{i}\right|}{|U|}$.
(3) $X^{\prime}=\frac{|U|}{N} \cdot X$ is our estimate of $\left|\bigcup_{i=1}^{m} S_{i}\right|$.
(9) For an (ε, δ) approximation of $\mu, N \geq \frac{3 m \log (2 / \delta)}{\varepsilon^{2}}$, since $\frac{1}{\mu} \leq m$.

Application to \#DNF

- S_{i} is the set of satisfying assignments of the i-th clause. So, m is polynomial in the input size (step 4).
- $\left|S_{i}\right|=\#$ (satisfying assignments of the $i^{\text {th }}$ clause), and $|U|=\sum_{i=1}^{m}\left|S_{i}\right|$ (requirement 3).
- Given an element $(a, i) \in U$, we can determine in polynomial time whether the i-th clause is the first one satisfied by truth assignment a (requirement 2).

Application to \#DNF

We can sample an (a, i) u.a.r. from U as follows (requirement 1).
(1) Calculate $\left|S_{i}\right|$, for every $1 \leq i \leq m$.
(2) Choose i with probability $\frac{\left|S_{i}\right|}{\sum_{i=1}^{m}\left|S_{i}\right|}$.
(3) Choose a satisfying assignment a of the i-th clause u.a.r. In other words, with probability $\frac{1}{\left|S_{i}\right|}$.

Then, (a, i) has been chosen with probability $\frac{1}{\sum_{i=1}^{m}\left|S_{i}\right|}=\frac{1}{|U|}$.

Counting versus Sampling

For any self-reducible problem,

- counting and sampling are closely related as shown below.

Counting versus Sampling

For any self-reducible problem,

- counting and sampling are closely related as shown below.

- if there exists a polynomial-time randomized algorithm for counting within a polynomial factor, then there exists an fpras.

Self-reducible problems

Example: Consider SAT and let ϕ be a CNF fomrula. Then,

$$
S(\phi)=S\left(\phi \upharpoonright_{x_{1}=0}\right) \cup S\left(\phi \upharpoonright_{x_{1}=1}\right)
$$

where $\phi \upharpoonright_{x_{1}=0}$ (resp. $\phi \upharpoonright_{x_{1}=1}$) is ϕ after setting the variable x_{1} to false (resp. true).

Self-reducible problems

Example: Consider SAT and let ϕ be a CNF fomrula. Then,

$$
S(\phi)=S\left(\phi \upharpoonright_{x_{1}=0}\right) \cup S\left(\phi \upharpoonright_{x_{1}=1}\right)
$$

where $\phi \upharpoonright_{x_{1}=0}$ (resp. $\phi \upharpoonright_{x_{1}=1}$) is ϕ after setting the variable x_{1} to false (resp. true).

Definition

An NP problem is self-reducible if the set of solutions can be partitioned into polynomially many sets each of which is the set of solutions of a smaller instance of the problem.
Also, these smaller instances are efficiently computable.

Approximate sampler \Rightarrow Approximate counting

- We prove that an fpaus implies an fpras in the context of a specific combinatorial structure, namely matchings in a graph.

Approximate sampler \Rightarrow Approximate counting

- We prove that an fpaus implies an fpras in the context of a specific combinatorial structure, namely matchings in a graph.
- Let $\mathcal{M}(G)$ denote the set of matchings of all sizes in a graph G.

Approximate sampler \Rightarrow Approximate counting

- We prove that an fpaus implies an fpras in the context of a specific combinatorial structure, namely matchings in a graph.
- Let $\mathcal{M}(G)$ denote the set of matchings of all sizes in a graph G.
- Let G be a graph with n vertices and m edges, where $m \geq 1$ (to avoid trivialities).

Approximate sampler \Rightarrow Approximate counting

- We prove that an fpaus implies an fpras in the context of a specific combinatorial structure, namely matchings in a graph.
- Let $\mathcal{M}(G)$ denote the set of matchings of all sizes in a graph G.
- Let G be a graph with n vertices and m edges, where $m \geq 1$ (to avoid trivialities).

Proposition

If there is an almost uniform sampler for $\mathcal{M}(G)$ with run-time bounded by $T(n, m, \varepsilon)$, then there is a randomized approximation scheme for $|\mathcal{M}(G)|$ with run-time bounded by $\mathrm{cm}^{2} \varepsilon^{-2} T(n, m, \varepsilon / 6 m)$ for some constant c. In particular,

$$
\text { fpaus for } \mathcal{M}(G) \Rightarrow \text { fpras for }|\mathcal{M}(G)|
$$

Proof.

- Let \mathcal{S} denote the almost uniform sampler.

Proof.

- Let \mathcal{S} denote the almost uniform sampler.
- Given G with $E(G)=\left\{e_{1}, \ldots, e_{m}\right\}$, we consider the graphs

$$
G_{i}:=\left(V(G),\left\{e_{1}, \ldots, e_{i}\right\}\right), 0 \leq i \leq m .
$$

In particular, G_{0} has no edge and $G_{m}=G$.

Proof.

- Let \mathcal{S} denote the almost uniform sampler.
- Given G with $E(G)=\left\{e_{1}, \ldots, e_{m}\right\}$, we consider the graphs

$$
G_{i}:=\left(V(G),\left\{e_{1}, \ldots, e_{i}\right\}\right), 0 \leq i \leq m .
$$

In particular, G_{0} has no edge and $G_{m}=G$.

- Then,

$$
|\mathcal{M}(G)|=\left(\frac{\left|\mathcal{M}\left(G_{0}\right)\right|}{\left|\mathcal{M}\left(G_{1}\right)\right|} \cdot \frac{\left|\mathcal{M}\left(G_{1}\right)\right|}{\left|\mathcal{M}\left(G_{2}\right)\right|} \cdots \frac{\left|\mathcal{M}\left(G_{m-1}\right)\right|}{\left|\mathcal{M}\left(G_{m}\right)\right|}\right)^{-1} .
$$

where we consider $\left|\mathcal{M}\left(G_{0}\right)\right|=1$.

Proof.

- Let \mathcal{S} denote the almost uniform sampler.
- Given G with $E(G)=\left\{e_{1}, \ldots, e_{m}\right\}$, we consider the graphs

$$
G_{i}:=\left(V(G),\left\{e_{1}, \ldots, e_{i}\right\}\right), 0 \leq i \leq m .
$$

In particular, G_{0} has no edge and $G_{m}=G$.

- Then,

$$
|\mathcal{M}(G)|=\left(\frac{\left|\mathcal{M}\left(G_{0}\right)\right|}{\left|\mathcal{M}\left(G_{1}\right)\right|} \cdot \frac{\left|\mathcal{M}\left(G_{1}\right)\right|}{\left|\mathcal{M}\left(G_{2}\right)\right|} \cdots \frac{\left|\mathcal{M}\left(G_{m-1}\right)\right|}{\left|\mathcal{M}\left(G_{m}\right)\right|}\right)^{-1}
$$

where we consider $\left|\mathcal{M}\left(G_{0}\right)\right|=1$.

- Let ρ_{i} denote the i-th ratio $\frac{\left|\mathcal{M}\left(G_{i-1}\right)\right|}{\left|\mathcal{M}\left(G_{i}\right)\right|}$.

Proof cont.
(1) $\mathcal{M}\left(G_{i}\right)$ contains all matchings in $\mathcal{M}\left(G_{i-1}\right)$.

Proof cont.

(1) $\mathcal{M}\left(G_{i}\right)$ contains all matchings in $\mathcal{M}\left(G_{i-1}\right)$.
(2) Also, the size of $\mathcal{M}\left(G_{i}\right)$ is at most twice the size of $\mathcal{M}\left(G_{i-1}\right)$.

- It holds $\left|\mathcal{M}\left(G_{i}\right)\right|=2 \cdot\left|\mathcal{M}\left(G_{i-1}\right)\right|$ if every $M \in \mathcal{M}\left(G_{i}\right)$ can be extended to an $M^{\prime}=M \cup\left\{e_{i}\right\}$ in $\mathcal{M}\left(G_{i}\right)$.

Proof cont.

(1) $\mathcal{M}\left(G_{i}\right)$ contains all matchings in $\mathcal{M}\left(G_{i-1}\right)$.
(2) Also, the size of $\mathcal{M}\left(G_{i}\right)$ is at most twice the size of $\mathcal{M}\left(G_{i-1}\right)$.

- It holds $\left|\mathcal{M}\left(G_{i}\right)\right|=2 \cdot\left|\mathcal{M}\left(G_{i-1}\right)\right|$ if every $M \in \mathcal{M}\left(G_{i}\right)$ can be extended to an $M^{\prime}=M \cup\left\{e_{i}\right\}$ in $\mathcal{M}\left(G_{i}\right)$.

By 1 and 2,

$$
\frac{1}{2} \leq \frac{\left|\mathcal{M}\left(G_{i-1}\right)\right|}{\left|\mathcal{M}\left(G_{i}\right)\right|} \leq 1
$$

Proof cont.

- We want to have an ε-approximation of $|\mathcal{M}(G)|$ with prob. $\geq \frac{3}{4}$.

Proof cont.

- We want to have an ε-approximation of $|\mathcal{M}(G)|$ with prob. $\geq \frac{3}{4}$.
- The idea is to use the sampler \mathcal{S} to approximate every ratio ρ_{i}.

Proof cont.

- We want to have an ε-approximation of $|\mathcal{M}(G)|$ with prob. $\geq \frac{3}{4}$.
- The idea is to use the sampler \mathcal{S} to approximate every ratio ρ_{i}.
- We run our sampler \mathcal{S} on G_{i} with $\delta=\frac{\varepsilon}{6 m}$ and obtain a matching $M_{i} \in \mathcal{M}\left(G_{i}\right)$ sampled from μ.

Proof cont.

- We want to have an ε-approximation of $|\mathcal{M}(G)|$ with prob. $\geq \frac{3}{4}$.
- The idea is to use the sampler \mathcal{S} to approximate every ratio ρ_{i}.
- We run our sampler \mathcal{S} on G_{i} with $\delta=\frac{\varepsilon}{6 m}$ and obtain a matching $M_{i} \in \mathcal{M}\left(G_{i}\right)$ sampled from μ.
- Let π denote the uniform distribution on $\mathcal{M}\left(G_{i}\right)$.

Proof cont.

- We want to have an ε-approximation of $|\mathcal{M}(G)|$ with prob. $\geq \frac{3}{4}$.
- The idea is to use the sampler \mathcal{S} to approximate every ratio ρ_{i}.
- We run our sampler \mathcal{S} on G_{i} with $\delta=\frac{\varepsilon}{6 m}$ and obtain a matching $M_{i} \in \mathcal{M}\left(G_{i}\right)$ sampled from μ.
- Let π denote the uniform distribution on $\mathcal{M}\left(G_{i}\right)$.
- Let $Z_{i}=\left\{\begin{array}{ll}1, & \text { if } M_{i} \in \mathcal{M}\left(G_{i-1}\right) \\ 0, & \text { otherwise }\end{array}\right.$, and set $\mu_{i}=\mathbb{E}\left(Z_{i}\right)=\operatorname{Pr}\left[Z_{i}=1\right]$.

Proof cont.

- We want to have an ε-approximation of $|\mathcal{M}(G)|$ with prob. $\geq \frac{3}{4}$.
- The idea is to use the sampler \mathcal{S} to approximate every ratio ρ_{i}.
- We run our sampler \mathcal{S} on G_{i} with $\delta=\frac{\varepsilon}{6 m}$ and obtain a matching $M_{i} \in \mathcal{M}\left(G_{i}\right)$ sampled from μ.
- Let π denote the uniform distribution on $\mathcal{M}\left(G_{i}\right)$.
- Let $Z_{i}=\left\{\begin{array}{ll}1, & \text { if } M_{i} \in \mathcal{M}\left(G_{i-1}\right) \\ 0, & \text { otherwise }\end{array}\right.$, and set $\mu_{i}=\mathbb{E}\left(Z_{i}\right)=\operatorname{Pr}\left[Z_{i}=1\right]$.
- How close is μ_{i} to $\frac{\left|\mathcal{M}\left(G_{i-1}\right)\right|}{\left|\mathcal{M}\left(G_{i}\right)\right|}$ (or how close is μ_{i} to ρ_{i})?

Proof cont.
Let $A=\left\{M \mid M \in \mathcal{M}\left(G_{i-1}\right)\right\}$.
By definition of the TV distance $\|\mu-\nu\|_{T V}=\max _{A \subseteq \Omega}|\mu(A)-\nu(A)|$:

$$
\begin{aligned}
& |\mu(A)-\pi(A)| \leq \frac{\varepsilon}{6 m} \Leftrightarrow\left|\sum_{M \in A} \mu(M)-\sum_{M \in A} \pi(M)\right| \leq \frac{\varepsilon}{6 m} \Leftrightarrow \\
& |\underset{M \sim \mu}{\operatorname{Pr}}[M \in A]-\underset{M \sim \pi}{\operatorname{Pr}}[M \in A]| \leq \frac{\varepsilon}{6 m} \Leftrightarrow\left|\mu_{i}-\rho_{i}\right| \leq \frac{\varepsilon}{6 m} \Leftrightarrow \\
& \rho_{i}-\frac{\varepsilon}{6 m} \leq \mu_{i} \leq \rho_{i}+\frac{\varepsilon}{6 m} \Leftrightarrow \\
& \frac{1}{2} \leq \rho_{i} \leq 1 \\
& \rho_{i}-\frac{\varepsilon \cdot \frac{1}{2}}{3 m} \leq \mu_{i} \leq \rho_{i}+\frac{\varepsilon \cdot \frac{1}{2}}{3 m} \Leftrightarrow \\
& \left(1-\frac{\varepsilon}{3 m}\right) \rho_{i} \leq \mu_{i} \leq\left(1-\frac{\varepsilon}{3 m}\right) \rho_{i}
\end{aligned}
$$

Proof cont.
Let $A=\left\{M \mid M \in \mathcal{M}\left(G_{i-1}\right)\right\}$.
By definition of the TV distance $\|\mu-\nu\|_{T V}=\max _{A \subseteq \Omega}|\mu(A)-\nu(A)|$:

$$
\begin{aligned}
& |\mu(A)-\pi(A)| \leq \frac{\varepsilon}{6 m} \Leftrightarrow\left|\sum_{M \in A} \mu(M)-\sum_{M \in A} \pi(M)\right| \leq \frac{\varepsilon}{6 m} \Leftrightarrow \\
& |\underset{M \sim \mu}{\operatorname{Pr}}[M \in A]-\underset{M \sim \pi}{\operatorname{Pr}}[M \in A]| \leq \frac{\varepsilon}{6 m} \Leftrightarrow\left|\mu_{i}-\rho_{i}\right| \leq \frac{\varepsilon}{6 m} \Leftrightarrow \\
& \rho_{i}-\frac{\varepsilon}{6 m} \leq \mu_{i} \leq \rho_{i}+\frac{\varepsilon}{6 m} \Leftrightarrow \quad \frac{1}{2} \leq \rho_{i} \leq 1 \\
& \rho_{i}-\frac{\varepsilon \cdot \frac{1}{2}}{3 m} \leq \mu_{i} \leq \rho_{i}+\frac{\varepsilon \cdot \frac{1}{2}}{3 m} \Leftrightarrow \\
& \left(1-\frac{\varepsilon}{3 m}\right) \rho_{i} \leq \mu_{i} \leq\left(1-\frac{\varepsilon}{3 m}\right) \rho_{i}
\end{aligned}
$$

So, μ_{i} is an $\frac{\varepsilon}{3 m}$-approximation of ρ_{i}.

Proof cont.

- So we need a good estimate of μ_{i}.

Proof cont.

- So we need a good estimate of μ_{i}.
- $\mu_{i} \geq\left(1-\frac{\varepsilon}{3 m}\right) \rho_{i} \geq\left(1-\frac{\varepsilon}{3 m}\right) \frac{1}{2} \geq \frac{1}{3}$ (using $\varepsilon \leq m$) (which also implies that $\left.\frac{1}{\mu_{i}} \leq 3\right)$.

Proof cont.

- So we need a good estimate of μ_{i}.
- $\mu_{i} \geq\left(1-\frac{\varepsilon}{3 m}\right) \rho_{i} \geq\left(1-\frac{\varepsilon}{3 m}\right) \frac{1}{2} \geq \frac{1}{3}$ (using $\varepsilon \leq m$) (which also implies that $\left.\frac{1}{\mu_{i}} \leq 3\right)$.
- $\operatorname{Var}\left(Z_{i}\right)=\mathbb{E}\left[\left(Z_{i}-\mu_{i}\right)^{2}\right]=\operatorname{Pr}\left[Z_{i}=1\right]\left(1-\mu_{i}\right)^{2}+\operatorname{Pr}\left[Z_{i}=0\right] \mu_{i}^{2}=$ $\mu_{i}\left(1-\mu_{i}\right)$.
- $\frac{\operatorname{Var}\left(Z_{i}\right)}{\mu_{i}^{2}}=\frac{\mu_{i}\left(1-\mu_{i}\right)}{\mu_{i}^{2}}=\frac{\mu_{i}-\mu_{i}^{2}}{\mu_{i}^{2}}=\frac{1}{\mu_{i}}-1 \leq 2$.

Proof cont.

- So we need a good estimate of μ_{i}.
- $\mu_{i} \geq\left(1-\frac{\varepsilon}{3 m}\right) \rho_{i} \geq\left(1-\frac{\varepsilon}{3 m}\right) \frac{1}{2} \geq \frac{1}{3}$ (using $\varepsilon \leq m$) (which also implies that $\left.\frac{1}{\mu_{i}} \leq 3\right)$.
- $\operatorname{Var}\left(Z_{i}\right)=\mathbb{E}\left[\left(Z_{i}-\mu_{i}\right)^{2}\right]=\operatorname{Pr}\left[Z_{i}=1\right]\left(1-\mu_{i}\right)^{2}+\operatorname{Pr}\left[Z_{i}=0\right] \mu_{i}^{2}=$ $\mu_{i}\left(1-\mu_{i}\right)$.
- $\frac{\operatorname{Var}\left(Z_{i}\right)}{\mu_{i}^{2}}=\frac{\mu_{i}\left(1-\mu_{i}\right)}{\mu_{i}^{2}}=\frac{\mu_{i}-\mu_{i}^{2}}{\mu_{i}^{2}}=\frac{1}{\mu_{i}}-1 \leq 2$.
- If we take the outputs $Z_{i}^{(1)}, \ldots, Z_{i}^{(s)}$ of s independent runs of \mathcal{S} on G_{i}, and set $\bar{Z}_{i}:=\frac{\sum_{j=1}^{s} Z_{i}^{(j)}}{s}$, then $\mathbb{E}\left[\bar{Z}_{i}\right]=\mu_{i}$ and

$$
\frac{\operatorname{Var}\left(\bar{Z}_{i}\right)}{\mu_{i}^{2}}=\frac{\frac{1}{s^{2}} \sum_{j=1}^{s} \operatorname{Var}\left(Z_{i}^{(j)}\right)}{\mu_{i}^{2}} \leq \frac{2}{s}
$$

Proof cont.

- $\mathbb{E}\left[\bar{Z}_{i}\right]=\mu_{i}$ and $\frac{\operatorname{Var}\left(\bar{Z}_{i}\right)}{\mu_{i}^{2}} \leq \frac{2}{s}$.

Proof cont.

- $\mathbb{E}\left[\bar{Z}_{i}\right]=\mu_{i}$ and $\frac{\operatorname{Var}\left(\bar{Z}_{i}\right)}{\mu_{i}^{2}} \leq \frac{2}{s}$.
- Let $s:=\left\lceil 74 \varepsilon^{-2} m\right\rceil$.
- Then, $\frac{\operatorname{Var}\left(\overline{Z_{i}}\right)}{\mu_{i}^{2}} \leq \frac{2}{s} \leq \frac{\varepsilon^{2}}{37 m}$.

Proof cont.

- $\mathbb{E}\left[\bar{Z}_{i}\right]=\mu_{i}$ and $\frac{\operatorname{Var}\left(\bar{Z}_{i}\right)}{\mu_{i}^{2}} \leq \frac{2}{s}$.
- Let $s:=\left\lceil 74 \varepsilon^{-2} m\right\rceil$.
- Then, $\frac{\operatorname{Var}\left(\bar{Z}_{i}\right)}{\mu_{i}^{2}} \leq \frac{2}{s} \leq \frac{\varepsilon^{2}}{37 m}$.
- Our estimator for $|\mathcal{M}(G)|$ is the random variable

$$
N:=\left(\prod_{i=1}^{m} \bar{Z}_{i}\right)^{-1}
$$

Proof cont.

- $\mathbb{E}\left[\bar{Z}_{i}\right]=\mu_{i}$ and $\frac{\operatorname{Var}\left(\bar{Z}_{i}\right)}{\mu_{i}^{2}} \leq \frac{2}{s}$.
- Let $s:=\left\lceil 74 \varepsilon^{-2} m\right\rceil$.
- Then, $\frac{\operatorname{Var}\left(\bar{Z}_{i}\right)}{\mu_{i}^{2}} \leq \frac{2}{s} \leq \frac{\varepsilon^{2}}{37 m}$.
- Our estimator for $|\mathcal{M}(G)|$ is the random variable

$$
N:=\left(\prod_{i=1}^{m} \bar{Z}_{i}\right)^{-1}
$$

- $\mathbb{E}\left[\bar{Z}_{1} \cdots \bar{Z}_{m}\right]=\mu_{1} \cdots \mu_{m}$.

Proof cont.

$$
\begin{aligned}
\frac{\operatorname{Var}\left(\bar{Z}_{1} \cdots \bar{Z}_{m}\right)}{\left(\mu_{1} \cdots \mu_{m}\right)^{2}} & =\frac{\mathbb{E}\left[\bar{Z}_{1}^{2} \cdots \bar{Z}_{m}^{2}\right]}{\mu_{1}^{2} \cdots \mu_{m}^{2}}-1 \quad \text { since } \operatorname{Var}(X)=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2} \\
& =\prod_{i=1}^{m} \frac{\mathbb{E}\left[\bar{Z}_{i}^{2}\right]}{\mu_{i}^{2}}-1 \quad \text { since } \bar{Z}_{i} \text { are independent } \\
& =\prod_{i=1}^{m}\left(1+\frac{\operatorname{var}\left(\bar{Z}_{i}\right)}{\mu_{i}^{2}}\right)-1 \quad \text { since } \mathbb{E}\left[X^{2}\right]=\operatorname{Var}\left(\bar{Z}_{i}\right)+\mathbb{E}[X]^{2} \\
& \leq\left(1+\frac{\varepsilon^{2}}{37 m}\right)^{m}-1 \quad \text { since } \frac{\operatorname{Var}\left(\bar{Z}_{i}\right)}{\mu_{i}^{2}} \leq \frac{\varepsilon^{2}}{37 m} \\
& \leq \exp \left(\frac{\varepsilon^{2}}{37}\right)-1 \quad \text { since }\left(1+\frac{x}{k}\right)^{k} \leq e^{x} \\
& \leq \frac{\varepsilon^{2}}{36} \quad \text { since } e^{x /(k+1)} \leq 1+x / k \text { for } 0 \leq x \leq 1
\end{aligned}
$$

Proof cont.

 By Chebychev's inequality $\operatorname{Pr}[|X-\mathbb{E}(X)| \leq a) \geq 1-\frac{\operatorname{Var}(X)}{a^{2}}$, we have that$$
\operatorname{Pr}\left[\left|\bar{Z}_{1} \cdots \bar{Z}_{m}-\mu_{1} \cdots \mu_{m}\right| \leq \frac{\varepsilon}{3} \mu_{1} \cdots \mu_{m}\right] \geq 1-\frac{\frac{\varepsilon^{2}}{36}\left(\mu_{1} \cdots \mu_{m}\right)^{2}}{\frac{\varepsilon^{2}}{9}\left(\mu_{1} \cdots \mu_{m}\right)^{2}} \Leftrightarrow
$$

Proof cont.

 By Chebychev's inequality $\operatorname{Pr}[|X-\mathbb{E}(X)| \leq a) \geq 1-\frac{\operatorname{Var}(X)}{a^{2}}$, we have that$$
\begin{aligned}
& \operatorname{Pr}\left[\left|\bar{Z}_{1} \cdots \bar{Z}_{m}-\mu_{1} \cdots \mu_{m}\right| \leq \frac{\varepsilon}{3} \mu_{1} \cdots \mu_{m}\right] \geq 1-\frac{\frac{\varepsilon^{2}}{36}\left(\mu_{1} \cdots \mu_{m}\right)^{2}}{\frac{\varepsilon^{2}}{9}\left(\mu_{1} \cdots \mu_{m}\right)^{2}} \Leftrightarrow \\
& \operatorname{Pr}\left[\left|\bar{Z}_{1} \cdots \bar{Z}_{m}-\mu_{1} \cdots \mu_{m}\right| \leq \frac{\varepsilon}{3} \mu_{1} \cdots \mu_{m}\right] \geq \frac{3}{4} \Leftrightarrow \\
& \left(1-\frac{\varepsilon}{3}\right) \mu_{1} \cdots \mu_{m} \leq \bar{Z}_{1} \cdots \bar{Z}_{m} \leq\left(1+\frac{\varepsilon}{3}\right) \mu_{1} \cdots \mu_{m} \quad \text { with prob. } \geq \frac{3}{4} \Leftrightarrow
\end{aligned}
$$

Proof cont.

By Chebychev's inequality $\operatorname{Pr}[|X-\mathbb{E}(X)| \leq a) \geq 1-\frac{\operatorname{Var}(X)}{a^{2}}$, we have that

$$
\begin{aligned}
& \operatorname{Pr}\left[\left|\bar{Z}_{1} \cdots \bar{Z}_{m}-\mu_{1} \cdots \mu_{m}\right| \leq \frac{\varepsilon}{3} \mu_{1} \cdots \mu_{m}\right] \geq 1-\frac{\frac{\varepsilon^{2}}{36}\left(\mu_{1} \cdots \mu_{m}\right)^{2}}{\frac{\varepsilon^{2}}{9}\left(\mu_{1} \cdots \mu_{m}\right)^{2}} \Leftrightarrow \\
& \operatorname{Pr}\left[\left|\bar{Z}_{1} \cdots \bar{Z}_{m}-\mu_{1} \cdots \mu_{m}\right| \leq \frac{\varepsilon}{3} \mu_{1} \cdots \mu_{m}\right] \geq \frac{3}{4} \Leftrightarrow
\end{aligned}
$$

$$
\left(1-\frac{\varepsilon}{3}\right) \mu_{1} \cdots \mu_{m} \leq \bar{Z}_{1} \cdots \bar{Z}_{m} \leq\left(1+\frac{\varepsilon}{3}\right) \mu_{1} \cdots \mu_{m} \quad \text { with prob. } \geq \frac{3}{4} \Leftrightarrow
$$

$$
\begin{equation*}
e^{-\varepsilon / 2} \mu_{1} \cdots \mu_{m} \leq \bar{Z}_{1} \cdots \bar{Z}_{m} \leq e^{\varepsilon / 2} \mu_{1} \cdots \mu_{m} \quad \text { with prob. } \geq \frac{3}{4} \tag{1}
\end{equation*}
$$

using $1+x \leq e^{x}$ and $e^{-x / k} \leq 1-x /(k+1)$ for $0 \leq x \leq 1$.

Proof cont.
By $\left(1-\frac{\varepsilon}{3 m}\right) \rho_{i} \leq \mu_{i} \leq\left(1-\frac{\varepsilon}{3 m}\right) \rho_{i}$ and similar calculations, we obtain that

$$
\begin{equation*}
e^{-\varepsilon / 2} \rho_{1} \cdots \rho_{m} \leq \mu_{1} \cdots \mu_{m} \leq e^{\varepsilon / 2} \rho_{1} \cdots \rho_{m} \tag{2}
\end{equation*}
$$

By (1) and (2), we have that

$$
\begin{gathered}
e^{-\varepsilon} \rho_{1} \cdots \rho_{m} \leq \bar{Z}_{1} \cdots \bar{Z}_{m} \leq e^{\varepsilon} \rho_{1} \cdots \rho_{m} \quad \text { with prob. } \geq \frac{3}{4} \Leftrightarrow \\
e^{-\varepsilon}\left(\rho_{1} \cdots \rho_{m}\right)^{-1} \leq\left(\bar{Z}_{1} \cdots \bar{Z}_{m}\right)^{-1} \leq e^{\varepsilon}\left(\rho_{1} \cdots \rho_{m}\right)^{-1} \quad \text { with prob. } \geq \frac{3}{4} \\
e^{-\varepsilon}|\mathcal{M}(G)| \leq \text { output } \leq e^{\varepsilon}|\mathcal{M}(G)| \quad \text { with prob. } \geq \frac{3}{4}
\end{gathered}
$$

Proof cont.
The run-time of the algorithm is bounded by

$$
\begin{gathered}
\text { (number of samples) } \cdot(\text { time per sample) }
\end{gathered}=
$$

Overview

(1) Introduction to Counting Complexity

- The class \#P
- Three classes of counting problems
- Holographic transformations
(2) Matchgates and Holographic Algorithms
- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
(3) Polynomial Interpolation
(4) Dichotomy Theorems for counting problems
(5) Approximation of counting problems
- Sampling and counting
- Markov chains
(6) Appendix
- We deal with discrete-time Markov chains on a finite state space Ω.
- We deal with discrete-time Markov chains on a finite state space Ω.
- A sequence $\left\{X_{t} \in \Omega\right\}_{t=0}^{\infty}$ of random variables is a Markov chain (MC), with state space Ω, if

$$
\operatorname{Pr}\left[X_{t+1}=y \mid X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right]=\operatorname{Pr}\left[X_{t+1}=y \mid X_{t}=x_{t}\right]
$$

for all $t \in \mathbb{N}$ and all $x_{0}, \ldots, x_{t} \in \Omega$.

- We deal with discrete-time Markov chains on a finite state space Ω.
- A sequence $\left\{X_{t} \in \Omega\right\}_{t=0}^{\infty}$ of random variables is a Markov chain (MC), with state space Ω, if

$$
\operatorname{Pr}\left[X_{t+1}=y \mid X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right]=\operatorname{Pr}\left[X_{t+1}=y \mid X_{t}=x_{t}\right]
$$

for all $t \in \mathbb{N}$ and all $x_{0}, \ldots, x_{t} \in \Omega$.

- This is called the Markovian property.
- We deal with discrete-time Markov chains on a finite state space Ω.
- A sequence $\left\{X_{t} \in \Omega\right\}_{t=0}^{\infty}$ of random variables is a Markov chain (MC), with state space Ω, if

$$
\operatorname{Pr}\left[X_{t+1}=y \mid X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right]=\operatorname{Pr}\left[X_{t+1}=y \mid X_{t}=x_{t}\right]
$$

for all $t \in \mathbb{N}$ and all $x_{0}, \ldots, x_{t} \in \Omega$.

- This is called the Markovian property.
- Time-homogeneous MCs are the ones for which the probability $\operatorname{Pr}\left[X_{t+1}=y \mid X_{t}=x\right]$ does not depend on t. In this case we write

$$
P(x, y)=\operatorname{Pr}\left[X_{t+1}=y \mid X_{t}=x\right]
$$

where P is the transition matrix of the MC.

Example 1

$$
P=\begin{gathered}
a \\
a \\
b \\
c \\
d
\end{gathered}\left(\begin{array}{cccc}
a & c \\
0 & 1 / 3 & 0 & 1 / 3 \\
1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 0 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 & 0
\end{array}\right)
$$

$$
X_{0}=a, X_{1}=b, X_{2}=d, X_{3}=b, \ldots
$$

Example 2

$$
P=\begin{gathered}
\\
a \\
b
\end{gathered}\left(\begin{array}{cc}
a & b \\
0 & 1 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

$X_{0}=a, X_{1}=b, X_{2}=b, X_{3}=b, X_{4}=a, X_{5}=b, \ldots$

Transition matrix

- Each row of the transition matrix P is a distribution.

Transition matrix

- Each row of the transition matrix P is a distribution.
- P describes single-step transition probabilities.

Transition matrix

- Each row of the transition matrix P is a distribution.
- P describes single-step transition probabilities.
- The t-step transition probabilities are given inductively by

$$
P^{t}(x, y):= \begin{cases}I(x, y), & \text { if } t=0 \\ \sum_{y^{\prime} \in \Omega} P^{t-1}\left(x, y^{\prime}\right) P\left(y^{\prime}, y\right), & \text { if } t>0\end{cases}
$$

Transition matrix

- Each row of the transition matrix P is a distribution.
- P describes single-step transition probabilities.
- The t-step transition probabilities are given inductively by

$$
P^{t}(x, y):= \begin{cases}I(x, y), & \text { if } t=0 \\ \sum_{y^{\prime} \in \Omega} P^{t-1}\left(x, y^{\prime}\right) P\left(y^{\prime}, y\right), & \text { if } t>0\end{cases}
$$

Transition matrix

- Each row of the transition matrix P is a distribution.
- P describes single-step transition probabilities.
- The t-step transition probabilities are given inductively by

$$
P^{t}(x, y):= \begin{cases}I(x, y), & \text { if } t=0 \\ \sum_{y^{\prime} \in \Omega} P^{t-1}\left(x, y^{\prime}\right) P\left(y^{\prime}, y\right), & \text { if } t>0\end{cases}
$$

- So P^{t} describes t-step transition probabilities.

Example 3

$$
\left.P=\begin{array}{c}
a \\
b \\
c
\end{array} \begin{array}{ccc}
a & b & c \\
0 & 0.4 & 0.6 \\
0.1 & 0 & 0.9 \\
0.5 & 0.5 & 0
\end{array}\right]
$$

Start distribution: $\sigma_{0}=(1,0,0)$ (start in a)
After one step: $\sigma_{1}=\sigma_{0} P=(0,0.4,0.6)$
After two steps: $\sigma_{2}=\sigma_{1} P=\sigma_{0} P^{2}=(0.34,0.3,0.36)$
After t steps: $\sigma_{t}=\sigma_{t-1} P=\sigma_{0} P^{t}$

Stationary distribution

$$
\begin{aligned}
& \left.\left[\begin{array}{llll}
\pi(a) & \Pi(b) & \Pi(c) & \pi(d)
\end{array}\right]\left[\begin{array}{lll}
P(a, a) & P(a, b) & P(a, c) \\
P(b, a) & P(a, d) \\
P(c, b) & P(b, c) & P(b, d) \\
(c, a) & P(c, b) & P(c, c)
\end{array}\right) P(c, d)\right]= \\
& {[\pi(a) \pi(b) \quad \pi(c) \quad \pi(d)]} \\
& \Pi(a)=\Pi(a) P(a, a)+\Pi(b) P(b, a)+\Pi(c) P(c, a)+\Pi(d) P(d, a)
\end{aligned}
$$

Stationary distribution

- A stationary distribution of an MC with transition matrix P is a distribution $\pi: \Omega \rightarrow[0,1]$ such that

$$
\pi(y)=\sum_{x \in \Omega} \pi(x) P(x, y)
$$

- In other words, $\pi \cdot P=\pi$.

Definition of irreducibility

Definition

An MC is irreducible if for all $x, y \in \Omega$, there exists a $t>0$, such that $P^{t}(x, y)>0$ (there exists a path in the transition graph from every state to every other state).

Example 4
Not irreducible

$$
P=\left[\begin{array}{cccc}
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 & 0 & 0 \\
1 / 3 & 1 / 3 & 0 & 1 / 3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Example 4
Not irreducible

$$
P=\left[\begin{array}{cccc}
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 & 0 & 0 \\
1 / 3 & 1 / 3 & 0 & 1 / 3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Stationary distributions: $\pi_{1}=(0,1,0,0), \pi_{2}=(0,0,0,1), \pi_{3}=(0,0.5,0,0.5), \ldots$

Definition of aperiodicity

Definition

An MC is aperiodic if $\operatorname{gcd}\left\{t \mid P^{t}(x, x)>0\right\}=1$ for all $x \in \Omega$ (for each state x, the gcd of all walk lengths from x to x is 1).

In the case of an irreducible MC, it is sufficient to verify the condition $\operatorname{gcd}\left\{t \mid P^{t}(x, x)>0\right\}=1$ for just one state $x \in \Omega$.

Example 5

Not aperiodic

$$
1=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Example 5

Not aperiodic

$$
R=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Lazy MC (a self-loop at every state)

$$
P=\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]
$$

Overview

(1) Introduction to Counting Complexity

- The class \#P
- Three classes of counting problems
- Holographic transformations
(2) Matchgates and Holographic Algorithms
- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
(3) Polynomial Interpolation
(4) Dichotomy Theorems for counting problems
(5) Approximation of counting problems
- Sampling and counting
- Markov chains

(6) Appendix

Useful elements of probability theory

- $\mathbb{E}[X]=\sum_{i} x_{i} \cdot P\left(X=x_{i}\right)$.
- $\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[X^{2}\right]-\mathbb{E}[X]^{2}$.
- Chebychev's Inequality: $\operatorname{Pr}[|X-\mathbb{E}(X)| \geq a] \leq \frac{\operatorname{Var}(X)}{a^{2}}$.
- In particular, $\operatorname{Pr}[|X-\mathbb{E}(X)| \geq a \mathbb{E}(X)] \leq \frac{\operatorname{Var}(X)}{a^{2} \mathbb{E}(X)^{2}}$.
- Chernoff bound: $\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 e^{-\mu \delta^{2} / 3}$ for all $0<\delta<1$, where $X=\sum_{i=1}^{n} X_{i}, X_{i}=\left\{\begin{array}{ll}1, & \text { with prob. } p_{i} \\ 0, & \text { with prob. } 1-p_{i}\end{array}\right.$, all X_{i} are independent and $\mu=\mathbb{E}[X]=\sum_{i=1}^{n} p_{i}$.

Useful inequalities

(1) $1+x \leq e^{x}$.
(2) $\left(1+\frac{x}{k}\right)^{k} \leq e^{x}$.
(3) $e^{x /(k+1)} \leq 1+x / k$ for $0 \leq x \leq 1$ and $k \in \mathbb{N}^{+}$.
(9) $e^{-x / k} \leq 1-x /(k+1)$ for $0 \leq x \leq 1$ and $k \in \mathbb{N}^{+}$.
(c) $e^{-\frac{x}{k}} \leq\left(1-\frac{x}{(k+1) n}\right)^{n}$ for $0 \leq x \leq 1$ and $k \in \mathbb{N}^{+}$.

