- We deal with discrete-time Markov chains on a finite state space Ω.
- We deal with discrete-time Markov chains on a finite state space Ω.
- A sequence $\left\{X_{t} \in \Omega\right\}_{t=0}^{\infty}$ of random variables is a Markov chain (MC), with state space Ω, if

$$
\operatorname{Pr}\left[X_{t+1}=y \mid X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right]=\operatorname{Pr}\left[X_{t+1}=y \mid X_{t}=x_{t}\right]
$$

for all $t \in \mathbb{N}$ and all $x_{0}, \ldots, x_{t} \in \Omega$.

- We deal with discrete-time Markov chains on a finite state space Ω.
- A sequence $\left\{X_{t} \in \Omega\right\}_{t=0}^{\infty}$ of random variables is a Markov chain (MC), with state space Ω, if

$$
\operatorname{Pr}\left[X_{t+1}=y \mid X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right]=\operatorname{Pr}\left[X_{t+1}=y \mid X_{t}=x_{t}\right]
$$

for all $t \in \mathbb{N}$ and all $x_{0}, \ldots, x_{t} \in \Omega$.

- This is called the Markovian property.
- We deal with discrete-time Markov chains on a finite state space Ω.
- A sequence $\left\{X_{t} \in \Omega\right\}_{t=0}^{\infty}$ of random variables is a Markov chain (MC), with state space Ω, if

$$
\operatorname{Pr}\left[X_{t+1}=y \mid X_{t}=x_{t}, \ldots, X_{0}=x_{0}\right]=\operatorname{Pr}\left[X_{t+1}=y \mid X_{t}=x_{t}\right]
$$

for all $t \in \mathbb{N}$ and all $x_{0}, \ldots, x_{t} \in \Omega$.

- This is called the Markovian property.
- Time-homogeneous MCs are the ones for which the probability $\operatorname{Pr}\left[X_{t+1}=y \mid X_{t}=x\right]$ does not depend on t. In this case we write

$$
P(x, y)=\operatorname{Pr}\left[X_{t+1}=y \mid X_{t}=x\right]
$$

where P is the transition matrix of the MC.

Example 1

$$
P=\begin{gathered}
a \\
a \\
b \\
c \\
d
\end{gathered}\left(\begin{array}{cccc}
a & c \\
0 & 1 / 3 & 0 & 1 / 3 \\
1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 0 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 & 0
\end{array}\right)
$$

$$
X_{0}=a, X_{1}=b, X_{2}=d, X_{3}=b, \ldots
$$

Example 2

$$
P=\begin{gathered}
\\
a \\
b
\end{gathered}\left(\begin{array}{cc}
a & b \\
0 & 1 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

$X_{0}=a, X_{1}=b, X_{2}=b, X_{3}=b, X_{4}=a, X_{5}=b, \ldots$

Transition matrix

- Each row of the transition matrix P is a distribution.

Transition matrix

- Each row of the transition matrix P is a distribution.
- P describes single-step transition probabilities.

Transition matrix

- Each row of the transition matrix P is a distribution.
- P describes single-step transition probabilities.
- The t-step transition probabilities are given inductively by

$$
P^{t}(x, y):= \begin{cases}I(x, y), & \text { if } t=0 \\ \sum_{y^{\prime} \in \Omega} P^{t-1}\left(x, y^{\prime}\right) P\left(y^{\prime}, y\right), & \text { if } t>0\end{cases}
$$

Transition matrix

- Each row of the transition matrix P is a distribution.
- P describes single-step transition probabilities.
- The t-step transition probabilities are given inductively by

$$
P^{t}(x, y):= \begin{cases}I(x, y), & \text { if } t=0 \\ \sum_{y^{\prime} \in \Omega} P^{t-1}\left(x, y^{\prime}\right) P\left(y^{\prime}, y\right), & \text { if } t>0\end{cases}
$$

Transition matrix

- Each row of the transition matrix P is a distribution.
- P describes single-step transition probabilities.
- The t-step transition probabilities are given inductively by

$$
P^{t}(x, y):= \begin{cases}I(x, y), & \text { if } t=0 \\ \sum_{y^{\prime} \in \Omega} P^{t-1}\left(x, y^{\prime}\right) P\left(y^{\prime}, y\right), & \text { if } t>0\end{cases}
$$

- So P^{t} describes t-step transition probabilities.

Example 3

$$
\left.P=\begin{array}{c}
a \\
b \\
c
\end{array} \begin{array}{ccc}
a & b & c \\
0 & 0.4 & 0.6 \\
0.1 & 0 & 0.9 \\
0.5 & 0.5 & 0
\end{array}\right]
$$

Start distribution: $\sigma_{0}=(1,0,0)($ start in a)
After one step: $\sigma_{1}=\sigma_{0} P=(0,0.4,0.6)$
After two steps: $\sigma_{2}=\sigma_{1} P=\sigma_{0} P^{2}=(0.34,0.3,0.36)$
After t steps: $\sigma_{t}=\sigma_{t-1} P=\sigma_{0} P^{t}$

Stationary distribution

$$
\begin{aligned}
& \left.\left[\begin{array}{llll}
\pi(a) & \Pi(b) & \Pi(c) & \pi(d)
\end{array}\right]\left[\begin{array}{lll}
P(a, a) & P(a, b) & P(a, c) \\
P(b, a) & P(a, d) \\
P(c, b) & P(b, c) & P(b, d) \\
(c, a) & P(c, b) & P(c, c)
\end{array}\right) P(c, d)\right]= \\
& {[\pi(a) \pi(b) \quad \pi(c) \quad \pi(d)]} \\
& \Pi(a)=\Pi(a) P(a, a)+\Pi(b) P(b, a)+\Pi(c) P(c, a)+\Pi(d) P(d, a)
\end{aligned}
$$

Stationary distribution

- A stationary distribution of an MC with transition matrix P is a distribution $\pi: \Omega \rightarrow[0,1]$ such that

$$
\pi(y)=\sum_{x \in \Omega} \pi(x) P(x, y)
$$

- In other words, $\pi \cdot P=\pi$.

Definition of irreducibility

Definition

An MC is irreducible if for all $x, y \in \Omega$, there exists a $t>0$, such that $P^{t}(x, y)>0$ (there exists a path in the transition graph from every state to every other state).

Example 4
Not irreducible

$$
P=\left[\begin{array}{cccc}
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 & 0 & 0 \\
1 / 3 & 1 / 3 & 0 & 1 / 3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Example 4
Not irreducible

$$
P=\left[\begin{array}{cccc}
0 & 1 / 3 & 1 / 3 & 1 / 3 \\
0 & 1 & 0 & 0 \\
1 / 3 & 1 / 3 & 0 & 1 / 3 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Stationary distributions: $\pi_{1}=(0,1,0,0), \pi_{2}=(0,0,0,1), \pi_{3}=(0,0.5,0,0.5), \ldots$

Definition of aperiodicity

Definition

An MC is aperiodic if $\operatorname{gcd}\left\{t \mid P^{t}(x, x)>0\right\}=1$ for all $x \in \Omega$ (for each state x, the gcd of all walk lengths from x to x is 1).

In the case of an irreducible MC, it is sufficient to verify the condition $\operatorname{gcd}\left\{t \mid P^{t}(x, x)>0\right\}=1$ for just one state $x \in \Omega$.

Example 5

Not aperiodic

$$
1=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Example 5

Not aperiodic

$$
R=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Lazy MC (a self-loop at every state)

$$
P=\left[\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right]
$$

A (finite sate) $M C$ is ergodic if and only if it is irreducible and aperiodic.

Theorem

An ergodic MC has a unique stationary distribution π.
Moreover, the MC tends to π in the sense that $P^{t}(x, y) \rightarrow \pi(y)$, as $t \rightarrow \infty$, for all $x \in \Omega$.

Note that the MC eventually forgets its starting state.

Detailed balance condition

Theorem

Suppose P is the transition matrix of an MC. If the function $\pi^{\prime}: \Omega \rightarrow[0,1]$ satisfies

$$
\pi^{\prime}(x) P(x, y)=\pi^{\prime}(y) P(y, x), \text { for all } x, y \in \Omega
$$

and,

$$
\sum_{x \in \Omega} \pi^{\prime}(x)=1,
$$

then π^{\prime} is the stationary distribution of the MC. If, in addition, the MC is ergodic, then π^{\prime} is the unique stationary distribution.

An MC for which the detailed balance condition holds is called time-reversible.

Proof. Suppose X_{t} is distributed as π^{\prime}. Then,

$$
\operatorname{Pr}\left[X_{t+1}=y\right]=\sum_{x \in \Omega} \pi^{\prime}(x) P(x, y)=
$$

$$
=\sum_{x \in \Omega} \pi^{\prime}(y) P(y, x)=\pi^{\prime}(y)
$$

$$
\left[\Pi^{\prime}\left(x_{1}\right) \cdots\left(\Pi^{\prime}(y)\right) \cdots \Pi^{\prime}\left(x_{n}\right)\right]\left[\begin{array}{ccc}
P\left(x_{1}, x_{1}\right) & \cdots & \\
\vdots\left(x_{1}, x_{n}\right) \\
P\left(y_{1}, x_{1}\right) & \cdots & P\left(y, x_{n}\right) \\
\vdots & & \\
P\left(x_{n}, x_{1}\right) & \cdots & P\left(x_{n}, x_{n}\right)
\end{array}\right]
$$

Example 6

Random walk on the n-dimensional hypercube

- $\Omega=\{0,1\}^{n}$.
- Start with some $x \in \Omega$.

Example 6

Random walk on the n-dimensional hypercube

- $\Omega=\{0,1\}^{n}$.
- Start with some $x \in \Omega$.
- Description of a transition: Choose a bit u.a.r. and flip it with probability $1 / 2$.

Example 6

Random walk on the n-dimensional hypercube

- $\Omega=\{0,1\}^{n}$.
- Start with some $x \in \Omega$.
- Description of a transition: Choose a bit u.a.r. and flip it with probability $1 / 2$.
- This MC is irreducible and aperiodic. Why?

Example 6

Random walk on the n-dimensional hypercube

- $\Omega=\{0,1\}^{n}$.
- Start with some $x \in \Omega$.
- Description of a transition: Choose a bit u.a.r. and flip it with probability $1 / 2$.
- This MC is irreducible and aperiodic. Why?
- Its stationary distribution is π with $\pi(x)=\frac{1}{2^{n}}$, for all $x \in \Omega$. Why?

Example 6

Example 7

Generating uniformly random matchings

- $\Omega=\mathcal{M}(G)=$ the set of all matchings in a graph G.
- Start with a matching, i.e. $X_{0}=M_{0} \in \mathcal{M}(G)$.

Example 7

Generating uniformly random matchings

- $\Omega=\mathcal{M}(G)=$ the set of all matchings in a graph G.
- Start with a matching, i.e. $X_{0}=M_{0} \in \mathcal{M}(G)$.
- Suppose $X_{t}=M$. The next state is the result of the following trial.
(1) With probability $\frac{1}{2}$ set $X_{t+1} \leftarrow M$ and halt.
(2) Otherwise, choose $e \in E(G)$ and set $M^{\prime} \leftarrow M \oplus\{e\}$.
(3) If $M^{\prime} \in \mathcal{M}(G)$ then $X_{t+1} \leftarrow M^{\prime}$, else $X_{t+1} \leftarrow M$.

Example 7

Generating uniformly random matchings

- $\Omega=\mathcal{M}(G)=$ the set of all matchings in a graph G.
- Start with a matching, i.e. $X_{0}=M_{0} \in \mathcal{M}(G)$.
- Suppose $X_{t}=M$. The next state is the result of the following trial.
(1) With probability $\frac{1}{2}$ set $X_{t+1} \leftarrow M$ and halt.
(2) Otherwise, choose $e \in E(G)$ and set $M^{\prime} \leftarrow M \oplus\{e\}$.
(3) If $M^{\prime} \in \mathcal{M}(G)$ then $X_{t+1} \leftarrow M^{\prime}$, else $X_{t+1} \leftarrow M$.
- This MC is irreducible and aperiodic. Why?

Example 7

Generating uniformly random matchings

- $\Omega=\mathcal{M}(G)=$ the set of all matchings in a graph G.
- Start with a matching, i.e. $X_{0}=M_{0} \in \mathcal{M}(G)$.
- Suppose $X_{t}=M$. The next state is the result of the following trial.
(1) With probability $\frac{1}{2}$ set $X_{t+1} \leftarrow M$ and halt.
(2) Otherwise, choose $e \in E(G)$ and set $M^{\prime} \leftarrow M \oplus\{e\}$.
(3) If $M^{\prime} \in \mathcal{M}(G)$ then $X_{t+1} \leftarrow M^{\prime}$, else $X_{t+1} \leftarrow M$.
- This MC is irreducible and aperiodic. Why?
- Its stationary distribution is the uniform distribution over all matchings (Exercise).

Example 7

Definition of the mixing time

- Suppose $\left(X_{t}\right)$ is an ergodic MC on countable state space Ω with transition matrix P and initial state $X_{0}=x \in \Omega$.

Definition of the mixing time

- Suppose $\left(X_{t}\right)$ is an ergodic MC on countable state space Ω with transition matrix P and initial state $X_{0}=x \in \Omega$.
- For $t \in \mathbb{N}$, the distribution of X_{t} is naturally denoted $P^{t}(x, \cdot)$.

Definition of the mixing time

- Suppose $\left(X_{t}\right)$ is an ergodic MC on countable state space Ω with transition matrix P and initial state $X_{0}=x \in \Omega$.
- For $t \in \mathbb{N}$, the distribution of X_{t} is naturally denoted $P^{t}(x, \cdot)$.
- Let π denote the sationary distribution of the MC, i.e. the limit of $P^{t}(x, \cdot)$ as $t \rightarrow \infty$.

Definition of the mixing time

- Suppose $\left(X_{t}\right)$ is an ergodic MC on countable state space Ω with transition matrix P and initial state $X_{0}=x \in \Omega$.
- For $t \in \mathbb{N}$, the distribution of X_{t} is naturally denoted $P^{t}(x, \cdot)$.
- Let π denote the sationary distribution of the MC, i.e. the limit of $P^{t}(x, \cdot)$ as $t \rightarrow \infty$.
- The rate of convergence to stationarity of $\left(X_{t}\right)$ is measured by its mixing time from initial state x :

$$
\tau_{x}(\varepsilon):=\min \left\{t \mid\left\|P^{t}(x, \cdot)-\pi\right\|_{T V} \leq \varepsilon\right\}
$$

Lemma

The total variation distance $\left\|P^{t}(x, \cdot)-\pi\right\|_{T V}$ of the t-step distribution from sationarity is non-increasing with respect to t.

Lemma

The total variation distance $\left\|P^{t}(x, \cdot)-\pi\right\|_{T V}$ of the t-step distribution from sationarity is non-increasing with respect to t.

- The definition of the mixing time is equivalent to

$$
\tau_{x}(\varepsilon):=\min \left\{t \mid\left\|P^{s}(x, \cdot)-\pi\right\|_{T V} \leq \varepsilon, \text { for all } s \geq t\right\}
$$

Lemma

The total variation distance $\left\|P^{t}(x, \cdot)-\pi\right\|_{T V}$ of the t-step distribution from sationarity is non-increasing with respect to t.

- The definition of the mixing time is equivalent to

$$
\tau_{x}(\varepsilon):=\min \left\{t \mid\left\|P^{s}(x, \cdot)-\pi\right\|_{T V} \leq \varepsilon, \text { for all } s \geq t\right\}
$$

- The definition of mixing time that is independent of the initial state is $\tau(\varepsilon)=\max _{x \in \Omega} \tau_{x}(\varepsilon)$.

Lemma

The total variation distance $\left\|P^{t}(x, \cdot)-\pi\right\|_{T V}$ of the t-step distribution from sationarity is non-increasing with respect to t.

- The definition of the mixing time is equivalent to

$$
\tau_{x}(\varepsilon):=\min \left\{t \mid\left\|P^{s}(x, \cdot)-\pi\right\|_{T V} \leq \varepsilon, \text { for all } s \geq t\right\}
$$

- The definition of mixing time that is independent of the initial state is $\tau(\varepsilon)=\max _{x \in \Omega} \tau_{x}(\varepsilon)$.
- We define $\tau_{\text {mix }}:=\tau(1 / 4)$ (i.e. the first time t at which $\left.\left\|P^{t}(x, \cdot)-\pi\right\|_{T V} \leq \frac{1}{4}\right)$.
Then, $\left\|P^{k \tau_{\text {mix }}}(x, \cdot)-\pi\right\|_{T V} \leq 2^{-k}$ for every $k \in \mathbb{N}$.
Equivalently,

$$
\tau(\varepsilon) \leq\left\lceil\log \varepsilon^{-1}\right\rceil \tau_{\text {mix }}
$$

Overview

(1) Introduction to Counting Complexity

- The class \#P
- Three classes of counting problems
- Holographic transformations
(2) Matchgates and Holographic Algorithms
- Kasteleyn's algorithm
- Matchgates
- Holographic algorithms
(3) Polynomial Interpolation
(4) Dichotomy Theorems for counting problems
(5) Approximation of counting problems
- Sampling and counting
- Markov chains
- Markov chain for sampling graph colorings
(6) Appendix
- Let $G=(V, E)$ be a graph and $Q=\{1,2, \ldots, q\}$ be a set of colors.
- We wish to sample a random q-coloring uniformly from all possible proper q-colorings on the vertices of G.
- If this sampler is an fpaus, then there is an fpras for counting the proper q-colorings of G.
- Let Ω be the set of proper q-colorings of G.
- We will describe a time-homogeneous MC on Ω.
- We are considering a q-coloring as a function $C: V \rightarrow Q$, so we denote by $X_{t}(u)$ the color of vertex u in the state that the MC is in, after t steps.

Trial defining an MC on q-colorings

Suppose $X_{t}=C$. The next state is the result of the following trial.
(1) Choose a vertex $v \in V$ and a color $c \in Q$ u.a.r.
(2) Change the color of v to c, i.e. $X_{t+1}(v) \leftarrow c$, if the result would be a legal coloring. Otherwise, keep the colors of all vertices the same.

Example 8

- Does this MC yield an fpaus?
- Can the problem of counting q-colorings have an fpras?
- Which counting problems can have an fpras?

Which counting problems can have an fpras?

- If \#Sat has an fpras then RP $=N P$.
- More generally, if a problem in \#P with an NP-complete decision version admits an fpras, then $R P=N P$.

Which counting problems can have an fpras?

- If \#Sat has an fpras then RP $=$ NP.
- More generally, if a problem in \#P with an NP-complete decision version admits an fpras, then $R P=N P$.
- We focus on counting problems that have an easy decision version, i.e. in BPP.
- Most counting problems with an fpras, have a decision version in P .

Can the problem of counting q-colorings have an fpras?

Decision version: Is there a q-coloring in a graph G of max degree Δ ?

- $q \geq \Delta+1$: There is a coloring of G. Simply choose a color for each vertex in some fixed order. Then, at every step, there is at least one color not among the neighbors of v.

Can the problem of counting q-colorings have an fpras?

Decision version: Is there a q-coloring in a graph G of max degree Δ ?

- $q \geq \Delta+1$: There is a coloring of G. Simply choose a color for each vertex in some fixed order. Then, at every step, there is at least one color not among the neighbors of v.
- $q<\Delta$: In general, it is NP-hard to decide if there is a coloring of G. If $\Delta \geq 4$, it is NP-hard to determine if G is $(\Delta-1)$-colorable.

Can the problem of counting q-colorings have an fpras?

Decision version: Is there a q-coloring in a graph G of max degree Δ ?

- $q \geq \Delta+1$: There is a coloring of G. Simply choose a color for each vertex in some fixed order. Then, at every step, there is at least one color not among the neighbors of v.
- $q<\Delta$: In general, it is NP-hard to decide if there is a coloring of G. If $\Delta \geq 4$, it is NP-hard to determine if G is $(\Delta-1)$-colorable.
- $q=\Delta$: Brook's theorem states that there exists a coloring of G iff
- $\Delta>2$ and there is no $(\Delta+1)$-clique in G, or
- $\Delta=2$ and there is no odd cycle in G.

Brook's theorem yields a polynomial-time algorithm for constructing a q-coloring.

Theorems

- Jerrum (1995): The above Markov chain converges to the uniform distribution over Ω and it has $\tau_{\text {mix }}=\mathcal{O}(n \log n)$ for $q \geq 2 \Delta+1$.

We are going to prove it in two steps:
(1) for $q \geq 4 \Delta+1$.
(2) for $q \geq 2 \Delta+1$.

- Vigoda (1999): $\mathcal{O}\left(n^{2} \log n\right)$ mixing for $q \geq \frac{11}{6} \Delta$.
- Hayes \& Sinclair (2005): $\Omega(n \log n)$ lower bound.

Conjectures

- If $q \geq \Delta+2$, the above Markov chain has $\tau_{\text {mix }}=\mathcal{O}(n \log n)$. Martinelli, Sinclair \& Weitz (2006): This conjecture is known to hold for Δ-regular trees.
- If $q=\Delta+1$, there exists a Markov chain with polynomial mixing time.

The MC is ergodic

- If $q=\Delta+1$, then the above $M C$ is not irreducible. For example, we cannot move out of the following state.

where $Q=\{A, B, C\}$ and $\Delta=2$.

The MC is ergodic

- If $q=\Delta+1$, then the above $M C$ is not irreducible. For example, we cannot move out of the following state.

where $Q=\{A, B, C\}$ and $\Delta=2$.
- If $q \geq \Delta+2$, then the above $M C$ is irreducible.

The MC is ergodic

- If $q=\Delta+1$, then the above $M C$ is not irreducible. For example, we cannot move out of the following state.

where $Q=\{A, B, C\}$ and $\Delta=2$.
- If $q \geq \Delta+2$, then the above $M C$ is irreducible.
- The above MC is aperiodic, since when choosing the color c, it may happen to be $X_{t}(v)$. So there exists a self-loop at every state.

The stationary distribution of the MC

The stationary distribution of the above MC is uniform over Ω.

- Let $C_{i}, C_{j} \in \Omega$ be two different proper colorings.

The stationary distribution of the MC

The stationary distribution of the above MC is uniform over Ω.

- Let $C_{i}, C_{j} \in \Omega$ be two different proper colorings.
- Then, $P\left(C_{i}, C_{j}\right)=P\left(C_{j}, C_{i}\right)=\frac{1}{n q}$, if C_{j} results from C_{i} by recoloring some vertex $v \in V(G)$ (and $P\left(C_{i}, C_{j}\right)=P\left(C_{j}, C_{i}\right)=0$, otherwise).

The stationary distribution of the MC

The stationary distribution of the above MC is uniform over Ω.

- Let $C_{i}, C_{j} \in \Omega$ be two different proper colorings.
- Then, $P\left(C_{i}, C_{j}\right)=P\left(C_{j}, C_{i}\right)=\frac{1}{n q}$, if C_{j} results from C_{i} by recoloring some vertex $v \in V(G)$ (and $P\left(C_{i}, C_{j}\right)=P\left(C_{j}, C_{i}\right)=0$, otherwise).
- So, $\pi\left(C_{i}\right) P\left(C_{i}, C_{j}\right)=\pi\left(C_{j}\right) P\left(C_{j}, C_{i}\right)$, where $\pi\left(C_{i}\right)=\pi\left(C_{j}\right)=\frac{1}{|\Omega|}$.

Bounding mixing time using coupling

Definition

Consider an $\mathrm{MC}\left(Z_{t}\right)$ with state space Ω and transition matrix P. A Markovian coupling for $\left(Z_{t}\right)$ is an $\mathrm{MC}\left(X_{t}, Y_{t}\right)$ on $\Omega \times \Omega$, with transition probabilities defined by

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{t+1}=x^{\prime} \mid X_{t}=x, Y_{t}=y\right]=P\left(x, x^{\prime}\right) \\
& \operatorname{Pr}\left[Y_{t+1}=y^{\prime} \mid X_{t}=x, Y_{t}=y\right]=P\left(y, y^{\prime}\right)
\end{aligned}
$$

Bounding mixing time using coupling

Definition

Consider an MC $\left(Z_{t}\right)$ with state space Ω and transition matrix P. A Markovian coupling for $\left(Z_{t}\right)$ is an $\mathrm{MC}\left(X_{t}, Y_{t}\right)$ on $\Omega \times \Omega$, with transition probabilities defined by

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{t+1}=x^{\prime} \mid X_{t}=x, Y_{t}=y\right]=P\left(x, x^{\prime}\right) \\
& \operatorname{Pr}\left[Y_{t+1}=y^{\prime} \mid X_{t}=x, Y_{t}=y\right]=P\left(y, y^{\prime}\right)
\end{aligned}
$$

Equivalently, if $\widehat{P}: \Omega^{2} \rightarrow \Omega^{2}$ denotes the transition matrix of the coupling,

$$
\begin{aligned}
& \sum_{y^{\prime} \in \Omega} \widehat{P}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=P\left(x, x^{\prime}\right), \\
& \sum_{x^{\prime} \in \Omega} \widehat{P}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=P\left(y, y^{\prime}\right) .
\end{aligned}
$$

Example 9

Simple random walk on $\{0,1, \ldots, n\}$

- The transition graph of $\left(Z_{t}\right)$ is the following.

- Add either +1 or -1 , each with probability $1 / 2$, to the current state if possible.
- Do nothing if attempt to add either -1 to 0 , or +1 to n.

Example 9

A coupling $\left(X_{t}, Y_{t}\right)$ for $\left(Z_{t}\right)$ starting in (x, y) :

- $X_{0}=x, Y_{0}=y$.
- At the ($\mathrm{t}+1$)-th step, choose $b_{t+1} \in\{-1,1\}$ u.a.r.
- Attempt to add b_{t+1} to both X_{t} and Y_{t}.

Example 9

A coupling $\left(X_{t}, Y_{t}\right)$ for $\left(Z_{t}\right)$ starting in (x, y) :

- $X_{0}=x, Y_{0}=y$.
- At the ($\mathrm{t}+1$)-th step, choose $b_{t+1} \in\{-1,1\}$ u.a.r.
- Attempt to add b_{t+1} to both X_{t} and Y_{t}.

Note: We can modify any coupling so that the chains stay together after the first time they meet.

Coupling lemma

Let $\left(X_{t}, Y_{t}\right)$ be any coupling for $\left(Z_{t}\right)$ on Ω. Suppose $t:[0,1] \rightarrow \mathbb{N}$ is a function satisfying the condition: for all $x, y \in \Omega$ and all $\varepsilon>0$

$$
\operatorname{Pr}\left[X_{t(\varepsilon)} \neq Y_{t(\varepsilon)} \mid X_{0}=x, Y_{0}=y\right] \leq \varepsilon
$$

Then the mixing time $\tau(\varepsilon)$ of $\left(Z_{t}\right)$ is bounded by $t(\varepsilon)$.

Coupling lemma

Let $\left(X_{t}, Y_{t}\right)$ be any coupling for $\left(Z_{t}\right)$ on Ω. Suppose $t:[0,1] \rightarrow \mathbb{N}$ is a function satisfying the condition: for all $x, y \in \Omega$ and all $\varepsilon>0$

$$
\operatorname{Pr}\left[X_{t(\varepsilon)} \neq Y_{t(\varepsilon)} \mid X_{0}=x, Y_{0}=y\right] \leq \varepsilon .
$$

Then the mixing time $\tau(\varepsilon)$ of $\left(Z_{t}\right)$ is bounded by $t(\varepsilon)$.
Proof. Let P be the transition matrix of $\left(Z_{t}\right)$. Let $A \subseteq \Omega$ be arbitrary. Let $x \in \Omega$ be fixed, and Y_{0} be chosen according to the stationary distribution π of $\left(Z_{t}\right)$.

Coupling lemma

Let $\left(X_{t}, Y_{t}\right)$ be any coupling for $\left(Z_{t}\right)$ on Ω. Suppose $t:[0,1] \rightarrow \mathbb{N}$ is a function satisfying the condition: for all $x, y \in \Omega$ and all $\varepsilon>0$

$$
\operatorname{Pr}\left[X_{t(\varepsilon)} \neq Y_{t(\varepsilon)} \mid X_{0}=x, Y_{0}=y\right] \leq \varepsilon .
$$

Then the mixing time $\tau(\varepsilon)$ of $\left(Z_{t}\right)$ is bounded by $t(\varepsilon)$.
Proof. Let P be the transition matrix of $\left(Z_{t}\right)$. Let $A \subseteq \Omega$ be arbitrary.
Let $x \in \Omega$ be fixed, and Y_{0} be chosen according to the stationary distribution π of $\left(Z_{t}\right)$.
For any $\varepsilon \in(0,1)$ and the corresponding $t=t(\varepsilon)$,

$$
\begin{aligned}
P^{t}(x, A) & =\operatorname{Pr}\left[X_{t} \in A\right] \\
& \geq \operatorname{Pr}\left[X_{t}=Y_{t} \wedge Y_{t} \in A\right] \\
& =1-\operatorname{Pr}\left[X_{t} \neq Y_{t} \vee Y_{t} \notin A\right] \\
& \geq 1-\left(\operatorname{Pr}\left[X_{t} \neq Y_{t}\right]+\operatorname{Pr}\left[Y_{t} \notin A\right]\right) \\
& \geq \operatorname{Pr}\left(Y_{t} \in A\right)-\varepsilon \\
& =\pi(A)-\varepsilon
\end{aligned}
$$

Coupling lemma

Let $\left(X_{t}, Y_{t}\right)$ be any coupling for $\left(Z_{t}\right)$ on Ω. Suppose $t:[0,1] \rightarrow \mathbb{N}$ is a function satisfying the condition: for all $x, y \in \Omega$ and all $\varepsilon>0$

$$
\operatorname{Pr}\left[X_{t(\varepsilon)} \neq Y_{t(\varepsilon)} \mid X_{0}=x, Y_{0}=y\right] \leq \varepsilon .
$$

Then the mixing time $\tau(\varepsilon)$ of $\left(Z_{t}\right)$ is bounded by $t(\varepsilon)$.
Proof. Let P be the transition matrix of $\left(Z_{t}\right)$. Let $A \subseteq \Omega$ be arbitrary. Let $x \in \Omega$ be fixed, and Y_{0} be chosen according to the stationary distribution π of $\left(Z_{t}\right)$. For any $\varepsilon \in(0,1)$ and the corresponding $t=t(\varepsilon)$,

$$
\begin{aligned}
P^{t}(x, A) & =\operatorname{Pr}\left[X_{t} \in A\right] \\
& \geq \operatorname{Pr}\left[X_{t}=Y_{t} \wedge Y_{t} \in A\right] \\
& =1-\operatorname{Pr}\left[X_{t} \neq Y_{t} \vee Y_{t} \notin A\right] \\
& \geq 1-\left(\operatorname{Pr}\left[X_{t} \neq Y_{t}\right]+\operatorname{Pr}\left[Y_{t} \notin A\right]\right) \\
& \geq \operatorname{Pr}\left(Y_{t} \in A\right)-\varepsilon \\
& =\pi(A)-\varepsilon
\end{aligned}
$$

By the definition of the total variation distance, $\left\|P^{t}(x, \cdot)-\pi\right\|_{T V} \leq \varepsilon$.

Bounding the mixing time of the MC

Theorem

The mixing time of the above $M C$ is $\tau_{\text {mix }}=\mathcal{O}(n \log n)$ for $q \geq 4 \Delta+1$.
Proof.

- We choose arbitrary colorings X_{0} and Y_{0} of G.
- We couple $\left(X_{t}, Y_{t}\right)$ by picking the same vertex v and color c u.a.r. at all times t.
- We denote by D_{t} be the number of vertices on which the colorings X_{t} and Y_{t} disagree.

Proof cont. There are three types of possible moves: good moves, bad moves, and neutral moves.
(1) Good moves $\left(D_{t+1}=D_{t}-1\right): v$ has different colors in X_{t} and Y_{t}, and c does not appear in the neighborhood of v in either X_{t} or Y_{t}.

Proof cont.

(2) Bad moves $\left(D_{t+1}=D_{t}+1\right): v$ has the same color in X_{t} and Y_{t}, and c appears among the neighbors of v in exactly one of X_{t} or Y_{t}.

$$
Q=\{\bullet, \bullet, \bullet, 0,0\}
$$

Proof cont.

(2) Bad moves $\left(D_{t+1}=D_{t}+1\right): v$ has the same color in X_{t} and Y_{t}, and c appears among the neighbors of v in exactly one of X_{t} or Y_{t}.

- v is a neighbor of a disagreement vertex u and c is the color of u in one of the chains.
- The disagreement vertices have at most $D_{t} \cdot \Delta$ neighbors, and for any such neighbor there are at most 2 bad colors.

$$
\operatorname{Pr}\left[D_{t+1}=D_{t}+1\right] \leq \frac{D_{t} \cdot \Delta}{n} \cdot \frac{2}{q}
$$

Proof cont.
(3) Neutral moves $\left(D_{t+1}=D_{t}\right)$: In any other move D_{t} remains invariant.

Proof cont.
(3) Neutral moves $\left(D_{t+1}=D_{t}\right)$: In any other move D_{t} remains invariant.

$$
\begin{aligned}
\mathbb{E}\left[D_{t+1} \mid D_{t}\right]= & \left(D_{t}-1\right) \cdot \operatorname{Pr}\left[D_{t+1}=D_{t}-1\right]+\left(D_{t}+1\right) \cdot \operatorname{Pr}\left[D_{t+1}=D_{t}+1\right] \\
& +D_{t} \cdot\left(1-\operatorname{Pr}\left[D_{t+1}=D_{t}+1\right]-\operatorname{Pr}\left[D_{t+1}=D_{t}-1\right]\right)
\end{aligned}
$$

Proof cont.
(3) Neutral moves $\left(D_{t+1}=D_{t}\right)$: In any other move D_{t} remains invariant.

$$
\begin{aligned}
\mathbb{E}\left[D_{t+1} \mid D_{t}\right]= & \left(D_{t}-1\right) \cdot \operatorname{Pr}\left[D_{t+1}=D_{t}-1\right]+\left(D_{t}+1\right) \cdot \operatorname{Pr}\left[D_{t+1}=D_{t}+1\right] \\
& +D_{t} \cdot\left(1-\operatorname{Pr}\left[D_{t+1}=D_{t}+1\right]-\operatorname{Pr}\left[D_{t+1}=D_{t}-1\right]\right) \\
= & D_{t}-\operatorname{Pr}\left[D_{t+1}=D_{t}-1\right]+\operatorname{Pr}\left[D_{t+1}=D_{t}+1\right] \\
\leq & D_{t}-\frac{D_{t}(q-2 \Delta)}{q n}+\frac{2 D_{t} \Delta}{n q} \\
= & D_{t}\left(1-\frac{q-4 \Delta}{q n}\right)
\end{aligned}
$$

Proof cont.
(3) Neutral moves $\left(D_{t+1}=D_{t}\right)$: In any other move D_{t} remains invariant.

$$
\begin{aligned}
\mathbb{E}\left[D_{t+1} \mid D_{t}\right]= & \left(D_{t}-1\right) \cdot \operatorname{Pr}\left[D_{t+1}=D_{t}-1\right]+\left(D_{t}+1\right) \cdot \operatorname{Pr}\left[D_{t+1}=D_{t}+1\right] \\
& +D_{t} \cdot\left(1-\operatorname{Pr}\left[D_{t+1}=D_{t}+1\right]-\operatorname{Pr}\left[D_{t+1}=D_{t}-1\right]\right) \\
= & D_{t}-\operatorname{Pr}\left[D_{t+1}=D_{t}-1\right]+\operatorname{Pr}\left[D_{t+1}=D_{t}+1\right] \\
\leq & D_{t}-\frac{D_{t}(q-2 \Delta)}{q n}+\frac{2 D_{t} \Delta}{n q} \\
= & D_{t}\left(1-\frac{q-4 \Delta}{q n}\right)
\end{aligned}
$$

where $0<1-\frac{q-4 \Delta}{q n}<1$, since $q>4 \Delta$.

Proof cont. By taking expectation on both sides and iterating, we have that

$$
\begin{aligned}
\mathbb{E}\left[D_{t} \mid D_{0}\right] & \leq D_{0}\left(1-\frac{q-4 \Delta}{q n}\right)^{t} \\
& \leq n\left(1-\frac{q-4 \Delta}{q n}\right)^{t} \\
& \leq n \exp \left(-\frac{q-4 \Delta}{q n} \cdot t\right) \quad \text { since }(1-x)^{n} \leq e^{-n x} \\
& \leq \varepsilon \quad \quad \text { when } t \geq \frac{q}{q-4 \Delta} n\left(\log n+\log \varepsilon^{-1}\right)
\end{aligned}
$$

Proof cont.

- By Markov's inequality $\operatorname{Pr}[X \geq a] \leq \frac{\mathbb{E}[X]}{a}$, we have that

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{t} \neq Y_{t} \mid\left(X_{0}, Y_{0}\right)\right]=\operatorname{Pr}\left[D_{t} \geq 1 \mid D_{0}\right] \leq \mathbb{E}\left[D_{t} \mid D_{0}\right] \\
& \leq n \exp \left(-\frac{q-4 \Delta}{q n} \cdot t\right) \leq \varepsilon
\end{aligned}
$$

$$
\text { for } t \geq \frac{q}{q-4 \Delta} n\left(\log n+\log \varepsilon^{-1}\right)
$$

Proof cont.

- By Markov's inequality $\operatorname{Pr}[X \geq a] \leq \frac{\mathbb{E}[X]}{a}$, we have that

$$
\begin{aligned}
& \operatorname{Pr}\left[X_{t} \neq Y_{t} \mid\left(X_{0}, Y_{0}\right)\right]=\operatorname{Pr}\left[D_{t} \geq 1 \mid D_{0}\right] \leq \mathbb{E}\left[D_{t} \mid D_{0}\right] \\
& \leq n \exp \left(-\frac{q-4 \Delta}{q n} \cdot t\right) \leq \varepsilon
\end{aligned}
$$

for $t \geq \frac{q}{q-4 \Delta} n\left(\log n+\log \varepsilon^{-1}\right)$.

- By the Coupling lemma, the following holds for mixing time of the Markov chain

$$
\begin{gathered}
\tau(\varepsilon)=\frac{q}{q-4 \Delta} n\left(\log n+\log \varepsilon^{-1}\right) \\
\tau_{\text {mix }}=\mathcal{O}\left(\frac{q}{q-4 \Delta} n \log n\right)
\end{gathered}
$$

for $q \geq 4 \Delta+1$.

Contraction in D_{t}

We showed contraction in one step: for some $\alpha>0$

$$
\mathbb{E}\left[D_{t+1} \mid D_{t}\right] \leq D_{t} e^{-\alpha} \Rightarrow t_{\text {mix }}(\varepsilon) \leq \frac{\log n+\log \varepsilon^{-1}}{\alpha}
$$

Lemma

Let Z_{t} be an MC on Ω and let $d: \Omega \times \Omega \rightarrow \mathbb{N}$ be a metric. Suppose that there is a coupling $\left(X_{t}, Y_{t}\right)$ such that for all $x, y \in \Omega$

$$
\mathbb{E}\left[d\left(X_{t+1}, Y_{t+1}\right) \mid X_{t}=x, Y_{t}=y\right] \leq(1-\alpha) d(x, y) \text { for } \alpha<1
$$

Then, $\tau(\varepsilon) \leq \alpha^{-1} \log \frac{D}{\varepsilon}$, where D is the diameter of Ω under d.

The case of $q>2 \Delta$

- The metric d does not need to be defined on $\Omega \times \Omega$, but can be extended.
- Using path coupling, we are going to prove the following theorem.

Theorem

Let G have max degree Δ. If $q>2 \Delta$, the mixing time of the Metropolis chain on colorings is

$$
t_{\text {mix }}(\varepsilon) \leq\left\lceil\left(\frac{q}{q-2 \Delta}\right) n\left(\log n+\log \varepsilon^{-1}\right)\right] .
$$

Path coupling (Bubley \& Dyer 1997)

- We define a connected graph $\left(\Omega, E_{0}\right)$.
- Length function $\ell: E_{0} \rightarrow[1, \infty)$.
- A path from x_{0} to x_{r} is $\xi=\left(x_{0}, x_{1}, \ldots, x_{r}\right)$ such that $\left(x_{i-1}, x_{i}\right) \in E_{0}$.
- The length of path ξ is defined as $\ell(\xi):=\sum_{i=1}^{r} \ell\left(x_{i-1}, x_{i}\right)$.
- We are considering the shortest path metric ρ on Ω

$$
\rho(x, y):=\min \{\ell(\xi) \mid \xi \text { is a path between } x, y\} .
$$

Theorem

Let Z_{t} be an $M C$ on Ω and let $\rho: \Omega \times \Omega \rightarrow \mathbb{N}$ be the shortest path metric. Suppose that there exists a coupling $\left(X_{t}, Y_{t}\right)$ defined for all adjacent pair of states in the graph $\left(\Omega, E_{0}\right)$ such that for all adjacent X_{t}, Y_{t}

$$
\mathbb{E}\left[\rho\left(X_{t+1}, Y_{t+1}\right) \mid X_{t}, Y_{t}\right] \leq(1-\alpha) \rho\left(X_{t}, Y_{t}\right) \text { for } \alpha<1
$$

Theorem

Let Z_{t} be an $M C$ on Ω and let $\rho: \Omega \times \Omega \rightarrow \mathbb{N}$ be the shortest path metric. Suppose that there exists a coupling $\left(X_{t}, Y_{t}\right)$ defined for all adjacent pair of states in the graph $\left(\Omega, E_{0}\right)$ such that for all adjacent X_{t}, Y_{t}

$$
\mathbb{E}\left[\rho\left(X_{t+1}, Y_{t+1}\right) \mid X_{t}, Y_{t}\right] \leq(1-\alpha) \rho\left(X_{t}, Y_{t}\right) \text { for } \alpha<1
$$

Then this coupling can be extended to a coupling between all pairs of states that also satisfies the above inequality, so

$$
\tau_{\operatorname{mix}}(\varepsilon) \leq \frac{\log D+\log \varepsilon^{-1}}{\alpha}
$$

where $D=\max _{x, y} \rho(x, y)$.

