
We deal with discrete-time Markov chains on a finite state space Ω.

A sequence {Xt ∈ Ω}∞t=0 of random variables is a Markov chain
(MC), with state space Ω, if

Pr[Xt+1 = y | Xt = xt , ...,X0 = x0] = Pr[Xt+1 = y | Xt = xt ]

for all t ∈ N and all x0, ..., xt ∈ Ω.

This is called the Markovian property.

Time-homogeneous MCs are the ones for which the probability
Pr[Xt+1 = y | Xt = x ] does not depend on t. In this case we write

P(x , y) = Pr[Xt+1 = y | Xt = x ]

where P is the transition matrix of the MC.
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Example 1

P =

a b c d


a 0 1/3 1/3 1/3
b 1/3 0 1/3 1/3
c 1/3 1/3 0 1/3
d 1/3 1/3 1/3 0

X0 = a,X1 = b,X2 = d ,X3 = b, ...
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Example 2

P =

a b( )
a 0 1
b 1/2 1/2

X0 = a,X1 = b,X2 = b,X3 = b,X4 = a,X5 = b, ...
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Transition matrix
Each row of the transition matrix P is a distribution.

P describes single-step transition probabilities.
The t-step transition probabilities are given inductively by

Pt(x , y) :=

{
I (x , y), if t = 0∑

y ′∈Ω Pt−1(x , y ′)P(y ′, y), if t > 0
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Transition matrix
Each row of the transition matrix P is a distribution.
P describes single-step transition probabilities.

The t-step transition probabilities are given inductively by

Pt(x , y) :=

{
I (x , y), if t = 0∑

y ′∈Ω Pt−1(x , y ′)P(y ′, y), if t > 0

Counting Complexity 204 / 256



Transition matrix
Each row of the transition matrix P is a distribution.
P describes single-step transition probabilities.
The t-step transition probabilities are given inductively by

Pt(x , y) :=

{
I (x , y), if t = 0∑

y ′∈Ω Pt−1(x , y ′)P(y ′, y), if t > 0

Counting Complexity 204 / 256



Transition matrix
Each row of the transition matrix P is a distribution.
P describes single-step transition probabilities.
The t-step transition probabilities are given inductively by

Pt(x , y) :=

{
I (x , y), if t = 0∑

y ′∈Ω Pt−1(x , y ′)P(y ′, y), if t > 0

Counting Complexity 204 / 256



Transition matrix

Each row of the transition matrix P is a distribution.

P describes single-step transition probabilities.

The t-step transition probabilities are given inductively by

Pt(x , y) :=

{
I (x , y), if t = 0∑

y ′∈Ω Pt−1(x , y ′)P(y ′, y), if t > 0

So Pt describes t-step transition probabilities.

Counting Complexity 204 / 256



Example 3

Start distribution: σ0 = (1, 0, 0) (start in a)
After one step: σ1 = σ0P = (0, 0.4, 0.6)
After two steps: σ2 = σ1P = σ0P

2 = (0.34, 0.3, 0.36)
After t steps: σt = σt−1P = σ0P

t
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Stationary distribution
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Stationary distribution

A stationary distribution of an MC with transition matrix P is a
distribution π : Ω→ [0, 1] such that

π(y) =
∑
x∈Ω

π(x)P(x , y)

In other words, π · P = π.
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Definition of irreducibility

Definition

An MC is irreducible if for all x , y ∈ Ω, there exists a t > 0, such that
Pt(x , y) > 0 (there exists a path in the transition graph from every state
to every other state).
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Example 4

Not irreducible

Stationary distributions: π1 = (0, 1, 0, 0), π2 = (0, 0, 0, 1), π3 = (0, 0.5, 0, 0.5), ...
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Definition of aperiodicity

Definition

An MC is aperiodic if gcd{t | Pt(x , x) > 0} = 1 for all x ∈ Ω (for each
state x , the gcd of all walk lengths from x to x is 1).

In the case of an irreducible MC, it is sufficient to verify the condition
gcd{t | Pt(x , x) > 0} = 1 for just one state x ∈ Ω.
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Example 5
Not aperiodic

Lazy MC (a self-loop at every state)
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A (finite sate) MC is ergodic if and only if it is irreducible and aperiodic.

Theorem

An ergodic MC has a unique stationary distribution π.
Moreover, the MC tends to π in the sense that Pt(x , y)→ π(y), as
t →∞, for all x ∈ Ω.

Note that the MC eventually forgets its starting state.
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Detailed balance condition

Theorem

Suppose P is the transition matrix of an MC. If the function
π′ : Ω→ [0, 1] satisfies

π′(x)P(x , y) = π′(y)P(y , x), for all x , y ∈ Ω

and, ∑
x∈Ω

π′(x) = 1,

then π′ is the stationary distribution of the MC.
If, in addition, the MC is ergodic, then π′ is the unique stationary
distribution.

An MC for which the detailed balance condition holds is called
time-reversible.
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Proof. Suppose Xt is distributed as π′. Then,

Pr[Xt+1 = y ] =
∑
x∈Ω

π′(x)P(x , y) =

=
∑
x∈Ω

π′(y)P(y , x) = π′(y)

□
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Example 6

Random walk on the n-dimensional hypercube

Ω = {0, 1}n.

Start with some x ∈ Ω.

Description of a transition: Choose a bit u.a.r. and flip it with
probability 1/2.

This MC is irreducible and aperiodic. Why?

Its stationary distribution is π with π(x) = 1
2n , for all x ∈ Ω. Why?
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Example 6
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Example 7

Generating uniformly random matchings

Ω =M(G ) = the set of all matchings in a graph G .

Start with a matching, i.e. X0 = M0 ∈M(G ).

Suppose Xt = M. The next state is the result of the following trial.
1 With probability 1

2 set Xt+1 ← M and halt.

2 Otherwise, choose e ∈ E (G ) and set M ′ ← M ⊕ {e}.

3 If M ′ ∈M(G ) then Xt+1 ← M ′, else Xt+1 ← M.

This MC is irreducible and aperiodic. Why?

Its stationary distribution is the uniform distribution over all
matchings (Exercise).
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Definition of the mixing time

Suppose (Xt) is an ergodic MC on countable state space Ω with
transition matrix P and initial state X0 = x ∈ Ω.

For t ∈ N, the distribution of Xt is naturally denoted Pt(x , ·).
Let π denote the sationary distribution of the MC, i.e. the limit of
Pt(x , ·) as t →∞.

The rate of convergence to stationarity of (Xt) is measured by its
mixing time from initial state x :

τx(ε) := min{t | ||Pt(x , ·)− π||TV ≤ ε}.
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Lemma

The total variation distance ||Pt(x , ·)− π||TV of the t-step distribution
from sationarity is non-increasing with respect to t.

The definition of the mixing time is equivalent to

τx(ε) := min{t | ||Ps(x , ·)− π||TV ≤ ε, for all s ≥ t}.

The definition of mixing time that is independent of the initial state is
τ(ε) = maxx∈Ω τx(ε).

We define τmix := τ(1/4) (i.e. the first time t at which
||Pt(x , ·)− π||TV ≤ 1

4).
Then, ||Pkτmix (x , ·)− π||TV ≤ 2−k for every k ∈ N.
Equivalently,

τ(ε) ≤ ⌈log ε−1⌉τmix .
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Overview
1 Introduction to Counting Complexity

The class #P
Three classes of counting problems
Holographic transformations

2 Matchgates and Holographic Algorithms
Kasteleyn’s algorithm
Matchgates
Holographic algorithms

3 Polynomial Interpolation

4 Dichotomy Theorems for counting problems

5 Approximation of counting problems
Sampling and counting
Markov chains
Markov chain for sampling graph colorings

6 Appendix
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Let G = (V ,E ) be a graph and Q = {1, 2, ..., q} be a set of colors.

We wish to sample a random q-coloring uniformly from all possible
proper q-colorings on the vertices of G .

If this sampler is an fpaus, then there is an fpras for counting the
proper q-colorings of G .
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Let Ω be the set of proper q-colorings of G .

We will describe a time-homogeneous MC on Ω.

We are considering a q-coloring as a function C : V → Q, so we
denote by Xt(u) the color of vertex u in the state that the MC is in,
after t steps.
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Trial defining an MC on q-colorings

Suppose Xt = C . The next state is the result of the following trial.

1 Choose a vertex v ∈ V and a color c ∈ Q u.a.r.

2 Change the color of v to c , i.e. Xt+1(v)← c , if the result would be a
legal coloring. Otherwise, keep the colors of all vertices the same.
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Example 8
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Does this MC yield an fpaus?

Can the problem of counting q-colorings have an fpras?

Which counting problems can have an fpras?
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Which counting problems can have an fpras?

If #Sat has an fpras then RP = NP.

More generally, if a problem in #P with an NP-complete decision
version admits an fpras, then RP = NP.

We focus on counting problems that have an easy decision version,
i.e. in BPP.

Most counting problems with an fpras, have a decision version in P.
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Can the problem of counting q-colorings have an fpras?

Decision version: Is there a q-coloring in a graph G of max degree ∆?

q ≥ ∆+ 1: There is a coloring of G . Simply choose a color for each
vertex in some fixed order. Then, at every step, there is at least one
color not among the neighbors of v .

q < ∆: In general, it is NP-hard to decide if there is a coloring of G .
If ∆ ≥ 4, it is NP-hard to determine if G is (∆− 1)-colorable.

q = ∆: Brook’s theorem states that there exists a coloring of G iff
▶ ∆ > 2 and there is no (∆ + 1)-clique in G , or
▶ ∆ = 2 and there is no odd cycle in G .

Brook’s theorem yields a polynomial-time algorithm for constructing a
q-coloring.

Counting Complexity 228 / 256



Can the problem of counting q-colorings have an fpras?

Decision version: Is there a q-coloring in a graph G of max degree ∆?

q ≥ ∆+ 1: There is a coloring of G . Simply choose a color for each
vertex in some fixed order. Then, at every step, there is at least one
color not among the neighbors of v .

q < ∆: In general, it is NP-hard to decide if there is a coloring of G .
If ∆ ≥ 4, it is NP-hard to determine if G is (∆− 1)-colorable.

q = ∆: Brook’s theorem states that there exists a coloring of G iff
▶ ∆ > 2 and there is no (∆ + 1)-clique in G , or
▶ ∆ = 2 and there is no odd cycle in G .

Brook’s theorem yields a polynomial-time algorithm for constructing a
q-coloring.

Counting Complexity 228 / 256



Can the problem of counting q-colorings have an fpras?

Decision version: Is there a q-coloring in a graph G of max degree ∆?

q ≥ ∆+ 1: There is a coloring of G . Simply choose a color for each
vertex in some fixed order. Then, at every step, there is at least one
color not among the neighbors of v .

q < ∆: In general, it is NP-hard to decide if there is a coloring of G .
If ∆ ≥ 4, it is NP-hard to determine if G is (∆− 1)-colorable.

q = ∆: Brook’s theorem states that there exists a coloring of G iff
▶ ∆ > 2 and there is no (∆ + 1)-clique in G , or
▶ ∆ = 2 and there is no odd cycle in G .

Brook’s theorem yields a polynomial-time algorithm for constructing a
q-coloring.

Counting Complexity 228 / 256



Theorems

Jerrum (1995): The above Markov chain converges to the uniform
distribution over Ω and it has τmix = O(n log n) for q ≥ 2∆ + 1.

We are going to prove it in two steps:
1 for q ≥ 4∆ + 1.
2 for q ≥ 2∆ + 1.

Vigoda (1999): O(n2 log n) mixing for q ≥ 11
6 ∆.

Hayes & Sinclair (2005): Ω(n log n) lower bound.

Counting Complexity 229 / 256



Conjectures

If q ≥ ∆+ 2, the above Markov chain has τmix = O(n log n).
Martinelli, Sinclair & Weitz (2006): This conjecture is known to hold
for ∆-regular trees.

If q = ∆+ 1, there exists a Markov chain with polynomial mixing
time.
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The MC is ergodic

If q = ∆+ 1, then the above MC is not irreducible. For example, we
cannot move out of the following state.

where Q = {A,B,C} and ∆ = 2.

If q ≥ ∆+ 2, then the above MC is irreducible.

The above MC is aperiodic, since when choosing the color c , it may
happen to be Xt(v). So there exists a self-loop at every state.

Counting Complexity 231 / 256



The MC is ergodic

If q = ∆+ 1, then the above MC is not irreducible. For example, we
cannot move out of the following state.

where Q = {A,B,C} and ∆ = 2.

If q ≥ ∆+ 2, then the above MC is irreducible.

The above MC is aperiodic, since when choosing the color c , it may
happen to be Xt(v). So there exists a self-loop at every state.

Counting Complexity 231 / 256



The MC is ergodic

If q = ∆+ 1, then the above MC is not irreducible. For example, we
cannot move out of the following state.

where Q = {A,B,C} and ∆ = 2.

If q ≥ ∆+ 2, then the above MC is irreducible.

The above MC is aperiodic, since when choosing the color c , it may
happen to be Xt(v). So there exists a self-loop at every state.

Counting Complexity 231 / 256



The stationary distribution of the MC

The stationary distribution of the above MC is uniform over Ω.

Let Ci ,Cj ∈ Ω be two different proper colorings.

Then, P(Ci ,Cj) = P(Cj ,Ci ) =
1

nq
, if Cj results from Ci by recoloring

some vertex v ∈ V (G )
(and P(Ci ,Cj) = P(Cj ,Ci ) = 0, otherwise).

So, π(Ci )P(Ci ,Cj) = π(Cj)P(Cj ,Ci ), where π(Ci ) = π(Cj) =
1

|Ω|
.
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Bounding mixing time using coupling

Definition

Consider an MC (Zt) with state space Ω and transition matrix P.
A Markovian coupling for (Zt) is an MC (Xt ,Yt) on Ω×Ω, with transition
probabilities defined by

Pr[Xt+1 = x ′ | Xt = x ,Yt = y ] = P(x , x ′),

Pr[Yt+1 = y ′ | Xt = x ,Yt = y ] = P(y , y ′).

Equivalently, if P̂ : Ω2 → Ω2 denotes the transition matrix of the coupling,∑
y ′∈Ω

P̂((x , y), (x ′, y ′)) = P(x , x ′),

∑
x ′∈Ω

P̂((x , y), (x ′, y ′)) = P(y , y ′).
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y ′∈Ω

P̂((x , y), (x ′, y ′)) = P(x , x ′),

∑
x ′∈Ω

P̂((x , y), (x ′, y ′)) = P(y , y ′).
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Example 9

Simple random walk on {0, 1, ..., n}

The transition graph of (Zt) is the following.

Add either +1 or -1, each with probability 1/2, to the current state if
possible.

Do nothing if attempt to add either -1 to 0, or +1 to n.
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Example 9

A coupling (Xt ,Yt) for (Zt) starting in (x , y):

X0 = x , Y0 = y .

At the (t+1)-th step, choose bt+1 ∈ {−1, 1} u.a.r.
Attempt to add bt+1 to both Xt and Yt .

Note: We can modify any coupling so that the chains stay together after
the first time they meet.
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Coupling lemma

Let (Xt ,Yt) be any coupling for (Zt) on Ω. Suppose t : [0, 1]→ N is a
function satisfying the condition: for all x , y ∈ Ω and all ε > 0

Pr[Xt(ε) ̸= Yt(ε) | X0 = x ,Y0 = y ] ≤ ε.

Then the mixing time τ(ε) of (Zt) is bounded by t(ε).

Proof. Let P be the transition matrix of (Zt). Let A ⊆ Ω be arbitrary.
Let x ∈ Ω be fixed, and Y0 be chosen according to the stationary distribution π of (Zt).

For any ε ∈ (0, 1) and the corresponding t = t(ε),

Pt(x ,A) = Pr[Xt ∈ A]

≥ Pr[Xt = Yt ∧ Yt ∈ A]

= 1− Pr[Xt ̸= Yt ∨ Yt ̸∈ A]

≥ 1− (Pr[Xt ̸= Yt ] + Pr[Yt ̸∈ A])

≥ Pr(Yt ∈ A)− ε

= π(A)− ε.

By the definition of the total variation distance, ||P t(x , ·)− π||TV ≤ ε. □
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Bounding the mixing time of the MC

Theorem

The mixing time of the above MC is τmix = O(n log n) for q ≥ 4∆ + 1.

Proof.

We choose arbitrary colorings X0 and Y0 of G .

We couple (Xt ,Yt) by picking the same vertex v and color c u.a.r. at
all times t.

We denote by Dt be the number of vertices on which the colorings Xt

and Yt disagree.
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Proof cont. There are three types of possible moves: good moves, bad
moves, and neutral moves.

1 Good moves (Dt+1 = Dt − 1): v has different colors in Xt and Yt ,
and c does not appear in the neighborhood of v in either Xt or Yt .

Pr[Dt+1 = Dt − 1] ≥ Dt

n
· q − 2∆

q
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Proof cont.
2 Bad moves (Dt+1 = Dt + 1): v has the same color in Xt and Yt , and

c appears among the neighbors of v in exactly one of Xt or Yt .

▶ v is a neighbor of a disagreement vertex u and c is the color of u in
one of the chains.

▶ The disagreement vertices have at most Dt ·∆ neighbors, and for any
such neighbor there are at most 2 bad colors.

Pr[Dt+1 = Dt + 1] ≤ Dt ·∆
n
· 2
q
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Proof cont.

3 Neutral moves (Dt+1 = Dt): In any other move Dt remains invariant.

E[Dt+1 | Dt ] =(Dt − 1) · Pr[Dt+1 = Dt − 1] + (Dt + 1) · Pr[Dt+1 = Dt + 1]

+ Dt · (1− Pr[Dt+1 = Dt + 1]− Pr[Dt+1 = Dt − 1])

=Dt − Pr[Dt+1 = Dt − 1] + Pr[Dt+1 = Dt + 1]

≤Dt −
Dt(q − 2∆)

qn
+

2Dt∆

nq

=Dt

(
1− q − 4∆

qn

)
where 0 < 1− q−4∆

qn < 1, since q > 4∆.
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Proof cont. By taking expectation on both sides and iterating, we have
that

E[Dt | D0] ≤ D0

(
1− q − 4∆

qn

)t

≤ n
(
1− q − 4∆

qn

)t

≤ n exp
(
− q − 4∆

qn
· t
)

since (1− x)n ≤ e−nx

≤ ε when t ≥ q

q − 4∆
n(log n + log ε−1)
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Proof cont.

By Markov’s inequality Pr[X ≥ a] ≤ E[X ]
a , we have that

Pr[Xt ̸= Yt | (X0,Y0)] = Pr[Dt ≥ 1 | D0] ≤ E[Dt | D0]

≤ n exp
(
− q − 4∆

qn
· t
)
≤ ε

for t ≥ q
q−4∆n(log n + log ε−1).

By the Coupling lemma, the following holds for mixing time of the
Markov chain

τ(ε) =
q

q − 4∆
n(log n + log ε−1)

τmix = O( q

q − 4∆
n log n)

for q ≥ 4∆ + 1.

□
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Contraction in Dt

We showed contraction in one step: for some α > 0

E[Dt+1 | Dt ] ≤ Dte
−α ⇒ tmix(ε) ≤

log n + log ε−1

α
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Lemma

Let Zt be an MC on Ω and let d : Ω× Ω→ N be a metric. Suppose that
there is a coupling (Xt ,Yt) such that for all x , y ∈ Ω

E[d(Xt+1,Yt+1) | Xt = x ,Yt = y ] ≤ (1− α)d(x , y) for α < 1.

Then, τ(ε) ≤ α−1 log D
ε , where D is the diameter of Ω under d .
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The case of q > 2∆

The metric d does not need to be defined on Ω× Ω, but can be
extended.

Using path coupling, we are going to prove the following theorem.

Theorem

Let G have max degree ∆. If q > 2∆, the mixing time of the Metropolis
chain on colorings is

tmix(ε) ≤
⌈( q

q − 2∆

)
n(log n + log ε−1)

⌉
.
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Path coupling (Bubley & Dyer 1997)

We define a connected graph (Ω,E0).

Length function ℓ : E0 → [1,∞).

A path from x0 to xr is ξ = (x0, x1, ..., xr ) such that (xi−1, xi ) ∈ E0.

The length of path ξ is defined as ℓ(ξ) :=
r∑

i=1

ℓ(xi−1, xi ).

We are considering the shortest path metric ρ on Ω

ρ(x , y) := min{ℓ(ξ) | ξ is a path between x , y}.
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Theorem

Let Zt be an MC on Ω and let ρ : Ω×Ω→ N be the shortest path metric.
Suppose that there exists a coupling (Xt ,Yt) defined for all adjacent pair
of states in the graph (Ω,E0) such that for all adjacent Xt ,Yt

E[ρ(Xt+1,Yt+1) | Xt ,Yt ] ≤ (1− α)ρ(Xt ,Yt) for α < 1.

Then this coupling can be extended to a coupling between all pairs of
states that also satisfies the above inequality, so

τmix(ε) ≤
logD + log ε−1

α

where D = maxx ,y ρ(x , y).

Counting Complexity 247 / 256



Theorem

Let Zt be an MC on Ω and let ρ : Ω×Ω→ N be the shortest path metric.
Suppose that there exists a coupling (Xt ,Yt) defined for all adjacent pair
of states in the graph (Ω,E0) such that for all adjacent Xt ,Yt

E[ρ(Xt+1,Yt+1) | Xt ,Yt ] ≤ (1− α)ρ(Xt ,Yt) for α < 1.

Then this coupling can be extended to a coupling between all pairs of
states that also satisfies the above inequality, so

τmix(ε) ≤
logD + log ε−1

α

where D = maxx ,y ρ(x , y).

Counting Complexity 247 / 256


	Approximation of counting problems
	Markov chain for sampling graph colorings


